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ABSTRACT Accurate music tag classification of music clips has been attracting great attention recently,
because it allows one to provide various music excerpts, including unpopular ones, to users based on the
clips’ acoustic similarities. Given a user’s preferred music, acoustic features are extracted and then fed into
the classifier, which outputs the related tag to recommend new music. Furthermore, the accuracy of the
tag classifiers can be improved by selecting the best feature subset based on the domain to which the tag
belongs. However, recent studies have struggled to evaluate the superiority of various classifiers because
they utilize different feature extractors. In this study, to conduct a direct comparison of existing methods of
classification, we create 20 music datasets with the same acoustic feature structure. In addition, we propose
an effective evolutionary feature selection algorithm to evaluate the effectiveness of feature selection for
tag classification. Our experiments demonstrate that the proposed method improves the accuracy of tag
classification, and the analysis with multiple datasets provides valuable insights, such as the important
features for general music tag classification in target domains.

INDEX TERMS Music tag classification, feature selection, machine learning, evolutionary algorithm.

I. INTRODUCTION
Automatic music tag classification (MTC) is used to find a
relevant music tag, such as emotion or genre, for a music
excerpt based on its music signal or extracted acoustic fea-
tures [1]–[3]. This task can be achieved by training a classifier
using music excerpts with relevant tags annotated by a human
being. After training the classifier, relevant tags for undis-
covered or newly released music excerpts can be identified
without human intervention by feeding the excerpts as input
data to the trained classifier. Since automatic MTC has high
learning potential, improving the accuracy of the classifier is
an essential task.

In the past decades, various researchers considered acous-
tic feature selection (FS) as a key pre-processing step for
improving the learning accuracy of MTC. The detailed pro-
cedure is as follows:

1) A collection of digital music clips or excerpts
and the relevant tags are gathered. Regarding
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application constraints such as response time, themusic
excerpts can be divided into clips with a specific
duration.

2) An acoustic feature extractor is selected to transform
the signal information of each music excerpt into a
series of statistical values that form the formal dataset
for training the classifier.

3) Since relevant acoustic features may vary according
to the domain of the tags, an FS algorithm can be
employed to improve classification accuracy.

4) The classifier learns the music excerpts based on
the selected acoustic features with improved accuracy
because noisy features can be removed through the FS
process.

MTC performance varies according to the domain of the
music collection, acoustic feature extractor, feature selector,
and classifier. However, recent studies report the performance
of MTC based on different settings, making it impossible
to identify and compare different aspects of performance
[4]–[6]. Therefore, we cannot judge the impact of FS on
improving MTC performance.
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In this work, we report the performance of automatic music
classification in a fair setting. The strategy and the contribu-
tions of this study can be summarized as follows:
• We gathered as many music collections as possible to
prevent a biased conclusion—20 datasets were included
in our experiments.

• To guarantee a fair basis for the comparisons,
we selected MIRtoolbox [7], one of the most popular
toolkits in the field, as the acoustic feature extractor.

• To examine the true potential of FS, we devised a novel
evolutionary FS algorithm based on an evolutionary
search process enhanced by a feature filter.

• Our experiments, based on the same acoustic feature
structure, allow a feature analysis of multiple datasets to
identify important acoustic features across various MTC
settings.

Our experimental results indicate that an effective FS method
can improve the performance of MTC consistently regardless
of the underlying setting.

II. RELATED WORK
Using different combinations of the music collection, acous-
tic feature extractor, FS algorithm, and classifier, various
MTC systems can be built with different performance levels.
In this section, we review some notable studies related to
MTC based on these concepts.

