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1 Introduction

The cosmological constant problem is a notoriously difficult problem in particle physics

and cosmology, because there is no working symmetry to protect the cosmological constant

from being large. This had led to the early no-go theorem for the cosmological constant

problem [1].

The four-form flux provides an undetermined constant [2–5], enabling the cosmological

constant to vary towards a small value. The probability with the Euclidean action [6–8] may

prefer a small cosmological constant among the distribution of values with different flux

parameters. Although the gauge field corresponding to the four-form flux is not dynamical

in 4D, the four-form flux can be changed in the process of creating membranes [9]. In this

case, the tunneling probability between two configurations with cosmological constants

differing by one unit can be defined [10, 11].

The four-form fluxes have been used to address the hierarchy problem [12, 13], in-

flation [14], quintessence [15], strong CP problem [16, 17], etc. As the gauge field for

the four-form flux is dynamical in 5D, it was used to source the warped metric with flat

space independent of brane and bulk cosmological constants, known as the self-tuning so-

lutions [18–21]. There was also an interesting novel idea for the cosmological relaxation of

the Higgs mass with an axion-like scalar field [22].

Recently, there is an interesting proposal for relaxing the cosmological constant and

the Higgs mass parameter to observed values by the same four-form fluxes [23, 24]. The key

ingredient of the proposal is that there is a dimensionless coupling between the four-form

flux and the Higgs field, and the flux parameter takes a weak-scale value to relax the Higgs

mass parameter to a correct value. Although there is a need of anthropic argument for

the cosmological constant [25], the tunneling probability between two configurations with
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different cosmological constants can judge when the flux parameter stops changing. The

important issue is then how a non-empty Universe is guaranteed by reheating dynamics at

the end of relaxation.

In this work, we consider the most general couplings for the four-form fluxes in 4D.

These include another dimensionless non-minimal four-form coupling to gravity in addition

to the four-form coupling to the Higgs field. The non-minimal four-form coupling to gravity

gives rise to an R2 term with negative coefficient, which corresponds to a dynamical scalar

field with tachyonic mass. We cure the tachyonic instability with an extra positive R2 term

from the beginning and discuss the role of the new dynamical scalar field for inflation and

reheating dynamics.

The paper is organized as follows. We begin with an overview on the model containing

the four-form flux in the SM minimally coupled to gravity. Then, we review the relaxation

mechanism with the four-form flux for solving the hierarchy problem. Next we give the

detailed discussion on the Einstein-frame action in a dual tensor-scalar gravity and explain

how inflation/reheating takes place and determine the reheating temperature.

2 The model

We consider a three-index anti-symmetric tensor field Aνρσ and its four-form field strength

Fµνρσ = 4 ∂[µAνρσ]. Then, the most general Lagrangian with four-form field couplings in

the SM are composed of various terms as follows,

L = L0 + Lint + LS + LL + Lmemb (2.1)

with

L0 =
√
−g
[

1

2
R+

1

2
ζ2R2 − Λ− 1

48
FµνρσF

µνρσ − |DµH|2 − V (H)

]
, (2.2)

Lint =
1

24
εµνρσFµνρσ (−c1R+ c2|H|2), (2.3)

LS =
1

6
∂µ

[(√
−g Fµνρσ + εµνρσ(c1R− c2|H|2)

)
Aνρσ

]
, (2.4)

LL =
q

24
εµνρσ

(
Fµνρσ − 4 ∂[µAνρσ]

)
, (2.5)

Lmemb =
e

6

∫
d3ξ δ4(x− x(ξ))Aνρσ

∂xν

∂ξa
∂xρ

∂ξb
∂xσ

∂ξc
εabc

−T
∫
d3ξ δ4(x− x(ξ))

√
−g(3). (2.6)

Here, the Higgs potential in the SM is given by

V (H) = −M2|H|2 + λ|H|4. (2.7)

In the interaction Lagrangian Lint in eq. (2.3), c1, c2 are dimensionless parameters, both

of which are taken to be positive in the later discussion. The four-form coupling to the

Higgs c2 was introduced before in the literature [12, 23, 24], but the non-minimal four-form

– 2 –



J
H
E
P
0
1
(
2
0
2
0
)
0
4
5

coupling to gravity c1 is introduced here for the first time. We note that LS is the surface

term necessary for the well-defined variation of the action with the anti-symmetric tensor

field [5], and q in LL (in eq. (2.5)) is the Lagrange multiplier, and Lmemb is the membrane

action coupled to Aνρσ with membrane charge e, and the membrane tension can be also

introduced by T with g(3) being the determinant of the induced metric on the membrane.

