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Abstract We revisit the scenario of a massive spin-2 parti-
cle as the mediator for communicating between dark matter
of arbitrary spin and the Standard Model. Taking the gen-
eral couplings of the spin-2 particle in the effective theory,
we discuss the thermal production mechanisms for dark mat-
ter with various channels and the dark matter self-scattering.
For WIMP and light dark matter cases, we impose the relic
density condition and various experimental constraints from
direct and indirect detections, precision measurements as
well as collider experiments. We show that it is important to
include the annihilation of dark matter into a pair of spin-2
particles in both allowed and forbidden regimes, thus open-
ing up the consistent parameter space for dark matter. The
benchmark models of the spin-2 mediator are presented in
the context of the warped extra dimension and compared to
the simplified models.

1 Introduction

Dark matter (DM) is a complete mystery in particle physics
and cosmology, although its presence can be unambiguously
inferred from galaxy rotation curves, gravitational lensing,
Cosmic Microwave Background as well as large-scale struc-
tures, etc. There are null results in searching dark matter
beyond gravitational interactions from various direct and
indirect detection experiments, thus, in particular, a lot of
parameter space for Weakly Interacting Massive Particles
(WIMPs) has been ruled out [1–3].

The nature of dark matter is still an open question. To
this, it is very important to pin down the production mech-
anisms for dark matter in the early universe. For instance,
WIMP dark matter relies on the freeze-out process under
which the DM relic density is determined in terms of weak
interaction and weak-scale DM mass. Thus, this has moti-
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vated specific target materials and technologies in the direct
searches for WIMP for more than three decades. New pro-
duction mechanisms such as for Feebly Interacting Massive
Particles (FIMPs) [4], Strongly Interacting Massive Parti-
cles (SIMPs) [5–11] and forbidden dark matter [12,13], etc,
can motivate different target materials and new technologies
to get access to sub-GeV DM masses and/or feeble interac-
tions. It is known that light dark matter with sub-GeV mass
can have large self-interactions to solve potentially small-
scale problems at galaxies [14–18] and it may also call for
new dynamics in the dark sector [19–21] to get the DM self-
interactions velocity-dependent for galaxy clusters such as
Bullet cluster [22–24].

Moreover, dark matter is known to be neutral under elec-
tromagnetism, so it is conceivable to communicate between
dark matter and the Standard Model (SM) through messenger
or mediator particles. Thus, the simplified models for dark
matter with mediator particles have drawn a lot of atten-
tion, providing an important guideline for direct and indi-
rect detections of dark matter as well as collider experiments
[25,26].

In this article, we consider a massive spin-2 particle as
the mediator for dark matter of arbitrary spin, which cou-
ples to the SM particles and dark matter through the energy-
momentum tensor, as originally proposed by one of us
and collaborators [27,28]. This scenario has been dubbed
“Gravity-mediated dark matter”, due to the similarity to the
way that the massless graviton interacts with the SM. The
spin-2 mediator stems from a composite state in conformal
field theories or a Kaluza-Klein(KK) graviton in a gravity
dual with the warped extra dimension [27–32]. There are
other works on the spin-2 mediated dark matter in similar
frameworks [33–36]. We regard the massive spin-2 particle
as a dark matter mediator in the effective theory with general
couplings to the SM and dark matter and discuss the general
production mechanisms for WIMP dark matter and light dark
matter in this scenario.
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We discuss various channels of dark matter interactions
in the presence of the spin-2 mediator: direct 2 → 2 anni-
hilations, 2 → 2 allowed and forbidden channels into a pair
of spin-2 mediators, 3 → 2 assisted annihilations as well as
DM self-scattering. We perform a comprehensive check of
the consistency between the correct relic density and vari-
ous experimental constraints, such as direct detection, pre-
cision measurement of muon g − 2, meson decays and col-
lider experiments, in both WIMP and light dark matter cases.
We also introduce two benchmark models with the warped
extra dimension for the spin-2 mediator, such as the Randall-
Sundrum(RS) model [37] and the clockwork model [38–41].
Then, we discuss the impacts of heavier KK gravitons on the
aforementioned processes for dark matter, focusing on the
DM s-channel annihilation into the SM particles and DM
elastic scattering processes.

There is a recent work [42] where a similar setup is studied
for the massive spin-2 particle playing a role as a mediator for
dark matter and the parameter space for heavy dark matter
beyond TeV scale is scanned over in the context of 5D linear
dilaton background, based on standard WIMP 2 → 2 anni-
hilation channels. On the other hand, in our work, we focus
on the phenomenological study of the massive spin-2 medi-
ator in the effective theory, focusing on the productions and
constraints of weak-scale WIMP and sub-GeV dark matter
with new production channels, and deal with the complete
analysis of DM direct detection constraints.

The paper is organized as follows. We begin with a brief
description of our setup for the spin-2 mediator and its inter-
actions. Then, we determine the DM relic density from vari-
ous annihilation channels and discuss the self-scattering pro-
cess for dark matter and the unitarity bounds. Next, we con-
sider the DM-nucleon elastic scattering for WIMP and the
DM-electron elastic scattering for light dark matter and pro-
vide various direct and indirect constraints on those dark
matter models. We continue to show two benchmark models
with the warped extra dimension and discuss how the DM
processes can be modified due to extra resonances. Finally,
conclusions are drawn. There are three appendices dealing
with the details on DM-nucleon scattering amplitudes, decay
widths of spin-2 particles as well as the KK sums.

2 The setup

We consider the effective interactions of a massive spin-2
field, Gμν , to the SM particles as well as dark matter with
arbitrary spin, in the following [27,28],

Leff = c1
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(1

4
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λ

ν

)

+c2
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(2.1)

where Bμν,Wμν, gμν are the strength tensors for U (1)Y ,

SU (2)L , SU (3)C gauge fields, respectively, ψ is the SM
fermion, H is the Higgs doublet, and � is the dimension-
ful parameter for spin-2 interactions. Here, we note that
ci (i = 1, 2, 3), cψ , and cH are dimensionless couplings
for the KK graviton. Depending on the spin of dark matter,
s = 0, 1

2 , 1, denoted as S, χ and X , the energy-momentum
tensor for dark matter, TDM

μν , is given, respectively, by
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. (2.3)

In the later discussion, we focus on the couplings of the
spin-2 mediator to quarks, leptons and massless gauge bosons
in the SM, as well as dark matter couplings. We treat those
SM to mediator couplings to be independent parameters, but
be universal for simplicity as well as unitarity consideration.

3 Dark matter annihilations and self-scattering

In this section, we discuss the Boltzmann equations for deter-
mining the relic density of dark matter and show the details
for the cross sections for 2 → 2 direct annihilations. In par-
ticular, we obtain for the first time the new results for 2 → 2
forbidden channels, 3 → 2 assisted annihilations, and DM
self-scattering.

First, we consider the Boltzmann equations for the relic
density of real scalar dark matter S or vector dark matter X ,
given by

ṅDM + 3HnDM

= −2〈σv〉DM DM→SM SM

(
n2

DM − (neq
DM)2

)
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−2〈σv2〉DM DM DM→DM G

(
n3

DM − (neq
DM)2nDM

)

−2〈σv〉DM DM→GG

(
n2

DM − (neq
DM)2

)
. (3.1)

Similarly, for Dirac fermion dark matter χ , the corre-
sponding Boltzmann equation for nDM = nχ + nχ̄ is

ṅDM + 3HnDM

= −1

2
〈σv〉χχ̄→SM SM

(
n2

DM − (neq
DM)2

)

−1

2
〈σv2〉χχ̄χ→χG

(
n3

DM − (neq
DM)2nDM

)

−1

2
〈σv〉χχ̄→GG

(
n2

DM − (neq
DM)2

)
. (3.2)

Henceforth, we assume that the spin-2 particle is in ther-
mal equilibrium with the SM plasma during the freeze-out,
so we can take nG = neq

G , which is the number density in
thermal equilibrium.

3.1 Direct annihilations

We focus on the cases with relatively light WIMP dark matter
and light dark matter below the WW threshold, which anni-
hilate dominantly into the SM fermions or massless gauge
bosons.

If dark matter is heavier than the WW threshold, we
can also take into account the DM annihilations into the
electroweak sector, as shown in Ref. [27–29], allowing for
smaller couplings of the spin-2 mediator to the SM parti-
cles for a correct relic density. In this work, however, for
WIMP dark matter, we take the spin-2 mediator couplings to
the SM quarks and gluons to be nonzero in simplified mod-
els. For consistency of gauge-invariant couplings, we choose
c1 = c2 = cH = 0 in the electroweak sector and cl = 0 for
SM leptons in the discussion for WIMP. On the other hand,
for light dark matter below the WW threshold, we keep all
the spin-2 mediator couplings to the SM to be nonzero.

In the case when dark matter is heavier than the spin-
2 mediator, dark matter can also annihilate directly into a
pair of spin-2 particles, reducing the dark matter abundance
further together with the direct annihilations into the SM.

In the case where 2 → 2 annihilation channels are domi-
nant, the Boltzmann equations, (3.1) or (3.2), become

ṅDM + 3HnDM ≈ −〈σv〉2→2 n
2
DM (3.3)

with

(σv)2→2 ≡
{

2(σv)DM DM→SM SM + 2(σv)DM DM→GG , DM = S, X,
1
2 (σv)χχ̄→SM SM + 1

2 (σv)χχ̄→GG , DM = χ,

≡ a + b v2 + c v4. (3.4)

Then, the relic density for WIMP dark matter is given by

�DMh2 = 5.20

×10−10 GeV−2
(

10.75

g∗

)1/2( x f

20

)(
a + 3b

x f
+ 20c

x2
f

)−1

(3.5)

with x f = mDM/T f where T f is the freeze-out temperature.