First, regarding the music collection, several datasets have
been used in MTC studies. One well-known dataset is the
Latin Music Database [6], [14], [24], [25]. It contains 3,227
music pieces belonging to 10 different Latin musical genres:
Axe, Bachata, Bolero, Forro, Gaucha, Merengue, Pagode,
Salsa, Sertaneja, and Tango. The ISMIR’2004 dataset con-
sists of 1,458 music pieces assigned to six Western genres:
classical, electronic, jazz and blues, metal and punk, rock
and pop, and world music [6]. Another popular dataset is
GTZAN [3], [18], [22]. It is widely used in studies on music
classification, and it consists of 1,000 songs from 10 pop-
ular genres: blues, classical, country, disco, hiphop, jazz,
metal, pop, reggae, and rock. Each song is 30s long with
a sample rate of 22,050kHz. The Seyerlehner:1517-Artists
dataset contains 3,180 original tracks from 23 music genres.
From the original tracks, only tracks from different artists
in each category were selected in [1]. MagnaTagAtune com-
prises 4,476 songs belonging to 24 musical genres, making
it the most diverse collection [29]. The MIR-1K dataset,
a collection of Tollywood and Bollywood songs from the
Indian film industry, has been used for segmentation of vocal
and non-vocal clips [11]. Other well-known datasets are
EMO-DB, eNTEFACE05, EMVO, SAVEE [9], Traditional
Malay Music [26], AllMusicGuide [21], and Thai music
collection [2]. Many studies have formed a novel dataset
by combining several datasets or even creating a new one.
For example, Carnatic, Hindustani, and Bollywood musical
datasets were joined together to create a single dataset [12];
in another study, 574 vehicle sounds were selected
from three instrumental datasets—the McGill University

collection, RWC database, and University of Iowa instrument
samples [15], [20]. The datasets in the works of [10], [13],
[16], [17], [23], [28], [31] were newly collected for the
respective studies. Some were collected from music CDs and
the Internet [31], while somewere from individuals whowere
asked to classify respectively. These datasets were used to
validate the performance of music classification algorithms.
For example, in the work of [4], 12 datasets were used—
Audionautix, Bugs2664, BugsEmo, CAL500, China3004,
Emotions, Genre3, Highlight, KOCCA40, MusicEmo-A,
MusicEmo-B, and Style812.

Second, regarding the acoustic feature extractors, various
extractors have been developed over time as MTC research
continues and diversifies. The two popular frameworks are
Music Analysis, Retrieval and Synthesis for Audio Sig-
nals (MARSYAS) [2], [6], [24]–[26] and Advanced MUSic
Explorer (AMUSE) [5], [20], [21]. Feature extractors such
as jAudio [18], [29], MIRtoolbox [4], [12], [18], and the
Chordino Vamp Plugin [1] can be used both indepen-
dently or based on the aforementioned two frameworks.
VOICEBOX [17], MPEG-7 [18], OpenSMILE [9], CLAM
[19], [23], and librosa from Python [3] are also used for
feature extraction.

Third, regarding FS algorithms, previous studies fre-
quently use a genetic algorithm (GA) to select the relevant
acoustic features for given tags. This method can be com-
bined with other methods, and the converted GAs or other
FS algorithms were used contextually in each study. For
instance, the One-Against-All (OAA) and Round Robin (RR)
space decomposition approaches have been combined with
GA [6], [24], [25]. S-Metric Selection Evolutionary Multi-
objective Algorithms (SMS-EMOA) [1], [5], [20], [21] are
often selected as an optimization heuristic in MTC studies.
They sort the population into several solution fronts through
fast non-dominated sorting [20]. The interactive genetic algo-
rithm (IGA) is used both in [23] and [19]. In addition,
GA with the m-features operator was introduced in [28].
Sequential forward selection (SFS) has been used both indi-
vidually [29], [30] and in combination with ReliefF [17].
Particle swarm optimization [2], the self-adaptive particle
swarm optimization (SaPSO) [32], the self-adaptive harmony
search (SAHS) algorithm [18], the interactive feature selec-
tion (IFS) method [30], and improved binary global har-
mony search (IBGHS) [8] are the other FS algorithms used
in related research. [30] and [26] conducted studies using
more than two algorithms: three algorithms in [30] and eight
algorithms in [26].