Here, ξa are the membrane coordinates, x(ξ) are the embedding coordinates in spacetime

and εabc is the volume form for the membrane. We also note that the R2 term in eq. (2.2)

is introduced to ensure the stability of the non-minimal four-form coupling to gravity,1 as

will be discussed later.

Then, following the strategy in refs. [14, 15], we derive the equation of motion for Fµνρσ
as follows,

Fµνρσ =
1√
−g

εµνρσ
(
− c1R+ c2|H|2 + q

)
, (2.8)

and integrate out Fµνρσ. As a result, we obtain the full Lagrangian (2.1) as

L =
√
−g
[

1

2
R+

1

2
ζ2R2 − Λ− |DµH|2 +M2|H|2 − λ|H|4 − 1

2
(−c1R+ c2|H|2 + q)2

]
+

1

6
εµνρσ∂µqAνρσ +

e

6

∫
d3ξ δ4(x− x(ξ))Aνρσ

∂xν

∂ξa
∂xρ

∂ξb
∂xσ

∂ξc
εabc. (2.9)

As a result, the equation of motion for Aνρσ makes the four-form flux q dynamical, accord-

ing to

εµνρσ∂µq = −e
∫
d3ξ δ4(x− x(ξ))

∂xν

∂ξa
∂xρ

∂ξb
∂xσ

∂ξc
εabc. (2.10)

The flux parameter q is quantized in units of e as q = e n with n being integer. Whenever

we nucleate a membrane, we can decrease the flux parameter by one unit such that both the

Higgs mass and the cosmological constant can be relaxed into observed values in the end.

3 Dynamical relaxation with four-form fluxes

From the result in eq. (2.9) apart from the second line, we collect the relevant terms in the

following form,

L =
√
−g
[

1

2
f(H, q)R+

1

2
(ζ2− c2

1)R2− |DµH|2 +M2
eff |H|2−

(
λ+

1

2
c2

2

)
|H|4−Λeff

]
(3.1)

where

f(H, q) = 1 + c1(c2|H|2 + q), (3.2)

M2
eff(q) = M2 − c2 q, (3.3)

Λeff(q) = Λ +
1

2
q2. (3.4)

1We note that the most general Lagrangian in the quadratic gravity contains RµνρσR
µνρσ and a Gauss-

Bonnet term. The latter term does not affect our discussion because it is a topological invariant, while

the former term would induce a spin-2 ghost particle [26]. Moreover, the spin-2 ghost does not change

the dynamics of the Higgs-four-form coupling, but it could render the gravitational theory inconsistent at

quantum level. But, we assume that the spin-2 ghost is decoupled in the effective theory of gravity and

focus on the impact of the R2 term in the later discussion.
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Then, we find that the Higgs mass parameter and the cosmological constant as well as

the Planck mass are variable by the same quantity, the flux parameter q. Whenever the

membrane nucleation occurs, we can reduce the flux parameter and scan the effective

parameters. It is interesting to notice that there is an R2 term with negative coefficient

proportional to the non-minimal four-form coupling in the original Lagrangian (2.3). Thus,

we had to include an R2 term from the beginning to compensate the negative term for

stability. The correction to the Higgs quartic coupling is independent of the flux parameter

so it is absorbed by the tree-level value.

The membrane is located at the boundary between two consecutive dS space configu-

rations that are defined by the flux parameters and differ by one unit. Then, it is argued

the tunneling probability between those configurations is given [10, 11] by

P(n+ 1→ n) ≈ exp

(
−

24π2M4
P

Λn+1

)
(3.5)

when Λn+1 � T 2/M2
P where T is the membrane tension. Therefore, the probability of

changing the flux parameter by one unit becomes large in the early stage of the nucleation,

but it becomes extremely suppressed at the last stage, making the Universe entering in a

metastable state with a small cosmological constant [9–11, 23, 24].