3.1.1 Scalar dark matter

The annihilation cross section for scalar dark matter into a
pair of SM fermions, SS → ψψ̄ , is given [27–31] by

(σv)SS→ψψ̄

= v4 · Ncc2
Sc

2
ψ

360π�4

m6
S

(m2
G − 4m2

S)
2 + �2

Gm
2
G

(
1 − m2

ψ

m2
S

) 3
2

(
3 + 2m2

ψ

m2
S

)
(3.6)

where Nc is the number of colors for the SM fermion ψ , and
�G is the width of the spin-2 particle. Thus, the annihilation
of scalar dark matter into the SM fermions becomes d-wave
suppressed, so scalar dark matter is not constrained by indi-
rect constraints from cosmic rays and Cosmic Microwave
Background (CMB) measurements [27–29].

When mS > mG , scalar dark matter can also annihilate
into a pair of spin-2 particles through the t/u-channels [27–
32], becoming dominant due to sizable spin-2 couplings to
dark matter. Then, the corresponding annihilation cross sec-
tion is given, as follows,

(σv)SS→GG = 4c4
Sm

2
S

9π�4

(1 − rS)
9
2

r4
S(2 − rS)2

(3.7)

with rS =
(
mG
mS

)2
.

For light dark matter, the DM annihilations into photons
or gluons are relevant. For sub-GeV dark matter, the DM
annihilations into mesons must be considered instead of those
into gluons. Then, for scalar dark matter, the annihilation
cross sections into a pair of massless gauge bosons [27,28]
are

(σv)SS→γ γ 	 v4 · c2
Sc

2
γ

60π�4

m6
S

(4m2
S − m2

G)2 + �2
Gm

2
G

, (3.8)

(σv)SS→gg 	 v4 · 2c2
Sc

2
g

15π�4

m6
S

(4m2
S − m2

G)2 + �2
Gm

2
G

. (3.9)

For 2mS � 1.5 GeV, instead of the annihilation into a gluon
pair, we should consider the annihilation cross section of
scalar dark matter into a meson pair, as follows,
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(σv)SS→ππ 	 v4 · c2
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where cπ 	 cq in the limit of small momenta of produced
pions, because the chiral perturbation theory takes in. We
also need to include the annihilation of scalar dark matter
into charged pions and kaons, if kinematically allowed.

3.1.2 Fermion dark matter

The annihilation cross section for fermion dark matter,
χχ̄ → ψψ̄ , is given [27–31] by

(σv)χχ̄→ψψ̄

= v2 · Ncc2
χc

2
ψ

72π�4
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(4m2
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ψ

m2
χ

)
. (3.11)

Thus, the annihilation of fermion dark matter into the SM
fermions becomes p-wave suppressed. Then, similarly to the
case of scalar dark matter, fermion dark matter is not con-
strained by indirect constraints from cosmic rays and CMB
measurements [27–29].

When mχ > mG , fermion dark matter also annihilates
into a pair of spin-2 particles through to the t/u-channels
[27–31], as follows,

(σv)χχ̄→GG = c4
χm

2
χ

16π�4

(1 − rχ )
7
2

r2
χ (2 − rχ )2 (3.12)

with rχ =
(
mG
mχ

)2
. Then, the resulting annihilation cross

section is s-wave, so it becomes dominant in determining
the relic density for fermion dark matter.

For light fermion dark matter, the annihilation cross sec-
tions into a pair of massless gauge bosons and a pair of
mesons [27,28] are

(σv)χχ̄→γ γ 	 v2 · c2
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γ

12π�4

m6
χ

(4m2
χ − m2

G)2 + �2
Gm

2
G

,

(3.13)
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2
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(3.14)

For 2mχ � 1.5 GeV, we need to include the annihilation
channel into a pion pair by

(σv)χχ̄→ππ 	 v2 · c2
χc

2
π

144π�4
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(4m2
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G)2 + �2
Gm
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G
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(
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) 5
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Similarly, the annihilation of fermion dark matter into
charged pions and kaons, if kinematically allowed, should
be also included.

3.1.3 Vector dark matter

The annihilation cross section for vector dark matter, XX →
ψψ̄ , is given [27–31] by

(σv)XX→ψψ̄ = 4Ncc2
Xc

2
ψ

27π�4

m6
X

(4m2
X − m2

G)2 + �2
Gm

2
G

×
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ψ
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ψ

m2
X

) 3
2

. (3.16)

Thus, the annihilation of vector dark matter into quarks
becomes s-wave. In this case, smaller spin-2 mediator cou-
plings to the SM quarks or vector dark matter can be consis-
tent with the correct relic density, as compared to the other
cases. In this case, the CMB measurement for recombination
era can rule out the vector dark matter mass below 100 GeV,
if the relic density is determined solely by the direction anni-
hilation into the SM particles. But, indirect detection signals
from the annihilation of vector dark matter are promising
[27–29].

For mX > mG , vector dark matter also annihilates into a
pair of spin-2 particles through the t/u-channels [27–32], as
follows,

(σv)XX→GG = c4
Xm

2
X

324π�4

√
1 − rX

r4
X (2 − rX )2

(
176 + 192rX

+1404r2
X − 3108r3

X

+1105r4
X + 362r5

X + 34r6
X

)
(3.17)

with rX =
(
mG
mX

)2
.

For light vector dark matter, the annihilation cross sections
into a pair of massless gauge bosons and a pair of mesons
[27,28] are

(σv)XX→γ γ = 8c2
Xc

2
γ

9π�4

m6
X

(4m2
X − m2

G)2 + �2
Gm

2
G

, (3.18)

(σv)XX→gg = 64c2
Xc

2
g

9π�4

m6
X

(4m2
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G)2 + �2
Gm

2
G

. (3.19)
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For 2mX � 1.5 GeV, we also need to include the annihilation
into a pion pair by

(σv)XX→ππ 	 2c2
Xc

2
π

27π�4

m6
X

(4m2
X − m2

G)2 + �2
Gm

2
G

×
(

1 − m2
π

m2
X

) 5
2

. (3.20)

Similarly, the annihilation of vector dark matter into charged
pions and kaons, if kinematically allowed, should be also
included.

3.2 Forbidden channels

When dark matter is lighter than the spin-2 mediator, but their
masses are comparable, that is, mDM � mG , the annihilation
of dark matter into a pair of spin-2 particles is forbidden
at zero temperature, but it is kinematically allowed due to
the tail of the Boltzmann distribution of dark matter at finite
temperature, making the so called forbidden channels rele-
vant for determining the DM abundance. In this subsection,
we consider the forbidden channels in association with the
spin-2 mediator.

In the case when the forbidden channels are dominant, the
Boltzmann Eqs. (3.1) and (3.2), become

ṅDM + 3HnDM ≈ −〈σv〉FB n2
DM (3.21)

where the forbidden annihilation cross sections are given by

〈σv〉FB ≡ 2(neq
G )2

(neq
DM)2

〈σv〉GG→DM DM

= 50

g2
DM

(1 + �G)3e−2�Gx 〈σv〉GG→DM DM. (3.22)

Here, �G = (mG − mDM)/mDM, and gDM is the number
of degrees of freedom of dark matter, gDM = 1, 4, 3, for
real scalar, Dirac fermion and vector dark matter, respec-
tively. Here, we have used the detailed balance condition for
forbidden channels. Moreover, for mDM < mG , the cross
sections for the inverse annihilation channels are given by

(σv)GG→SS = 4c4
Sm

2
S

225π�4

(rS − 1)
9
2

r7/2
S

, (3.23)

(σv)GG→χχ̄ = 4c4
χm

2
χ

225π�4

(rχ − 1

rχ

) 7
2
(4 + 3rχ ), (3.24)

(σv)GG→XX = c4
Xm

2
X

√
rX − 1

900π�4r7/2
X

(
48 − 94r2

X

+106r3
X + 105r4

X

)
. (3.25)

As a result, the relic density for forbidden dark matter [13]
is given by

�DMh2 = 5.20 × 10−10 GeV−2
(

10.75

g∗

)1/2( x f

20

)
e2�Gx f h

(3.26)

with

h ≡
[

50

g2
DM

〈σv〉GG→DM DM (1 + �G)3
(

1

−2�Gx f e
2�Gx f

∫ ∞

2�Gx f

dt t−1 e−t
)]−1

. (3.27)

There is a Boltzmann suppression factor in the effective anni-
hilation cross sections for forbidden channels, so we would
need larger couplings of dark matter to the spin-2 mediator
for the correct relic density, as compared to the case with
allowed 2 → 2 channels for mDM > mG .

3.3 Gravity-mediated 3 → 2 processes

Scalar dark matter can annihilate by SSS → SG, which
can be dominant over the forbidden channels, SS → GG,
for mS < mG < 2mS . Similarly, the 3 → 2 processes for
fermion dark matter (χχ̄χ → χG) and vector dark matter
(XXX → XG) can be important for mχ < mG < 2mχ

and mX < mG < 2mX , respectively. Thus, we choose
mDM < mG < 2mDM in order for the 3 → 2 processes
to be kinematically open and for the hidden sector 2 → 2
annihilations to be forbidden. In this subsection, we consider
the assisted 3 → 2 channels with the spin-2 mediator for the
first time.