Fourth, regarding the classifiers, we will mainly dis-
cuss five popular ones used in MTC studies. The decision
tree (DT) is often employed as a classifier to decide the
tag for a given music excerpt. Each node in a DT has two
child nodes, except for the leaf nodes, which are used to
decide the relevant tag for a given music excerpt [2], [5],
[6], [12], [20], [21], [24], [25]. Closely related to the DT,
the random forest (RF) is an ensemble learning method
that randomly selects acoustic features from several different
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TABLE 1. Summary of related papers.

sets [1], [2], [11]. The k-nearest neighbor (kNN) classifier
calculates the distance between the test music pieces and
training music pieces in terms of the acoustic features [1],
[8], [9]. The naïve Bayes (NB) classifier uses Bayesian theory
for deciding the relevant tag of music pieces [2], [5], [20].
It estimates the output tag by its highest probability based
on feature distribution. Support vector machine (SVM) is
a supervised learning model used for MTC [2], [9], [11].
In addition to the classifiers introduced thus far, many
classifiers—such as the multi-layer perceptron (MLP) [6],
[9], [24], neural network (NN) [11]–[13], stacking ensem-
ble [2], neuro-fuzzy classifier (NFC) [11], and back prop-
agation neural network (BPNN) [16]—have been used in
MTC studies. Specifically, one study developed new kinds of
classifiers [3]. References [9] and [26] chose 18 classifiers.

Table 1 summarizes the number of music datasets consid-
ered in each corresponding study, the chosen acoustic feature
extractor, the FS algorithm employed, and the classifier used
for identifying the tags. Table 8 lists the abbreviations used
in Table 1. Our brief review shows that the choices in each
study varied, indicating that it is difficult to directly compare
the impact of FS on the MTC.

III. MATERIALS AND METHODS
A. PREPROCESSING
We used the MIRtoolbox to extract the acoustic features
from music excerpts. The basic operators of MIRtool-
box are related to the management of audio waveforms,
frame-based analysis, periodicity estimation, auditory mod-
eling, peak selection, and sonification of results. During
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TABLE 2. Summary of public music collections considered in this study.
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TABLE 2. (Continued.) Summary of public music collections considered in this study.

preprocessing, we first input the music excerpts in the collec-
tion to the mirfeatures function in MIRtoolbox. Then,
a total of 888 numeric features were computed and returned,
which were further categorized into dynamic (6), rhythm
(37), timbre (739), pitch (0), and tonal (106). Then the outputs
were extracted to standard CSV files via the mirexport
function of MIRtoolbox, which exports the statistical infor-
mation of each music excerpt.

Next, due to unexpected processes such as the divided-
by-zero error, the statistical information may include
Not-a-Number (NaN) values. In this study, we used kNN
imputation [53], where k = 3, to deal with the NaN values.
Thus, all the NaN values were replaced with a value estimated
by referencing the nearest three music excerpts. However,
if an acoustic feature contains too many NaN values, the kNN
imputation cannot be applied because the algorithm is unable
to identify the nearest neighbors; in such cases, we removed
those features.We encoded the tag information using the one-
hot encoding scheme [54] because this allows for multiple
tags to be assigned to a single music excerpt.

Finally, for the case in which classifiers are used that are
known for being effective with categorical features, we used
the LAIM discretization scheme [55] for discretizing the
original numeric features into the categorical features.

B. PROPOSED FEATURE SELECTION ALGORITHM
1) INITIALIZATION AND EVALUATION
To search for the optimal feature subset, the proposed method
first initializes a population composed of chromosomes. Each

chromosome is represented as a binary vector consisting of
ones and zeros depending on whether a feature is selected.
The chromosomes are initialized randomly such that they are
evenly distributed across the entire search space. To verify
that removing noisy features can improve accuracy, the initial
population includes one chromosome that selects all features.
After that, each chromosome is evaluated as a fitness value
by the classifier. Specifically, the classifier is trained with a
feature subset represented by each chromosome and then pre-
dicts the tag for each test music excerpt. Given the correct tags
and predicted tags, a fitness value is obtained by calculating
the accuracy of the tagging. Therefore, a better feature subset
has a higher fitness value.

2) PARENT SELECTION
Parent selection is the process of selecting parents to generate
offspring for the next generation. To pass on the relevant
features to the offspring, parents should be chosen from
the population based on their fitness values. To this end,
we adopted a tournament selection algorithm [56]. Given
chromosome groups sampled at random from the population,
the tournaments are conducted by comparing fitness values.
The winner of each tournament is selected as a parent. In an
MTS problem, a feature subset with a high fitness value does
not ensure high accuracy for each tag because the dependen-
cies between the tags are different. For example, two parents
with high fitness valuesmay consist of similar features related
to the same tags. To generate superior offspring, a pair of
two parents must have a complementary relationship, with
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each containing features related to different tags. If one parent
has features that depend on one part of the tags, another
parent that has features relevant to the remaining tags can
complement it.