In addition to the relaxation of the cosmological constant with four-form fluxes, the

Higgs mass parameter is also scanned at the same time. For q > qc with qc ≡ M2/c2, the

Higgs mass parameter M2
eff < 0, so electroweak symmetry is unbroken, whereas for q < qc,

we are in the broken phase. For c2 = O(1) and the membrane charge e of electroweak scale,

we can explain the observed Higgs mass parameter once the flux change stops at q = qc− e
by the previous argument for the tunneling probability [23, 24]. For Λ < 0, we can cancel

a large cosmological constant by the contribution from the same flux parameter until Λeff

takes the observed value at q = qc − e, but we need to reply on an anthropic argument for

that with e being of order weak scale [25].

We remark the tunneling rate with membrane nucleation in more detail, in particular,

in the last stage of the four-form scanning. The tunneling rate from the last dS phase to

the true vacuum depends on the bounce action B for the instanton solution with radius

r̄0 [10, 11, 27], given in the following,

γ ≡ r̄−4
0 e−B (3.6)

where the bounce action is given by

B =
27π2

2

T 4

(∆Λ)3

(
1 +

1

4
r2

0H
2

)−2

, (3.7)

with r0 = 3T
∆Λ being the instanton radius in the absence of gravity, and the instanton radius

r̄0 and the dS radius H−1 are given, respectively, by

r̄0 =
r0

1 + 1
4r

2
0H

2
, (3.8)

H−1 =

√
3MP√
∆Λ

. (3.9)
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Here, ∆Λ is the change of the cosmological constant due to the last tunneling, which is given

by ∆Λ ' eqc for e� qc after the last membrane nucleation. The gravitational corrections

appear due to the curvature of the dS phase outside the membrane, suppressing both the

bounce action and the instanton radius.

We note that when r0 < 2H−1, which corresponds to T 2

M2
P
< 4

3∆Λ, we can ignore the

curvature of the dS spacetime and it is enough to consider the membrane tension and the

four-form action for calculating the bounce action. In this case, the tunneling rate becomes

γ ' r−4
0 e−B with B ' 27π2

2
T 4

(∆Λ)3 , from eq. (3.6) with eqs. (3.7) and (3.8). On the other

hand, for r0 & 2H−1, the bounce action is dominated by the curvature of the dS space.

This is the case shown in eq. (3.5), for which the tunneling rate becomes γ ' r−4
0

(
r0H

2

)8
e−B

with B ' 24π2M4
P

∆Λ , similarly from eq. (3.6) with eqs. (3.7) and (3.8).

The last dS phase at q = qc becomes unstable within the Hubble volume when γ > H4.

In the case with r0 < 2H−1 and T = M3
∗ , we can obtain the condition on the brane tension

for γ > H4, as follows,

M∗ <
1

1.851/12
(∆Λ)1/4 =

1

1.851/12
(eqc)

1/4. (3.10)

Therefore, for qc ∼ M2
P and e ∼ (100 GeV)2, the above instability bound becomes M∗ <

1010 GeV, which is consistent with the negligible gravity for T 2

M2
P
< 4

3∆Λ, that is, M∗ <

4 × 1012 GeV. On the other hand, if the above instability bound (3.10) is not satisfied,

we have γ < H4, even though the gravitational corrections become important and help

suppress the bounce action, independent of the brane tension with T > 4 × 1012 GeV.

Then, the last dS phase takes a long time before it decays, thus there would be a prolonged

stage of the last dS phase.

In the later discussion on reheating, depending on the brane tension, we divide our

discussion into two cases in the next section, namely, reheating the Universe during or after

the last membrane nucleation.

4 Four-form non-minimal couplings and effective theory

In this section, we discuss the implications of the four-form couplings for the reheating of

the Universe. This is an important ingredient for the non-empty Universe at the end of

relaxation.