When the 3 → 2 annihilation processes are dominant, the
Boltzmann Eq. (3.1) becomes

ṅDM + 3HnDM ≈ −〈σv2〉3→2 n
3
DM (3.28)

with

〈σv2〉3→2 ≡
{

2〈σv2〉DM DM DM→DM G, DM = S, X,
1
2 〈σv2〉χχ̄χ→χG, DM = χ,

≡ α3
eff

m5
DM

. (3.29)

Here, the corresponding 3 → 2 annihilation cross sections
for scalar and fermion dark matter are

〈σv2〉SSS→SG = c6
SmS(16 − r)2√(16 − r)(4 − r)

1209323520π�6r4(r + 2)2 (7r3

+348r2 − 1392r − 2176)2, (3.30)

〈σv2〉χχ̄χ→χG = c6
χmχ (16 − r)3

(
(16 − r)(4 − r)

)3/2

79626240π�6r(r + 2)2 .

(3.31)
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As a result, the relic density for SIMP dark matter [9–11,13]
is given by

�DMh2 = 1.41 × 10−8 GeV−2
(

10.75

g∗

)3/4( x f

20

)2

(
M1/3

P mDM

αeff

)3/2

. (3.32)

We note that the 3 → 2 annihilation cross sections are
highly suppressed for perturbative couplings in most of the
parameter space, so they are sub-dominant in determining
the relic density, as compared to the previously discussed
2 → 2 annihilation channels. Therefore, we don’t consider
the SIMP option in the later discussion.

3.4 Dark matter self-scattering

Spin-2 mediator can also mediate the self-scattering process
of dark matter, in particular, for fermion and vector dark
matter, for which there is no renormalizable interaction for
self-scattering. We can take the gravity-mediated processes
to be dominant for dark matter self-scattering and consider
the interplay between relic density condition and small-scale
problems in galaxies.

For scalar dark matter, the self-scattering cross section for
SS → SS, divided by DM mass, is in the Born approximation

σS,self

mS
= 2c4

SmS

9π�4r2
S

= 1.5 cm2/g ·
(

mS

0.1 GeV

)(
1 GeV

�/cS

)4(mS

mG

)4

.

(3.33)

For fermion dark matter, the self-scattering cross section
from χχ̄ → χχ̄ and χχ → χχ (and its complex conjugate),
divided by DM mass are similarly given by

σχ,self

mχ

= 1

4mχ

(σχχ̄ + 2σχχ)

= c4
χmχ

18π�4r2
χ

= 0.39 cm2/g ·
(

mχ

0.1 GeV

)(
1 GeV

�/cS

)4(mχ

mG

)4

.

(3.34)

Finally, for vector dark matter, the self-scattering cross
section for XX → XX , divided by DM mass, is given by

σX,self

mX
= 2c4

XmX

27π�4

(32 − 56rX + 27r2
X )

r2
X (4 − rX )2

= 0.179 cm2/g ·
(

mχ

0.1 GeV

)(
1 GeV

�/cS

)4

(
mχ

mG

)4 3(32 − 56rX + 27r2
X )

(4 − rX )2 . (3.35)

We note that for both scalar and fermion dark matter,
the DM self-scattering cross section little depends on the
DM velocity. In the case of scalar dark matter, there is an
s-channel contribution with the spin-2 mediator too, but it
is velocity-suppressed by the overall factor. On the other
hand, for vector dark matter, the DM self-scattering cross
section could be enhanced at a particular DM velocity due to
the s-channel resonance [44,45], so it would be possible to
accommodate the velocity-dependent self-interaction, being
compatible with galaxy clusters such as Bullet Cluster [22–
24].

3.5 Unitarity bounds

As we regard the massive spin-2 particle as a mediator for
dark matter in the effective theory, it is important to make
a consistency check by unitarity and perturbativity for the
spin-2 interactions. In this subsection, we briefly discuss this
issue from dark matter annihilation and self-scattering.

From the DM annihilation cross sections for DM DM →
GG, given in Eqs. (3.7), (3.12) and (3.17), the corresponding
scattering amplitudes grow with dark matter in the limit of
rDM = (mG/mDM)2 � 1, being bounded by the partial wave
unitarity as follows,

|MSS→GG | 	 8

3

c2
Sm

2
S

�2

(mS

mG

)4
< 16π, (3.36)

|Mχχ̄→GG | 	
√

2

2

c2
χm

2
χ

�2

(mχ

mG

)2
< 8π, (3.37)

|MXX→GG | 	 8
√

11

9

c2
χm

2
X

�2

(mX

mG

)4
< 16π. (3.38)

Similarly, for dark matter self-scattering, the correspond-
ing scattering amplitudes grow with dark matter mass by

|MDM DM→DM DM| ∼ c2
DMm2

DM
�2

(
mDM
mG

)2
, so the unitarity

bounds from them are less significant for scalar and vec-
tor dark matter or comparable for fermion dark matter.
Thus, it is sufficient to impose the unitarity bounds from
DM DM → GG.

As a result, the unitarity bounds impose the lower bounds
on the spin-2 mediator mass depending on the spin of dark
matter, as follows,

mG � 0.48
(cSmS

�

)1/2
mS, (3.39)

mG � 0.14
(cχmχ

�

)
mχ , (3.40)

mG � 0.49
(cXmX

�

)1/2
mX . (3.41)

Therefore, the case with fermion dark matter is subject to
the weakest unitarity bound. Recently, there is a similar dis-
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cussion on the unitarity bound on the massive graviton [43],
based on the Compton scattering process, DM G → DM G,
which can set a similar unitarity bound at high energies as for
DM DM → GG. In the next section, we take into account the
above unitarity bounds in constraining the parameter space
with the correct relic density, in particular, for WIMP dark
matter.

4 Detection of dark matter and mediator couplings

We give the phenomenological discussion on the spin-2
mediator for DM-nucleon elastic scattering, DM-electron
elastic scattering, g − 2 of leptons, meson decays and the
direct production at colliders. We present for the first time the
complete discussion of DM-nucleon scattering in the pres-
ence of both quark and gluon couplings and DM-electron
scattering as well as the relevance of unitarity at colliders.

4.1 DM-nucleon elastic scattering

The scattering amplitude between DM and SM particles
through the spin-2 mediator [32] is written in the limit of
a small momentum transfer, as follows,

M = icDMcSM

2m2
G�2

(
2TDM

μν T SM,μν − 2

3
TDMT SM

)

= icDMcSM

2m2
G�2

(
2T̃DM

μν T̃ SM,μν − 1

6
TDMT SM

)
(4.1)

where T̃ SM(DM)
μν is the traceless part of energy-momentum

tensor given by T̃ SM(DM)
μν = T SM(DM)

μν − 1
4ημνT SM(DM) with

T SM(DM) being the trace of energy-momentum tensor.
First, the elastic scattering amplitude between dark matter

and nucleon [32] is given by

M = icDMcSM

2m2
G�2

(
2T̃DM

μν 〈N (p2)|T̃ SM,μν |N (p1)〉

−1

6
TDM〈N (p2)|T SM|N (p1)〉

)
. (4.2)

For direct detection experiments, we can consider only
the contributions from quarks and gluons in a nucleon, as
follows,

cSMT SM
μν =

∑
q

cqT
q
μν + cgT

g
μν. (4.3)

Then, we get the trace part in the effective theory for three
quark flavors (u, d, s) and gluons as

T SM = −
∑

q=u,d,s

cq

[
mqq̄q + αS

12π
GμνG

μν

]

+11cgαS

8π
GμνG

μν, (4.4)

where scale anomalies from light quarks and gluons are sepa-
rately taken into account. Moreover, the traceless part (twist-
2 operators) for five quark flavors (u, d, s, c, b) and gluons
is given by

cSMT̃ SM
μν =

∑
q=u,d,s,c,b

cq T̃
q
μν + cgT̃

g
μν. (4.5)

As a result, the nuclear matrix elements for the trace part
become

〈N (p)|cSMT SM|N (p)〉
= −mN

[ ∑
q=u,d,s

cq
(
f NTq − 2

27
fTG

)

+11

9
cg fTG

]
ūN (p)uN (p) (4.6)

where f NTq , fTG are the mass fractions of light quarks
and gluons in a nucleon, respectively, and fTG = 1 −∑

q=u,d,s f NTq . Here, we used the RG invariant quantity,

〈N (p)|αSGμνGμν |N (p)〉 = − 8π
9 fTGmN , which is obtained

in the effective theory for three quark flavors. For the univer-
sal spin-2 couplings with cq = cg , we obtain the standard
results for

〈N (p)|T SM|N (p)〉
= −mN

[ ∑
q=u,d,s

f NTq + fTG

]
ūN (p)uN (p)

= −mN ūN (p)uN (p). (4.7)

On the other hand, the nuclear matrix elements for the
traceless part [46,47] are

〈N (p)|cSMT̃ SM
μν |N (p)〉

=
[ ∑
q=u,d,s,c,b

cq
(
q(2) + q̄(2)

)
+ cgG(2)

]

× 1

mN

(
pμ pν − 1

4
p2gμν

)
ūN (p)uN (p) (4.8)

where q(2), q̄(2) and G(2) are the second moments of the
parton distribution functions(PDFs) of quark, antiquark and
gluon, respectively,

q(2) + q̄(2) =
∫ 1

0
dx x [q(x) + q̄(x)], (4.9)

G(2) =
∫ 1

0
dx x g(x). (4.10)

The mass fractions are f pTu = 0.023, f pTd = 0.032 and f pTs =
0.020 for a proton and f nTu = 0.017, f nTd = 0.041 and f nTs =
0.020 for a neutron [46,47]. On the other hand, the second
moments of PDFs are calulated at the scale μ = mZ using
the CTEQ parton distribution as G(2) = 0.48, u(2) = 0.22,
ū(2) = 0.034, d(2) = 0.11, d̄(2) = 0.036, s(2) = s̄(2) =
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0.026, c(2) = c̄(2) = 0.019 and b(2) = b̄(2) = 0.012
[46,47].