To deal with the issue, we introduce a new parent-matching
process. Let c be a chromosome chosen by a tournament
and T be a set of tags. A tag-specific accuracy vector ac =
[a1, . . . , a|T |] is computed by the trained classifiers, each
used to predict each tag; here, ai is the accuracy of the ith tag
predicted by c. To divide T into a strong tag subset Ts and
weak tag subset Tw, the elements of ac first are sorted in
ascending order. After that, Ts and Tw are identified based on
the point where the difference between the two consecutive
values in sorted ac is the highest because the optimal point is
unknown. Given Tw on c, its spouse c′ is chosen as follows.

c′← argmax
c′

∑
i∈Tw

ac
′

i (1)

3) OFFSPRING GENERATION VIA FEATURE FILTER
Traditionally, the offspring are generated by randomly recom-
bining pairs of parents because it is difficult to assess the
importance of each feature only based on the fitness value of
a specific chromosome. If such information can be estimated,
further improved offspring can be generated by utilizing the
benefits of our parent-matching process. Given a pair of
parents c and c′, the offspring must inherit features closely
related to Ts and Tw from c and c′, respectively. To this end,
we employ a feature filter that enables us to compute the
relationship between features and tags based on information
theory.

Let Sc and S ′c be feature subsets represented by c and c′.
Given an offspring Sn = ∅, Sc can pass a feature f + ∈ {Sc \
Sn} sequentially to Sn. To maximize the dependency between
features and Ts, f + is selected as follows.

argmax
f +∈{Sc\Sn}

I (Sn, f +;Ts) (2)

where I (X;Y ) = H (X ) + H (Y ) − H (X ,Y ) is Shannon’s
mutual information between the variable set X and Y . To cal-
culate H (Ts), we transform a categorical variable T into a
binary one-hot encoding for calculating Eq. (2). Therefore,
we adopt a generalized information-theoretic criterion [57],
which is a recent feature filter. It calculates f + as follows.

argmax
f +∈{Sc\Sn}

|Ts|
∑
f ∈Sn

H (f +, f )− |Sn|
∑
l∈Ts

H (f +, l) (3)

where S ′c also can pass features to Sn by replacing Sc and Ts
with S ′c and Tw, respectively. To explore feature subsets of
various sizes, we randomly set the number of features that Sc
and S ′c pass into Sn at each iteration.

The offspring are generated as a combination of only the
features that the population has. Therefore, some features
in the original set are neglected, resulting in local optima.
A simple approach to solve this issue is to extend the afore-
mentioned offspring generation process to the population
level. Let F and Sp be the original feature set and union of

Algorithm 1 Proposed Feature Selection Algorithm
1: Input: F ; F the original feature set F
2: Output: S; F the final feature subset S
3: u← 0; F the number of spent FFCs u
4: initializing P; F the population P
5: evaluating P; F compute fitness values via classifiers
6: u← u+ m; F the population size m
7: while u < v do F the maximum number of FFCs v
8: N ← ∅;
9: for each tournament do
10: c← run a tournament selection;
11: c′← compute Eq. (1);
12: o← offspring of c and c′; F use Eq. (3)
13: N ← {N ∪ o};
14: end for
15: o← run mutation; F use Eq. (4)
16: N ← {N ∪ o};
17: evaluating N ;
18: u← u+ (m/tournament size);
19: P← {P ∪ N };
20: P← keep m chromosomes with best fitness values;
21: end while
22: S ← the best feature subset so far;

feature subsets within the population, respectively. Given Ts
and Tw on Sp, new features to add into the population are
selected as follows.

argmax
f +∈{F\Sp}

|Tw|
∑
f ∈Sp

H (f +, f )− |Sp|
∑
l∈Tw

H (f +, l) (4)

Similarly, features to delete in the population are selected
by replacing F , Sp, and Tw with Sp, ∅, and Ts, respectively.
After that, the modified Sp is added to the population as a
new chromosome. Finally, the proposed method repeats these
processes until the termination condition is met.