We first consider a dual description of the R2 term in eq. (3.1) in terms of a real scalar

field χ by

1

2
(ζ2 − c2

1)R2 −→
√
ζ2 − c2

1 χR−
1

2
χ2. (4.1)

Then, the Lagrangian (3.1) becomes

L =
√
−g
[

1

2
Ω(H,χ, q)R− |DµH|2 +M2

eff |H|2 −
(
λ+

1

2
c2

2

)
|H|4 − Λeff −

1

2
χ2

]
(4.2)

with

Ω(H,χ, q) = 1 + c1

(
c2|H|2 + q

)
+
√
ζ2 − c2

1 χ. (4.3)
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Furthermore, making the field redefinition by

σ = c2|H|2 + q +

√
ζ2 − c2

1

c1
χ, (4.4)

we get Ω = 1 + c1σ and rewrite eq. (4.2) as

L =
√
−g
[

1

2
(1 + c1σ)R− |DµH|2 − V (H,σ, q)

]
(4.5)

with

V (H,σ, q) = −M2
eff |H|2 +

(
λ+

1

2
c2

2

)
|H|4 + Λeff +

1

2

c2
1

ζ2 − c2
1

(
σ − c2|H|2 − q

)2
. (4.6)

We remark that for ζ2 > c2
1, the potential for a new scalar field σ is bounded from below, so

the stability of the potential is ensured even in the presence of the non-minimal four-form

coupling to gravity. For ζ2 < c2
1, the potential is unbounded from below, so we would need

a higher dimensional term for the sigma field to stabilize the potential.

Due to the field-dependent Einstein term in eq. (4.5), we make a Weyl scaling of the

metric by gµν = gEµν/Ω and get the Einstein frame Lagrangian as follows,

LE =
√
−gE

[
1

2
R(gE)− 3

4
c2

1 Ω−2 (∂µσ)2 − 1

Ω
|DµH|2 −

V (H,σ, q)

Ω2

]
. (4.7)

For |c1σ| . 1, we can make the sigma field kinetic term canonically normalized by

σ̄ =
√

3
2 c1σ and get the Einstein-frame Lagrangian as

LE ≈
√
−gE

[
1

2
R(gE)− 1

2
(∂µσ̄)2 − |DµH|2 − V (H, σ̄, q)

]
(4.8)

where

V (H, σ̄, q) = −M2
eff |H|2 +

(
λ+

1

2
c2

2

)
|H|4 + Λeff

+
1

2
m2
σ̄

(
σ̄ −

√
3

2
c1(c2|H|2 + q)

)2

(4.9)

with

mσ̄ =

√
2

3

MP√
ζ2 − c2

1

. (4.10)

Thus, in the minimum of the sigma field potential, we get the Higgs potential as in the

case with the four-form coupling to the Higgs field only [23, 24]. We note that the coupling

between the sigma and Higgs fields is of the form,
c1c2m2

σ̄
MP

σ̄|H|2, which determines the

reheating temperature after inflation.

For general field values of σ, the canonical sigma field σ̄ in Einstein frame is redefined by

σ =
1

c1

(
e

√
2
3
σ̄ − 1

)
, (4.11)
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and the Einstein frame Lagrangian becomes

LE =
√
−gE

[
1

2
R(gE)− 1

2
(∂µσ̄)2 − e−

√
2
3
σ̄ |DµH|2 − VE(H, σ̄)

]
(4.12)

with

VE(H, σ̄) = Λeff e
−2

√
2
3
σ̄

+
3

4
m2
σ̄

(
1− (1 + c1q)e

−
√

2
3
σ̄ − c1c2 e

−
√

2
3
σ̄|H|2

)2

+e
−2

√
2
3
σ̄
(
−M2

eff |H|2 + λH,eff |H|4
)
. (4.13)

Here, assuming that the SM Higgs is stabilized at 〈H〉 = v/
√

2 in each dS phase, we can

rewrite the above sigma field potential as

VE(σ̄) = V0(q) +

[
3

4
m2
σ̄

(
1 + c1

(
q +

1

2
c2v

2

))2

+ Λeff

](
e
−
√

2
3
σ̄ − e−

√
2
3
σ̄m(q)

)2

(4.14)

where

e
−
√

2
3
σ̄m(q)

=
3m2

σ̄(1 + c1(q + 1
2c2v

2))

3m2
σ̄(1 + c1(q + 1

2c2v2))2 + 4Λeff

, (4.15)

V0(q) =
3m2

σ̄Λeff

3m2
σ̄(1 + c1(q + 1

2c2v2))2 + 4Λeff

. (4.16)

Here, we note that the effect of the effective cosmological constant Λeff in Jordan frame is

crucial in determining the minimum of the sigma field potential. This is important for a

large shift in the minimum of the potential after the membrane nucleation.