There, using the results in the Appendix A, the total cross
section for spin-independent elastic scattering between dark
matter and nucleus [32] is given by

σ SI
DM−A = μ2

A

π

(
Z f DM

p + (A − Z) f DM
n

)2
(4.11)

where μA = mχmA/(mχ + mA) is the reduced mass of the
DM-nucleus system and mA is the target nucleus mass, Z , A
are the number of protons and the atomic number, respec-
tively, and the nucleon form factors are given by the same
formula for all the spins of dark matter as

f DM
p = cDMmNmDM

4m2
G�2

( ∑
q=u,d,s,c,b

3cq (q(2) + q̄(2)) + 3cgG(2)

+
∑

q=u,d,s

1

3
cq

(
f pTq − 2

27
fTG

)
+ 11

9
cg fTG

)

≡ cpeffcDMmNmDM

4m2
G�2

, (4.12)

f DM
n = cDMmNmDM

4m2
G�2

( ∑
q=u,d,s,c,b

3cq (q(2) + q̄(2)) + 3cgG(2)

+
∑

q=u,d,s

1

3
cq

(
f nTq − 2

27
fTG

)
+ 11

9
cg fTG

)

≡ cneffcDMmNmDM

4m2
G�2

, (4.13)

where DM = χ, S, X for fermion, scalar and vector dark
matter, respectively. Here, as compared to our previous work
[32], we have included the twist-2 gluon operator at tree level
as well as loop effects from heavy quarks and gluons in the
trace part.

4.2 DM-electron elastic scattering

For light dark matter below GeV scale, the DM-nucleon elas-
tic scattering loses the sensitivity for dark matter searches
because of the low threshold of the nucleon recoil energy.
Then, the DM-electron elastic scattering is relevant for direct
detection [9–11]. The corresponding cross sections relevant
for direct detection are independent of the spin of dark matter,
given by

σDM−e = 4c2
e c

2
DMm4

em
4
DM

9π�4m4
G(me + mDM)2

≈ 1.5 × 10−50 cm2
(

0.5 GeV

mDM

)2(10 TeV

�/ce

)2

×
(

100 GeV

�/cDM

)2(mDM

mG

)4

(4.14)

where we assumed that mDM  me in the second line.

Moreover, the graviton mediator should make dark matter
remain in kinetic equilibrium [5–9] during the freeze-out. In
this case, independent of the spin of dark matter, the momen-
tum relaxation rate for the kinetic equilibrium of light dark
matter is dominated by

γDM−e = 127π5c2
ec

2
DMmDM

270�4m4
G

T 8 (4.15)

Then, the kinetic equilibrium of dark matter can be achieved

during the freeze-out, as far as γDM−e > H ·
(
mDM
T

)
in the

case of WIMP dark matter where H is the Hubble expansion

parameter, and γDM−e > H ·
(
mDM
T

)2
in the case of SIMP

dark matter [9–11,19–21].

4.3 Lepton g − 2 from the spin-2 mediator

When the spin-2 mediator couples to leptons, it gives an extra
contribution to the anomalous magnetic moment of leptons,
as follows [48],

al = 5c2
l m

2
l

16π2�2 A
( ml

mG

)
(4.16)

where A(y) is a monotonically decreasing function, given by

A(y) = 223

120
− 1

5

∫ 1

0
dx

(
2xy2 − 1

) H(x)

L(x, y)

−1

5

∫ 1

0
dx

y2P(x)

L(x, y)
(4.17)

with L(x, y) = x2y2 + 1 − x and

H(x) = x(1 − x)
(

− 28

3
+ 3

2
x − 1

2
x2

)
, (4.18)

P(x) = −1

2
x5 + 3x4 − 44

3
x3 + 64

3
x2. (4.19)

For mG  ml , the loop function A(x) is approximated [49]
to

A
( ml

mG

)
≈ 1 +

(
1

3
ln

( ml

mG

)
+ 11

72

)
m2

l

m2
G

, (4.20)

rendering the (g−2)l almost independent of the spin-2 medi-
ator mass, as follows,

al ≈ 285 × 10−11
(
ml

mμ

)2(350 GeV

�/cl

)2

. (4.21)

We note that the deviation of the anomalous magnetic
moment of muon between experiment and SM values is given
[50,51] by

�aμ = aexp
μ − aSM

μ = 288(80) × 10−11, (4.22)

which is a 3.6σ discrepancy from the SM [51]. Furthermore,
there is a 2.4σ discrepancy reported between the SM predic-
tion for the anomalous magnetic moment of electron and the
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experimental measurements [52–56], as follows,

�ae = aexp
e − aSM

e = −88(36) × 10−14. (4.23)

4.4 Meson decays

For a light spin-2 mediator with sub-GeV mass, if coupled
to light quarks, constraints from K+ → π+ + invisible [57–
59] can be relevant. Similarly, B+ → K++invisible [60,61]
decays also constrain the spin-2 mediator couplings to quarks
similarly. The current bounds on the branching ratios are
given by BR(K+ → π+ + invisible) < (1.73+1.15

−1.05)×10−10

[57–59] and BR(B+ → K+ + invisible) < 1.6 × 10−5 [60,
61]. The recent discussion on meson decays in the effective
theory for dark matter can be found in Ref. [62].

The decay width of a down-type quark q1 decaying into
another down-type quark q2 and G is given for mG < mq1

with mq2 = 0 [63], as follows,

�(q1 → q2G) = c2
qG

2
Fm

7
q1
u(x1)

192(2π)5�2

∣∣∣∣
∑

f =u,c,t

V f 1V
∗
f 2 v(x f )

∣∣∣∣
2

(4.24)

where V f 1 and V f 2 are the CKM matrix elements, x1 =
m2

G/m2
q1

, x f = m2
G/m2

f , and

u(x) = (1 − x)
(

1 − 3

2
(x + x2 + x4) + 7

2
x3

)
, (4.25)

v(x) = 1

36(x − 1)4

[
44 − 194x + 243x2 − 98x3 + 5x4

+6x(2 − 15x + 10x2) log(x)

]
. (4.26)

On the other hand, for mG > mq1 but mq1 > 2mDM, we
can integrate out the spin-2 mediator, so there exists a three-
body decay channel, q1 → q2 + DM + DM, with decay rate

about �3 	 c
16π

m6
q1

m4
G�2 �2, for mq1  mDM, as compared to

the two-body decay rate �2, where c is given from �(G →
DM DM) 	 c m3

G/�2.

4.5 Mediator production at colliders

The massive spin-2 particle can be produced singly from
gluon fusion or quark/anti-quark scattering at the LHC,
decaying into the SM particles or a pair of dark matter. More-
over, in intensity beam or linear colliders, we may also con-
strain non-universal lepton and photon couplings by the pho-
ton energy distribution from e+e− → γ G.

First, we obtain the squared amplitude for e+e− → γ G,
as follows,

|M|2 = e2c2
e

4�2st (s + t − m2
G)

(
s2 + 2t (s + t)

−2m2
Gt + m4

G

)(
4t (s + t) − m2

G(s + 4t)
)

+e2c2
e

�2s

(cγ

ce
− 1

)(
(s + 2t)2 − m2

G(s + 4t) + 2m4
G

)

+ e2c2
e

6�2m4
Gs

(cγ

ce
− 1

)2
{
s2(s2 + 2st + 2t2)

−2m2
Gs(s + t)(s + 6t)

+m4
G(7s2 + 24st + 12t2) − 12m6

G(s + t) + 6m8
G

}

(4.27)

where t = − 1
2 (s − m2

G)(1 − cos θ). Therefore, for cγ = ce,
the squared amplitude behaves like |M|2 ∼ s

�2 for s  m2
G

[64–68], which is expected from the dimension-5 interactions
for the spin-2 mediator, − 1

�
GμνTμν . However, for cγ �= ce,

the squared amplitude becomes |M|2 ∼ s3

m4
G�2 , which shows

that the violation of unitarity at a lower energy. A similar
phenomenon was observed in the QCD process, qq̄ → g G
[64–68], for which cg �= cq would give rise to a similar
dependence of the corresponding squared amplitude on the
center of mass energy.

For cγ = ce, the production cross section for e+e− →
γ G with unpolarized electron and positron is given by

dσγG

d cos θ
= c2

eα

64�2s2(s − m2
G)2

[
(s − m2

G)4(2 cos4 θ − 1)

+(s2 + m4
G)

(
3(s − m2

G)2 + 4m2
Gs

sin2 θ

)]
. (4.28)

Thus, the angular differential cross section becomes indepen-
dent of s for s  m2

G , as expected from the behavior of the
squared amplitude. A similar conclusion can be drawn also
for qq̄ → g G at the LHC. The above result will be used for
imposing the bounds from invisible and visible searches at
BaBar in Fig. 8 of the next section.

4.6 Bounds on WIMP

Dijet and dilepton searches at the LHC can constrain rela-
tively heavy spin-2 resonances [69,70]. Although not sensi-
tive enough, the ISR photon or jet + heavy dijet resonances
might be interesting to constrain non-universal quark and
gluon couplings by the jet pT distribution from qq̄ → g G
at LHC and future hadron colliders [64]. Direct detection
bounds from XENON1T [1], LUX [2], PandaX [3], etc, are
most stringent for weak-scale or heavier dark matter.

For weak-scale spin-2 resonances, the LHC dijet searches
are not sensitive due to the large QCD background. Then,
dijet resonance + ISR photon [71] or jet [72,73] searches can
constrain this case. In the presence of dark matter coupling to
the spin-2 resonance, the invisible decay of the spin-2 particle
with mono-jet of mono-photon is also promising [25,26,74,
75].
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Fig. 1 Parameter space for mG/� vs mDM for WIMP dark matter.
The relic density is satisfied in red solid, blue dashed and orange dotted
lines for fermion, scalar and vector dark matter, respectively. The gray
region is excluded by XENON1T and the light blue region is excluded

by ATLAS dijet searches. We have taken the universal spin-2 mediator
couplings to the SM and dark matter. The purple region is ruled out by
the partial wave unitarity for scalar or vector dark matter

In Figs. 1 and 2, we depict the parameter space for mG/�

vs mDM in the former and mDM vs mG in the latter, satis-
fying the correct relic density, in red solid, blue dashed and
orange dotted lines for fermion, scalar and vector dark matter,
respectively. We took the universal couplings of spin-2 medi-
ator to all the SM quarks and gluons, as well as to dark matter.
We have excluded the light blue region by the bounds from
dijet resonance + ISR photon [71] or jet [72,73] searches,
and the gray region by the bound on DM-nucleon spin-
independent cross section from the direct detection exper-
iment in XENON1T [1]. Moreover, some of the parameter

space (in purple) where dark matter is heavier than the spin-2
mediator mass is disfavored by the violation of partial wave
unitarity for scalar or vector dark matter as discussed from
Eqs. (3.39)-(3.41). As shown in Fig. 2, in a wide parameter
space away from the resonance, unitarity constraints turn out
to be weaker than the XENON1T bound.

We find from Fig. 1 that for weak-scale spin-2 mediator,
the relic density region below mDM < mG/2 is disfavored
by ATLAS dijet bounds. The XENON1T bound becomes
stronger above mDM > mG/2, leaving only the region above
mDM � 200 GeV or larger masses unconstrained due to the
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Fig. 2 Parameter space for mDM vs mG for WIMP dark matter. The same as in Fig. 1

dominance of DM DM → GG channels. But, in this case,
the spin-2 mediator produced from the DM annihilation can
decay into the SM particles, so the indirect detection exper-
iments from cosmic rays such as positrons, anti-protons and
gamma-rays can constrain those large mass regions [27,28].
In Fig. 2, XENON1T rules out the non-resonance regions
below mDM 	 200 GeV or 160 GeV for the mediator scale,
�/cq = 3, 5 TeV, but leaves the resonance regions with
mG = 2mDM untouched.

4.7 Bounds on light dark matter

In the case of light dark matter, we would need a light spin-
2 mediator in order to make the annihilation cross section
of dark matter sufficiently large. In this case, monophoton
+ leptons at BaBar [76], and missing energy at BaBar [77],
Belle-2 [78,79], LHCb (for mG > 10 GeV) [80] as well as
beam dump experiments such as E137 in SLAC [81], N64
in CERN SPS [82], etc, can be important to constrain the
light spin-2 mediator couplings, in particular, the couplings
to leptons and dark matter. There are also direct detection
bounds on DM-electron scattering from XENON10 [83–85],
DarkSide-50 [86], Sensei experiments [87], etc.

For a light spin-2 mediator, we can consider the bounds
from γ + missing energy [77] or leptons [76] at BaBar
experiment. For the former case, the cosine of the scatter-
ing angle of the photon in the center of mass frame was
chosen to | cos θ∗

γ | < 0.6, and the center of mass energy was√
s = 10.58 GeV. Then, we get the limit on the lepton cou-

plings for mG < 8 GeV from invisible and visible searches
at BaBar, respectively, as follows,

ce
�

< 2 × 10−4 GeV−1, BaBar invisible, (4.29)

ce
�

< 3 × 10−5 GeV−1, BaBar visible. (4.30)

Here, we assumed BR(G → DMDM) = 1 in the former
and BR(G → ll̄) = 1 in the latter. So, in general, the above
bounds scale up by 1/

√
BR. The above limits, in particular,

from the invisible searches, will be improved by a factor of
three in the lepton couplings in Belle-2 experiment [78,79].

We remark that if we took non-universal couplings by
cγ �= ce, the above bounds from BaBar would become
stronger, due to the growth of the corresponding cross sec-
tion.

Moreover, if the spin-2 mediator is much lighter than
K -meson or B-meson, we can approximate the above par-
tial decay rate of a flavor-changing down-type quark from
Eq. (4.24) to

�(q1 → q2G) ≈ 121

497664π5

c2
qG

2
Fm

7
q1

�2 (Vt1V
∗
t2)

2. (4.31)

Therefore, from the current limits on the invisible decays of
K+ or B+, we can put the bound on the quark couplings as

cq
�

< 0.3 GeV−1, K+ → π+ + invisible, (4.32)

cq
�

< 1.8 × 10−2 GeV−1, B+ → K+ + invisible.

(4.33)

As a result, the bounds on quark couplings from meson
decays are relatively weaker than those on lepton couplings
from BaBar as will be shown in the above. When the spin-
2 mediator is heavier than mesons but dark matter is light
enough, mesons can still decay invisibly into a pair of dark
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Fig. 3 Parameter space for ce/� vs mG for light dark matter with
mDM < mG . The correct relic density is satisfied in red solid, blue
dashed and orange dotted lines for fermion, scalar and vector dark mat-

ter, respectively. We chose mDM = 0.8, 1 GeV on left and right plots,
respectively, and cDM/� = (1 GeV)−1 for both plots

matter [62]. But, in this case, the bounds on quark couplings
become much weaker because of the phase-space suppres-
sion for three-body decays of mesons.

In Figs. 3, 4 and 5, we show the parameter space for light
dark matter below the GeV scale mass satisfying the correct
relic density, in ce/� vs mG in the former and cDM/� vs mG

in the latter two. For Fig. 3, we took mDM < mG such that
dark matter annihilates only into the SM particles, not into a
pair of spin-2 mediators. In this case, we find that the gravi-
ton couplings to the SM particles satisfying the correct relic
density would be strongly constrained by BaBar and other
intensity experiments, except the region near the resonance.
On the other hand, for Figs. 4 and 5, we took mDM > mG for
which dark matter can annihilate into a pair of spin-2 medi-
ators. In this case, even for a small graviton coupling to the
SM particles, for instance, for �/ce = 10 TeV or 100 TeV in
Figs. 4 or 5, for which the current experimental constraints
are satisfied, we can achieve the correct relic density in a
wide range of parameter space for dark matter coupling and
spin-2 mediator mass. We note that the DM annihilation into
a pair of spin-2 mediators is s-wave, so the spin-2 mediators
produced from the DM annihilation decay into the SM par-
ticles and inject energy into electrons and photons, affecting
the CMB recombination [88]. But, the spin-2 mediator can
couple very weakly to the SM, being still consistent with a
correct relic density, such that it is long-lived at least as long
as the era of the CMB recombination.

We have also checked in Figs. 3, 4 and 5 that the DM
self-scattering cross sections in the parameter space explain-
ing the relic density are much below σself/mDM = 1 cm2/g,

the Bullet cluster bound [22–24]. We also noted that the uni-
tarity bounds given in eqs. (3.39)-(3.41) are satisfied in the
parameter space of the plots in Figs. 3, 4 and 5.

We note that the difference between DM (cDM/�) and
lepton couplings (ce/�) can be explained by the localization
of dark matter and leptons in different positions of the extra
dimension. For instance, in RS model, light dark matter can
be localized on the IR brane with a small IR scale whereas
the SM leptons are localized towards the UV brane [27,28].

In Figs. 6 and 7, we present the relic density as a func-
tion of the mass difference, �G ≡ (mG −mDM)/mDM, with
forbidden channels included. These plots illustrate the role
of the forbidden channels in determining the relic density
for the spin-2 mediator slightly heavier than dark matter. In
this case, the annihilation of dark matter into a pair of spin-
2 mediators is possible only at a nonzero temperature, thus
leading to a Boltzmann suppression factor for the correspond-
ing annihilation cross section. For each of Figs. 6 and 7, we
have chosen mDM = 1, 10 GeV on left and right. We took
�/cDM = 10 GeV for both, and �/ce = 10 TeV, 100 TeV
for Figs. 6 and 7, respectively.

We find that the correct relic density for vector dark matter
can be obtained with smaller couplings to the spin-2 medi-
ator and sub-GeV DM massses, due to a mild phase-space
suppression for mG � mDM. On the other hand, for scalar
or fermion dark matter, dark matter masses should be about
10 GeV or larger for the correct relic density being consistent
with perturbativity, due to significant phase-space suppres-
sions formG � mDM. The forbidden channels are s-wave but
get suppressed as the velocity of dark matter decreases in the

123



Eur. Phys. J. C           (2020) 80:602 Page 13 of 23   602 

Fig. 4 Parameter space for cDM/� vs mG for light dark matter with
mDM > mG . The correct relic density is satisfied in red solid, blue
dashed and orange dotted lines for fermion, scalar and vector dark mat-

ter, respectively. We took mDM = 0.1, 1 GeV on left and right plots,
respectively, and ce/� = (10 TeV)−1 for both plots

Fig. 5 The same as in Fig. 4, except for ce/� = (100 TeV)−1

later stage of the universe and in local galaxies. Thus, the for-
bidden channels are safe from the indirect bounds from cos-
mic rays or CMB recombination. In particular, it is remark-
able that sub-GeV vector dark matter withmDM � mG can be
consistent with both the relic density and indirect detection
bounds, being compatible with perturbativity.