5 Reheating

Now we discuss the role of the sigma field potential for reheating during or just after the

last membrane nucleation. We keep 〈H〉 = 0 during the scanning with the flux parameter

and regard the sigma field as the inflaton.

5.1 Reheating during the last membrane nucleation

We first consider the possibility of reheating during the last membrane nucleation. To

this, imposing mσ̄ ∼ H, we can allow for the sigma field to start rolling from the initial

misalignment after the next-to-last membrane nucleation, that is, the transition from q =

qc + e to q = qc. Then, the sigma field can decay into the SM particles through the

Higgs coupling and reheat the Universe. Moreover, as discussed in the previous section,

we assume that the last dS phase decays within the Hubble spacetime volume during the

last dS phase, that is, γ < H4, in order not to dilute much the radiation produced from

the sigma field decay.

Just before the next-to-last nucleation, we need q = qc + e and v = 0, for which

eqs. (4.15) and (4.16) become

e
−
√

2
3
σ̄m(qc+e) ≈ 1

1 + c1qc

(
1 +

8eqc
3m2

σ̄(1 + c1qc)2

)−1

, (5.1)

V0(qc + e) ≈ 6m2
σ̄eqc

3m2
σ̄(1 + c1qc)2 + 8eqc

(5.2)
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where we used Λeff(qc − e) = Λ + 1
2(qc − e)2 ' 0 in the end, and

Λeff(qc + e) = Λ +
1

2
(qc + e)2 ' 2eqc. (5.3)

On the other hand, after the next-to-last nucleation, we have q = qc and v = 0, for which

e
−
√

2
3
σ̄m(qc) ≈ 1

1 + c1qc

(
1 +

4eqc
3m2

σ̄(1 + c1qc)2

)−1

, (5.4)

V0(qc) ≈
3m2

σ̄eqc
3m2

σ̄(1 + c1qc)2 + 4eqc
(5.5)

where use is made of

Λeff(qc) = Λ +
1

2
q2
c = e

(
qc −

1

2
e

)
≈ eqc. (5.6)

Thus, we find that both the minimum of the sigma field potential and the cosmological

constant changes after the next-to-last nucleation.

Taking the initial condition just before the next-to-last nucleation to be the minimum

of the potential for q = qc + e, i.e. σ̄i = σ̄m(qc + e), we can obtain the sigma field potential

after the next-to-last nucleation as

VE(σ̄) ≈ V0(qc + e)

+
1

4
[3m2

σ̄(1 + c1qc)
2 + 8eqc]e

−2
√

2
3
σ̄m(qc+e)

×
(
e
−
√

2
3

(σ̄−σ̄m(qc+e)) − e−
√

2
3

(σ̄m(qc)−σ̄m(qc+e))
)2

(5.7)

= V0(qc + e)

+
3

4
m2
σ̄

(
1 +

8eqc
3m2

σ̄(1 + c1qc)2

)−1(
e
−
√

2
3

(σ̄−σ̄i) − 1− 4eqc
3m2

σ̄(1 + c1qc)2 + 4eqc

)2

with

V0(qc + e) ' 6m2
σ̄eqc

3m2
σ̄(1 + c1qc)2 + 8eqc

. (5.8)

As a result, the sigma field starts to oscillate at σ̄ = σ̄i with the initial potential energy,

given by

Vi ≡ V0(qc + e) +
36m4

σ̄(eqc)
2

[3m2
σ̄(1 + c1qc)2 + 8eqc][3m2

σ̄(1 + c1qc)2 + 4eqc]2

=
6m2

σ̄eqc
3m2

σ̄(1 + c1qc)2 + 8eqc

(
1 +

6m2
σ̄eqc

[3m2
σ̄(1 + c1qc)2 + 4eqc]2

)
. (5.9)

Then, the sigma field starts to oscillate around the minimum of the above potential,

provided that the Hubble parameter at q = qc satisfies H(qc) = mσ̄,eff , i.e.