In Fig. 8, we impose various experimental constraints and
theoretical constraints in the parameter space for ce/� vs
mG . We chose the spin-2 mediator mass and dark matter
coupling as mG = mDM/0.498 and �/cDM = 1 GeV on left
and mG = mDM/1.5 and �/cDM = 100 GeV on right. We

note that for both plots of Fig. 8, the DM self-scattering cross
sections in the parameter space of our interest are well below
the Bullet cluster bound.

In the left plot of Fig. 8, the spin-2 mediator can decay
dominantly into a pair of dark matter in most of the param-
eter space satisfying the relic density shown in red solid,
blue dashed and orange dotted lines for fermion, scalar and
vector dark matter, respectively. So, the bound from invisi-
ble searches at BaBar applies to the whole parameter space
below mG = 8 GeV, excluding the relic density region for
scalar dark matter below mG = 0.8 GeV but less constrain-
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Fig. 6 Relic density as a function of �G ≡ (mG − mDM)/mDM with
forbidden channels included. The correct relic density is satisfied in red
solid, blue dashed and orange dotted lines for fermion, scalar and vector

dark matter, respectively. We took mDM = 1, 10 GeV on left and right
plots, respectively, and cDM = (10 GeV)−1 and ce/� = (10 TeV)−1

for both plots

Fig. 7 The same as in Fig. 6, except for ce/� = (100 TeV)−1

ing the counterparts for fermion or vector dark matter. The
future Belle-2 results [78,79] could improve the limits or
probe the larger portion of the relic density regions. We also
show the (g − 2)μ favored region in green and orange at 1σ

and 2σ levels, respectively, but it is excluded by BaBar for
the universal lepton couplings.1 In the same plot, we show
the gray contours for DM-electron scattering cross section
with σDM−e = 10−44, 10−48 cm2, but most of the param-

1 For ce � cμ, however, we can make the (g − 2)μ favored region
compatible with the bounds from BaBar. This is possible if leptons are
localized at different locations in the warped extra dimension.

eter space survives the current direct detection bounds on
light dark matter, such as XENON10, DarkSide-50, Sensei
experiments. We note that as shown in the results, (4.32) and
(4.33), the bounds from K+ → π+ +G or B+ → K+ +G
with G → invisible are much weaker than BaBar invisible
searches, so they are not shown in Fig. 8.

On the other hand, in the right plot of Fig. 8, as shown in
Figs. 4 and 5, we don’t need large graviton couplings to the
SM particles in the region with mDM > mG , because dark
matter can annihilate directly into a pair of spin-2 mediators.
Therefore, the relic density can be determined almost inde-
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Fig. 8 Experimental constraints on ce/� vs mG . The correct relic
density is obtained along in red solid, blue dashed and orange dot-
ted lines for fermion, scalar and vector dark matter, respectively. The
(g − 2)μ favored region at 1σ or 2σ is shown in green and orange,
respectively. Invisible and visible searches at BaBar rule out the region

above the black lines on left and right, respectively. Contours for
DM-electron scattering cross sections are shown in gray lines for
σDM−e = 10−44, 10−48 cm2 on left and σDM−e = 10−48, 10−52 cm2

on right

pendent of the graviton couplings to the SM particles, so a lot
of parameter space for the correct relic density can be com-
patible with the current experiments. In this case, the spin-2
mediator decays only into the SM particles, so mono-photon
+ leptons at BaBar applies, limiting the lepton couplings
to the spin-2 mediator. In the same plot, we also show the
gray contours for DM-electron scattering cross section with
σDM−e = 10−48, 10−52 cm2, so most of the parameter space
is unconstrained by direct detection yet. We also noted that
the unitarity bounds given in Eqs. (3.39)–(3.41) are satisfied
in the parameter space of the plots in Fig. 8.

5 Spin-2 mediators from the warped extra dimension

We can regard the spin-2 mediator as the first Kaluza–
Klein(KK) mode of graviton from the warped extra dimen-
sion or a composite state in a dual conformal field theory.
In the case of the warped extra dimension, there are heavier
Kaluza-Klein(KK) modes of graviton, which can be summed
up to modify the DM processes, such as DM annihilation and
scattering.

After compactification of the warped extra dimension,
in principle, nonzero cubic self-couplings for KK gravitons
appear in the low energy and they could contribute to the
calculations of DM annihilation and scattering processes. As
the initial 5D gravity theory with the warped extra dimension
is ghost-free, there must be no ghost problem in the resulting

4D effective gravity theory. The quadratic and cubic self-
couplings for KK gravitons are also present in the 4D effec-
tive theory and they could change the calculations of the
DM annihilations, DM DM → GG. Moreover, the complete
analysis at the non-linear level with cubic self-couplings for
KK gravitons would be also relevant for constructing a con-
sistent model of the massive spin-2 particle without a ghost
problem at the non-linear level [89–93], and showing the
delayed violation of unitarity to a higher energy [43], and
pinning down the UV nature of spin-2 mediators. Related
to the above issue, there are attempts to make a consistent
framework without ghosts for a massive spin-2 particle with
self-interactions in the literature in the context of massive
gravity [91,92] or bi-gravity [93].

In this work, we didn’t attempt to tackle the detailed cal-
culations of the DM annihilations, DM DM → GG with KK
gravitons, or the ghost problem of a massive spin-2 particle
at the non-linear level. Instead, we assumed that there are
only five physical degrees of freedom for a massive spin-2
particle and introduced the interactions of the massive spin-2
particle to matter in the form of energy-momentum tensors.
We took the Pauli-Fierz mass term for a massive spin-2 par-
ticle and its matter couplings at the linear level, so there
is no issue of ghost problem at this level. The mass term
for a massive spin-2 particle leads to the non-conservation
of energy-momentum tensor, being proportional to the mass
term, which is attributed to the breakdown of translational
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invariance in the warped extra dimension or conformal sym-
metry in a dual field theory.

In this section, motivated by two benchmark models with
the warped extra dimension that will be described later, we
keep only the linear couplings for a tower of KK gravitons and
discuss the impacts of those KK gravitons on DM s-channel
annihilations into the SM particles and DM scattering pro-
cesses. For this, only the linear couplings for KK gravitons
are sufficient for our discussion. We first summarize the KK
graviton masses and couplings for two benchmark models
with the warped extra dimension and discuss the effects of
the heavier KK modes in determining the relic density, the
direct detection bounds as well as the direct production of
KK gravitons at colliders, in order. In the end of the sec-
tion, we remark on the impacts of nonlinear interactions of
spin-2 mediators and the unitarity constraint on the DM anni-
hilations, DM DM → GG, and discuss those issues in the
ghost-free realization of the massive spin-2 particle.

5.1 Spin-2 mediator masses and couplings

The KK modes of graviton in Randall–Sundrum(RS) model
[37] are spaced almost equally. So, if dark matter is lighter
than almost twice the mass of the first KK mode, the heav-
ier KK modes would not change much our discussion with
the first KK mode only. Otherwise, we need to include the
heavy KK resonances explicitly. On the other hand, in the 5D
continuum limit of the clockwork model, so called the lin-
ear dilaton model [38–41,94–97], the KK modes of graviton
are almost degenerate with a mass gap from the zero mode,
challenging for experimental tests [98,99]. So, it is crucial to
include the heavier KK modes in the DM processes in this
case.

Suppose thatmn are KK graviton masses, and cDM,n, cSM,n

are the couplings of the nth KK mode to dark matter and the
SM, respectively, and depending on the localization in the
extra dimension. Here, dark matter and the SM particles can
be localized on the IR brane, in which case dark matter has
sizable couplings to the SM particles. But, when the SM
particles are localized away from the IR brane, we can just
rescale cSM,n to small values.

In the case where dark matter and the SM particles are
localized on the IR brane, the KK graviton couplings and
KK graviton masses are given by

cDM(SM),n =
{

1, RS,

(kCWR) · n
mn R

, CW,
(5.1)

mn =
{ xn

x1
mG, RS,√

m2
G + n2

R2 , CW.
(5.2)

Here, for RS model, mG = x1 kRS e−kRSπR with kRS being
the AdS curvature scale, and xn are the zeros of J1(xn) = 0,
i.e. xn = 3.83, 7.02, 10.17, 13.32 for n = 1, 2, 3, 4, which

can be approximated to xn = (n+1/4)+O(n−1) for n  1,
and R is the radius of the warped extra dimension. For CW
model, mG = kCW with kCW being the 5D curvature scale.
Moreover, the overall suppression scale for massive graviton
couplings is

� =
⎧⎨
⎩

MP e−kRSπR = M3/2
5√
kRS

e−kRSπR, RS,

MP
√
kCWπR e−kCWπR = M3/2

5

√
πR, CW.

(5.3)

where MP , M5 are the 4D and 5D Planck masses, respec-
tively, and the relations between them were used in the sec-
ond equality in each line. Therefore, the KK graviton mass
and the KK graviton coupling can be chosen independently,
attributed to the choice of the 5D curvature scale (kRS or kCW)
and the radius of the extra dimension R. We note that the ratio
of the first KK graviton mass to the suppression scale are
given by mG

�
= x1

kRS
MP

in RS model and mG
�

= kCW
M5

1√
M5πR

in clockwork model, so the ratio is limited to mG
�

� O(1) for
kRS � MP and kCW � M5, respectively.

The model dependence of the widths of heavier KK gravi-
tons is discussed in appendix B. The effects of KK modes of
graviton on dark matter physics were discussed in the context
of the RS model [27,28] and the continuum clockwork model
[42]. The impacts of the double and triple interactions of KK
gravitons have been discussed in Ref. [42] and [41] for dark
matter annihilations and decays of heavy KK modes, respec-
tively. It would be also interesting to generalize the above
discussion to the case with more general warped geometries
[100].

In the following, we focus on the minimal interactions of
the KK gravitons at the linear level, motivated by the warped
extra dimension, and study the quantitative effects of such
KK modes on dark matter annihilations into the SM particles
and DM elastic scattering processes.

5.2 Dark matter annihilations

First, the KK modes contribute to the s-channels of dark
matter annihilating into the SM particles by

(σv)DM DM→SM SM = As |S|2 (5.4)

where

S = 1

�2

∞∑
n=1

cDM,ncSM,n

s − m2
n + i�nmn

	 1

�2

∞∑
n=1

cDM,ncSM,n

4m2
DM − m2

n + i�nmn
(5.5)

where As is the resonance-independent factors in the cross
section. Then, using Eqs. (C.1) and (C.4) in appendix C,
we get the modified s-channel cross sections of scalar dark
matter annihilating into a pair of the SM fermions, whose
masses are ignored, as follows:
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(σv)SS→ψψ̄ 	 v4 · Ncc2
Sc

2
ψm

6
S

360π�4m4
G

· f (mS,mG) (5.6)

with

f (mS,mG) = x2
1m

2
G

16m2
S

(
J2(2x1mS/mG)

J1(2x1mS/mG)

)2

(5.7)

for RS model, or

f (mS,mG) = m4
G

64m4
S

{
(kCWπR) coth(kCWπR)

−πR
√
m2
G − 4m2

S coth
(
πR

√
m2
G − 4m2

S

))}2

(5.8)

for CW model. We note that the s-channel resonances in
RS model appear at the zeros of J1(2x1mS/mG), namely, at
mG = 2x1

xn
mS , with J1(xn) = 0, whereas the the s-channel

resonances in CW model appear only at mG = 2mS . The
other s-channel cross sections for dark matter of other spins
into the SM particles and the rest s-channel cross sections
are modified with the same overall factor, f (mS,mG). For
mDM � mG , the annihilation cross section into the SM
fermions is enhanced by f (mS,mG) 	 3 in RS model and it

is modified by f (mS,mG) 	 (kCWπR)2

16π4 in clockwork model,
which is about 8 for � = 3 TeV. But, when scalar dark mat-
ter and the first KK graviton have similar masses, the contri-
butions from higher KK modes are not significant. Similar
conclusions can be drawn also for fermion and vector dark
matter.

5.3 Dark matter scatterings

The contributions of KK gravitons to the t-channels of DM-
nucleon scattering and DM self-scattering cross sections are
given, respectively, by

σDM SM→DM SM = At |T1|2, (5.9)

σDM DM→DM DM = Bt |T2|2 (5.10)

with

T1 = 1

�2

∞∑
n=1

cDM,ncSM,n

t − m2
n + i�nmn

	 − 1

�2

∞∑
n=1

cDM,ncSM,n

m2
n

,

(5.11)

T2 = 1

�2

∞∑
n=1

c2
DM,n

t − m2
n + i�nmn

	 − 1

�2

∞∑
n=1

c2
DM,n

m2
n

(5.12)

where At is the factor independent of the KK graviton prop-
agator in the cross section, and SM stands for nucleon for
WIMP dark matter or electron for light dark matter. Simi-
larly, the KK modes contribute similarly to the t-channels of

DM-electron scattering for direct detection and kinetic equi-
librium, with a similar approximate KK graviton propagator
for small momentum transfer. We note that in the case of DM
self-scattering, the t-channel contributions are dominant in
the Born limit, so the above discussion on the t-channels
would be sufficient.

First, for the DM-nucleus scattering in direct detection,
using Eqs. (C.3) and (C.8), we only have to replace the effec-
tive nucleon couplings in eqs. (4.12) and (4.13) by the sum
of KK modes, as follows,

f DM
p,n = cp,neff cDMmNmDM

4�2

×
⎧
⎨
⎩

∑
n

1
m2
n

= x2
1

8m2
G
, RS,

(kCWR)2 ∑
n

n2

m4
n R

2 ≈ π(kCWR)3

4m2
G

, CW.
(5.13)

Second, for the DM-electron scattering in direct detection,
we can similarly replace the corresponding cross section in
Eq. (4.14) by

σDM−e = 4c2
e c

2
DMm4

e

9π�4(me + mDM)2

×

⎧⎪⎨
⎪⎩

( ∑
n

1
m2
n

)2 = x4
1

64m4
G
, RS,

(
(kCWR)2 ∑

n
n2

m4
n R

2

)2 ≈ π2(kCWR)6

16m4
G

, CW.

(5.14)

Moreover, the momentum relaxation rate for kinetic equilib-
rium in Eq. (4.15) becomes

γDM e→DM e = 127π5c2
e c

2
DMmDM

270�4 T 8

×

⎧
⎪⎨
⎪⎩

(∑
n

1
m2
n

)2 = x4
1

64m4
G

, RS,
(
(kCWR)2 ∑

n
n2

m4
n R

2

)2 ≈ π2(kCWR)6

16m4
G

, CW.

(5.15)

Finally, for the DM self-scattering, the corresponding t-
channel cross sections in the Born limit are also modified due
to the KK modes, as follows,

σDM self = c4
DMm6

DM

18π�4

×

⎧
⎪⎨
⎪⎩

( ∑
n

1
m2
n

)2 = x4
1

64m4
G
, RS,

(
(kCWR)2 ∑

n
n2

m4
n R

2

)2 ≈ π2(kCWR)6

16m4
G

, CW.

(5.16)

As a consequence, for RS model, the contributions of the
heavier KK modes to the t-channel scattering cross sections
for dark matter are about 3.4 larger than the one of the first
KK mode only. For CW model, the contributions from the
heavier KK modes depend on the warp factor, that is, they
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can be important for kCWR � 1.1, independent of the spins
of dark matter. Therefore, in both models, we can make the
direct detection bounds less stringent on the couplings of the
first KK graviton by including the heavier KK modes for the
t-channel scattering processes.

5.4 KK graviton productions

Each of heavier KK modes of graviton can be also singly
produced with a sufficiently large center of mass energy at
LHC, with similar signatures as for the first KK graviton.
However, in clockwork model, the KK graviton masses can
be almost degenerate, namely, the mass difference between
the n + 1-th and n-the KK graviton masses is given by
�mn ≡ mn+1 − mn = mG(2n + 1)/(2(kR)2) � mG for
kR  1. In this case, almost continuum KK gravitons can
be produced simultaneously, leading to the photon or lepton
energy spectrum of periodic shape [98,99].

As we discussed in Sect. 4.4, another smoking-gun signal
for the spin-2 mediator would be through e+e− → γ G or
qq̄ → g G, which could identify the signatures of spin-2
mediator couplings. For s  m2

G , the heavier KK modes can
be also produced at the LHC. In RS model, the KK graviton
masses are well separated, so we could search for the heavier
KK modes as for the first KK graviton as we discussed in
Sect. 4. On the other hand, in clockwork model, almost con-
tinuum KK gravitons could be produced against mono-jet,
decaying visibly or invisibly, so the resulting experimental
signatures could be significantly different from those in the
effective theory only with a single spin-2 mediator case.

5.5 Non-linear interactions of spin-2 mediator

As we mentioned in the beginning of the section, there also
appear non-linear interactions of KK gravitons in the 4D
effective theory, contributing to the DM annihilation chan-
nels, such as DM DM → GG. There have been attempts
to tackle the unitarity bound on the non-linear interactions
of a massive spin-2 particle in the dRGT realization of the
massive spin-2 particle [43,89,90] or include the non-linear
interactions in the scattering amplitudes of KK gravitons in
the RS model [101].

In this section, we discuss briefly the effects of non-linear
interactions on the unitarity bound from DM DM → GG
or DM G → DM G by crossing symmetry, in a model-
independent way of realizing the massive spin-2 particle.

The perturbative unitarity can give an important constraint
on the effective theory for the massive spin-2 particle. In par-
ticular, for the dark matter annihilation into a pair of spin-2
mediators, the unitarity scale depends on other couplings of
the spin-2 mediators such as quadratic couplings to dark mat-
ter and cubic self-couplings [43,89,90]. In particular, non-
linear interactions for the massive spin-2 particle are impor-

tant for the ghost-free realization of a massive spin-2 particle
[89–92].

Fixing the quadratic coupling to dark matter and cubic
self-couplings for the massive spin-2 mediator appropriately
in the dRGT gravity [89,90], the unitarity for DM G →
DM G or DM DM → GG by crossing symmetry can be
preserved best until the energy scale [43], given by

Emax ∼
(
mG�2

c2
DM

)1/3

. (5.17)

This result is in contrast with the case without non-linear
interactions for which unitarity would be violated at E ′

max ∼
(m2

G�/cDM)1/3 [43], which is parametrically smaller that the
one in the dRGT gravity for a light spin-2 mediator. There-
fore, in the dRGT realization of the ghost-free spin-2 medi-
ator, we require Emax � mDM at least in the regime where
the DM annihilation processes are relevant, in other words,

�

cDM
�

(
m3

DM

mG

) 1
2

. (5.18)

As a consequence, we have checked that the above unitarity
constraint is satisfied in most of the parameter space for dark
matter in the previous sections. It would be interesting to
perform the detailed calculations of DM DM → GG in the
dRGT effective theory of the massive spin-2 mediator with
non-linear interactions or in the specific benchmark models
with the warped extra dimension that we considered in this
section, but we plan to revisit this important issue in a future
work.