H(qc) =
Vi√

3
= mσ̄,eff (5.10)
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where

m2
σ̄,eff ≡

3m4
σ̄(1 + c1qc)

2

3m2
σ̄(1 + c1qc)2 + 8eqc

. (5.11)

This implies that we need m2
σ̄ ' 2eqc. For q > qc, the Hubble parameter H(q) becomes

larger than the sigma field mass so the sigma field is stuck at a certain value or it undergoes

a slow rolling. Therefore, only when the sigma field mass is appropriately chosen for a given

flux parameter, the sigma field can start to oscillate and reheat the Universe at q = qc.

After the final membrane nucleation at q = qc − e, the Higgs mass parameter becomes

negative and takes a right value for the observed Higgs mass and the cosmological constant

also takes the observed value by the anthropic argument.

However, the sigma field couples to the SM Higgs through the non-minimal coupling

to the four-form flux, which is suppressed by the Planck scale. Consequently, from the

decay rate of the inflaton for the decay into two Higgs fields as

Γσ̄ =
3c2

1c
2
2

64π

m3
σ̄

M2
P

, (5.12)

and using eq. (5.10), we obtain the reheating temperature as

TRH =

(
90

π2g∗

)1/4

(MPΓσ̄)1/2

= 0.2

(
100

g∗

)1/4

c1c2

(
e

c2M2/3

)3/4( M

MP

)2

. (5.13)

For instance, in order to solve the hierarchy between the Planck scale and the weak scale

by the relaxation of the four-form flux, we choose M ∼ MP and
√
e ∼ 1 TeV for c2 =

O(1). Then, the inflaton mass is mσ̄ ∼ TeV and the reheating temperature is TRH ∼
(c1/103) 10 MeV. In other words, we need ζ ∼ 1015 for mσ̄ ∼ TeV, and c1 & 103 for

TRH & 10 MeV.

We comment on several issues in the case with reheating during the last membrane

nucleation. First, after the next-to-last membrane nucleation, it is known that the Uni-

verse enters the open inflating phase with a negative spatial curvature [27, 28]. If the

tunneling with the last membrane nucleation were efficient, there would no time for the

negative spatial curvature to be diluted away by inflation, so it remains sizable after the

last membrane nucleation.

Secondly, we would need a large coupling of quadratic curvature gravity for a light dual

scalar field. In this case, certainly, the perturbative expansion of the tree-level Lagrangian

is in question. Moreover, we need to control even higher curvature terms such as Rn for

n > 2 with sufficiently small coefficients. In this sense, there is a need of improving our

discussion to justify the classical Lagrangian for the light sigma field at the R+R2 gravity

level. At least, we can argue that when we take the pure R + R2 gravity as the effective

theory, the UV cutoff scale for gravity does not decrease, because the theory is identical to

a scalar-tensor gravity with a stable massive scalar field.
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In the next subsection, we also discuss a successful case of reheating after the last

membrane nucleation but without problems of the open Universe or large couplings of

quadratic curvature gravity or four-form flux.

5.2 Reheating after the last membrane nucleation

In the case when the last membrane nucleation takes a longer than the Hubble rate, that

is, γ < H4, radiation produced during the last dS phase would be diluted away by the

exponential expansion of the Universe. Thus, in this subsection, we discuss the case when

reheating occurs after the last membrane nucleation.

Just after the last nucleation, we have q = qc − e, v 6= 0 and V0 ≈ 0, for which the

minimum of the potential becomes

e
−
√

2
3
σ̄m(qc−e) ≈ 1

1 + c1(qc − e+ 1
2c2v2)

≈ 1

1 + c1qc
. (5.14)

Then, we can compare between the different minimum values in eqs. (5.4) and (5.14) before

and after the last membrane nucleation, which are crucial for obtaining a nonzero initial

vacuum energy for the sigma field after the last membrane nucleation. The discussion on

the flux-induced shift of the minimum and reheating has been generalized to the case with

the four-form couplings to singlet scalar fields in a recent paper [29].