6 Conclusions

We have explored the general production mechanisms for
WIMP and sub-GeV scale light dark matter with arbitrary
spin in the scenarios of gravity-mediated dark matter. The
spin-2 mediator interactions of dark matter as well as SM
particles are constrained by direct and direct detections, pre-
cision measurements and collider experiments. We showed
that the parameter space where dark matter annihilates domi-
nantly into the SM fermions is disfavored, due to direct detec-
tion and LHC dijet bounds for weak-scale WIMP case, and
mono-photon searchers at BaBar experiments for light dark
matter. On the other hand, we found that when dark mat-
ter annihilates dominantly into a pair of spin-2 particles in
both allowed and forbidden regimes, the model is consis-
tent with current bounds from direct detection and collider
experiments. In particular, light dark matter with forbidden
channels is not constrained by current indirect detection and
CMB measurements.

As compared to the papers on this topic in the literature,
the new ingredients of this article are summarized. We made
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a complete analysis of the DM-nucleon elastic scattering by
taking into account gluon couplings at tree level and loop
corrections from heavy quarks and thus extend the previous
results in Ref. [32] significantly. We also provided the new
results for forbidden and 3 → 2 annihilation channels for
light dark matter, DM self-scattering, DM-electron elastic
scattering as well as the spin-2 mediator production at linear
colliders. The new results for the complete treatment of the
DM-nucleon elastic scattering is important for constraining
WIMP dark matter by XENON1T. On the other hand, the new
results for light dark matter are crucial for finding viable mod-
els with a light massive spin-2 mediator. In particular, the new
forbidden channels make light dark matter compatible with
CMB at recombination while the spin-2 mediator has sizable
couplings to the SM. Moreover, we also presented concrete
benchmark models for specific masses and couplings for the
spin-2 mediators from the warped extra dimension.
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A DM-nucleon scattering amplitudes

Scalar dark matter

From the results, we obtain the scattering amplitude between
fermion dark matter and nucleon as follows,

MS = icS
2m2

G�2

{
2T̃ S

μν · 1

mN

×
(
pμ pν − 1

4
m2

N gμν

)[
cq (q(2) + q̄(2)) + cgG(2)

]

+1

6
mN

[
cq

(
f NTq − 2

27
fTG

)
+ 11

9
cg fTG

]
T S

}
ūN (p)uN (p)

= icS
2m2

G�2

[
2

mN

[
cq (q(2) + q̄(2)) + cgG(2)

]

(1

2
m2
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mN

[
cq

(
f NTq − 2

27
fTG

)
+ 11

9
cg fTG

]
(2m2

S

−k1 · k2)

]
ūN (p)uN (p), (A.1)

Fermion dark matter

The scattering amplitude between fermion dark matter and
nucleon can be obtained similarly, as follows,

Mχ = icχ

2m2
G�2

{
2T̃ χ
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mN

×
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4
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}
ūN (p)uN (p). (A.2)

Vector dark matter

The scattering amplitude between vector dark matter and
nucleon is also given by

MX = icX
2m2

G�2

{
2T̃ X

μν · 1

mN

(
pμ pν − 1

4
m2

N gμν

)

×
[
cq (q(2) + q̄(2)) + cgG(2)

]
+ 1

6
mN

[
cq

(
f NTq − 2

27
fTG

)

+11

9
cg fTG

]
T X

}
ūN (p)uN (p)

= icX cq
2m2

G�2
εα(k1)ε

∗β(k2)

×
{

2

mN

[
2pα pβ(k1 · k2 − m2

X )

−1

2
m2

Nηαβ(2k1 · k2 − m2
X ) + 2ηαβ(p · k1)(p · k2)

+m2
N k1βk2α − 2pαk1β(p · k2)

−2pβk2α(p · k1)

][
cq (q(2) + q̄(2)) + cgG(2)

]

+1

3
mNm

2
X

(
cq

(
f NTq − 2

27
fTG

)

+11

9
cg fTG

)
ηαβ

}
ūN (p)uN (p). (A.3)
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B Decay widths of spin-2 particles

The partial decay rates of the KK graviton [27,28] are given
by

�G(gg) = c2
ggm

3
G

10π�2 , �G(γ γ ) = c2
γ γm

3
G

80π�2 ,

�G(Z Z) = m3
G

80π�2

√
1 − 4rZ

(
c2
Z Z

+c2
H

12
+ rZ

3

(
3c2

H − 20cHcZ Z − 9c2
Z Z

)

+2r2
Z

3

(
7c2

H + 10cHcZ Z + 9c2
Z Z

) )
,

�G(WW ) = m3
G

40π�2

√
1 − 4rW

(
c2
WW

+c2
H

12
+ rW

3

(
3c2

H − 20cHcWW − 9c2
WW

)

+ 2r2
W

3

(
7c2

H + 10cHcWW + 9c2
WW

) )
,

�G(Zγ ) = c2
Zγm

3
G

40π�2 (1 − rZ )3

(
1 + rZ

2
+ r2

Z

6

)
,

�G(ψψ̄) = Ncc2
ψm

3
G

160π�2 (1 − 4rψ)3/2(1 + 8rψ/3),

�G(hh) = c2
Hm

3
G

960π�2 (1 − 4rh)
5/2 (B.1)

where cγ γ = s2
θ c2 + c2

θc1, cZ Z = c2
θc2 + s2

θ c1, cZγ =
sθcθ (c2 − c1), cgg = c3, cWW = 2c2, ri = (mi/mG)2, and
mG is the lightest KK graviton mass.

On the other hand, the partial decay rates of the invisible
decays of the KK graviton [27,28] are also given by

�(SS) = (cGS )2m3
G

960π�2

(
1 − 4m2

S

m2
G

) 5
2
, (B.2)

�(χχ̄) = (cGχ )2m3
G

160π�2

(
1 − 4m2

χ

m2
G

) 3
2
(

1 + 8

3

m2
χ

m2
G

)
, (B.3)

�(XX) = (cGX )2m3
G

960π�2

(
1 − 4m2

X

m2
G

) 1
2
(

13 + 56m2
X

m2
G

+ 48m4
X

m4
G

)
.

(B.4)

For RS model, the heavier KK modes of graviton couple
to the SM particles with the same strength as for the one
for the first KK graviton, so we only have to replace the
graviton mass by those for the heavier KK modes in the above
formulas. Thus, the narrow width approximation holds for the
heavier KK modes.

For CW model, the couplings of the KK modes of graviton
are level-dependent, such as cSM(DM),n = (kCWR) n/(mnR)

for the SM(DM) particles localized on the IR brane. Thus, the
partial decay widths of the KK gravitons scale by the overall

factor. For instance, the decay rate of the nth KK graviton
Gn into a gluon pair becomes

�Gn (gg) = n2m2
G

m2
n

· c2
ggm

3
n

10π�2 = n2mn

mG
· �G1 , (B.5)

etc. The overall factor, n2mn
mG

, is approximated to n2 for
kCWR  1, so the partial decay widths of heavier KK gravi-
tons get enhanced, as compared to the case in RS model with
the same coupling for the lightest KK graviton.

C The KK sums

Randall–Sundrum model

The KK sum relevant for the s-channels in RS model is in
narrow width approximation

S ≡
∞∑
n=1

1

m2
n − s

= M2
P

k2
RS�2

∞∑
n=1

1

x2
n − sM2

P/(k2�2)

= x1

2
√
s mG

· J2(
√
s x1/mG)

J1(
√
s x1/mG)

(C.1)

where J1(xn) = 0 and we used

∞∑
n=1

1

x2
n − σ 2 = 1

2σ
· J2(σ )

J1(σ )
. (C.2)

The KK sum relevant for the t/u-channels in RS model is
given by

T1 ≡
∞∑
n=1

1

m2
n

= x2
1

m2
G

∞∑
n=1

1

x2
n

= x2
1

8m2
G

(C.3)

where we used Jn(σ ) 	 1
n!

(
σ
2

)n
for |σ | � 1. with mn =

xnkRS e−kRSπR where xn are the zeros of J1(xn).

Clockwork model

The KK sum relevant for the s-channels in CW model is in
narrow width approximation
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S′ ≡
∞∑
n=1

n2

m2
n R

2 · 1

m2
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= R2
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(
πR

√
k2

CW − s
)}

(C.4)

where we used m2
n R

2 = (kCWR)2 + n2 and

∞∑
n=1

1

n2 + α2 = π

2α
coth(απ) − 1

2α2 . (C.5)

For s > k2
CW, we only have to replace 1√

k2
CW−s

coth(kCWπR)

by − 1√
s−k2

CW

cot(πR
√
k2

CW − s).

For s � k2
CW, namely, 4m2

DM � m2
G for the s-channel

annihilations of dark matter, the above KK sum is approxi-
mated to

S′ ≈ kCWπR

4k2
CW

(
coth(kCWπR) − kCWπR

sinh2(kCWπR)

)
. (C.6)

Furthermore, for kCWπR  1, the above result gets more
approximated to

S′ ≈ kCWπR

4k2
CW

= kCWπR

4m2
G

. (C.7)

The KK sum relevant for the t/u-channels in CW model
is given by

T ′
1 ≡

∞∑
n=1

n2

m4
n R

2

= R2
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n=1

n2

(n2 + (kCWR)2)2

= kCWπR

4k2
CW

(
coth(kCWπR)

− kCWπR

sinh2(kCWπR)

)
(C.8)

where mn =
√
k2

CW + n2/R2, and we used

∞∑
n=1

1

(n2 + α2)2 = 1

2α2

(
π

2α
coth(απ) + π2

2

1

sinh2(απ)
− 1

α2

)
.

(C.9)

For kCWπR  1, the above sum becomes

T ′
1 ≈ kCWπR

4k2
CW

= kCWπR

4m2
G

. (C.10)
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