Suppose that the sigma field settles into the minimum of the potential before the last

nucleation. Then, after the last nucleation, the minimum of the potential is shifted from

eq. (5.4) to eq. (5.14). Taking the initial condition just before the last nucleation to be

the minimum of the potential for q = qc, i.e. σ̄′i = σ̄m(qc), we can obtain the sigma field

potential after the last nucleation as

VE(σ̄) ≈ 3

4
m2
σ̄(1 + c1qc)

2e
−2

√
2
3
σ̄m(qc)

(
e
−
√

2
3

(σ̄−σ̄m(qc)) − e−
√

2
3

(σ̄m(qc−e)−σ̄m(qc))
)2

=
3

4
m2
σ̄

(
1 +

4eqc
3m2

σ̄(1 + c1qc)2

)−2(
e
−
√

2
3

(σ̄−σ̄′i) − 1− 4eqc
3m2

σ̄(1 + c1qc)2

)2

. (5.15)

As a result, the sigma field starts to oscillate at σ̄ = σ̄i with the initial potential energy,

given by

V ′i ≡ VE(σ̄i) =
12(eqc)

2m2
σ̄

(3m2
σ̄(1 + c1qc)2 + 4eqc)2

(5.16)

where the latter approximation is made for c1qc . 1. Here, we find that: for m2
σ̄ � eqc,

V ′i ≈ 3
4m

2
σ̄; for m2

σ̄ � eqc, V
′
i ≈ 4

3(eqc)
2/[m2

σ̄(1 + c1qc)
2]. On the other hand, for m2

σ̄ =
2
3

√
2eqc/(1 + c1qc)

2, the initial potential energy is maximized to V ′i ≈ 0.25(eqc)/(1 + c1qc)
2.

Thus, the maximum initial potential can be obtained for the inflaton mass of order 1 TeV

for e ∼ (1 TeV)2 and qc ∼M2
P , but a heavier inflaton mass is favored for a sufficiently high

reheating temperature as will be shown below.

– 10 –



J
H
E
P
0
1
(
2
0
2
0
)
0
4
5

When reheating is instantaneous, the temperature of the Universe after inflation would

be given by the maximum temperature, Tmax =
(

90V ′i
π2g∗

)1/4
with eq. (5.16), thus becoming

Tmax ' 2.5× 1010 GeV

(
100

g∗

)1/4( eqc
(1 TeV ·MP )2

)1/4

×
(
m2
σ̄M

2
P

eqc

)1/4(
1 +

3

4

(
m2
σ̄M

2
P

eqc

)
(1 + c1qc/M

2
P )2

)−1/2

(5.17)

where we have reintroduced the Planck scale for dimensionality. In particular, for m2
σ̄ � eqc

and c1qc/M
2
P . 1, the maximum reheating temperature becomes

Tmax ' 1.5× 109 GeV

(
100

g∗

)1/4( eqc
(1 TeV ·MP )2

)1/2(380 TeV

mσ̄

)1/2

. (5.18)

Then, from the decay rate of the sigma field given in eq. (5.12), the resulting reheating

temperature becomes much lower than the maximum reheating temperature, as follows,

TRH =

(
90

π2g∗

)1/4

(Γσ̄MP )1/2 = 10 MeV

(
100

g∗

)1/4(c1

1

)(
c2

1

)(
mσ̄

380TeV

)3/2

. (5.19)

In this case, the reheating temperature is much smaller than the maximum temperature,

due to the double suppressions with the Planck scale and the inflaton mass. However, for

mσ̄ > 380 TeV (or ζ < 5.2 × 1012 from eq. (5.10)) and c1, c2 = O(1), we can obtain a

sufficiently high reheating temperature for the successful Big Bang Nucleosynthesis. We

note that for mσ̄ ≥ 1.6 × 108 GeV, the reheating temperature becomes identical to the

maximum reheating temperature, that is, TRH = Tmax.

In the discussion of this subsection, we showed that there is no need of large couplings

to the four-form flux for the successful reheating. But, we still need to see the details of

the sufficient number of efoldings and the inflationary observables in a low-scale inflation.

6 Conclusions

We provided the most general Lagrangian for the four-form couplings to the SM and showed

that the four-form flux parameter scans not only the Higgs mass and the cosmological

constant but also the Planck mass. We found that the non-minimal four-form coupling to

gravity gives rise to an tachyonic instability for a new scalar field, but it can be consistently

cured in the effective Lagrangian. We discussed the conditions on new four-form couplings

for a successful reheating of the Universe at the end of relaxation.
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