4) TERMINATION
The termination condition is based on the number of fitness
function calls (FFCs), that is the number of evaluations of
individuals by the classifier. The algorithm terminates its
search process if the number of remaining FFCs is zero. The
number of allowed FFCs is a user-defined parameter. Algo-
rithm 1 represents the pseudocode of the proposed method.

IV. EXPERIMENTAL RESULTS
We created 20 music datasets from different domains to
validate the effect of FS on MTC. Table 2 provides short
descriptions of the music collections employed, where each
music collection consists of audio files and music tags anno-
tated by users or through a specific system. As shown in
Table 2, the domains of the collections cover 12 genres, three
emotions, three instruments, one mood, one groove, and one
key. Since the main objective of this study was to conduct a
fair experiment on FS, the acoustic features were extracted
using the same feature extractor—MIRtoolbox [7]—which
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TABLE 3. The standard characteristics and statistics of employed datasets.

TABLE 4. List of modified datasets and considered tags.

provides a set of integrated features for each music excerpt.
The extracted features can be organized along five main
musical dimensions: dynamics, rhythm, timbre, pitch, and
tonality.

Table 3 provides the statistics of the datasets created by
applying the acoustic feature extractor to the music excerpts
in the corresponding collection. Although a single domain
that its relevant music tags can be included is suggested by
the creator of collection in most cases, a few collections
such as emoMusic, Emotify, GiantStepsKey, and GMD may
cover multiple domains. For these collections, because the
tags originally suggested by the creator are real-valued and
consequently unsuitable for the classification task, we cre-
ated a corresponding music dataset by using the genre tags
shown in Table 4. Datasets are created using the genre tags
emoMusic-G, Emotify-G, GiantStepsKey-G, and GMD-G.
In Table 3, the terms |W |, Avg. Length, |F |, Suggested
Domain, UsedDomain, |T |, andAvg. Size of Tag, indicate the
number of patterns, the average length of music excerpts in
the collection, the number of extracted acoustic features, the

domain suggested originally by the creator of the collection,
the domain used for creating the corresponding dataset, the
number of tags, and the average number of patterns per tag
and its standard deviation, respectively.

In this study, we used the NB classifier for comparing
the performance of the proposed and conventional FS meth-
ods because of its popularity and effectiveness. Specifically,
we considered the NB classifier to obtain the accuracy val-
ues of the final feature subsets given by each FS method.
To simulate performance in the real world, we used con-
ventional hold-out cross-validation for each dataset. Of the
patterns, 80%were randomly chosen as a training set, and the
remaining 20% were randomly chosen as a test set. We com-
pared the proposed method to three conventional methods:
MPGA-LCC, MLACO, and CBFS.
• MPGA-LCC [58] is a Multi-population Genetic Algo-
rithm for FS based on a new communication process
among sub-populations. This communication process
generates better offspring compared to the parent gen-
eration by employing the complementary discriminating
powers of sub-populations.

• MLACO [59] is a new relevance-redundancy FSmethod
based on Ant Colony Optimization. This algorithm tries
to find the most promising features with the lowest
redundancy and the highest relevancy.

• CBFS [60] ranks features according to a heuristic
evaluation function based on Pearson’s correlation
coefficient. To conduct a fair comparison consider-
ing the 300 FFCs of EA-based comparison methods,
we allowed the CBFS to validate the performance
of 300 candidate feature subsets created by adding high-
ranked features one-by-one to the feature subset. Among
the 300 candidate feature subsets, the feature subset that
yields the best accuracy value in the training phase is
chosen as the final feature subset.
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TABLE 5. Comparison results of four methods in terms of accuracy (H/M indicates that the corresponding method is significantly worse than the
proposed method based on a paired t-test at the 95% significance level).

FIGURE 1. Bonferroni-Dunn test result of the four comparison methods in
terms of accuracy.

For the parameter settings of the evolutionary algorithms,
20% of the training patterns are used for evaluating the
fitness of each chromosome. In short, 64%, 16%, and 20%
of the patterns are used for training, validation, and testing,
respectively. We set the size of the population to 50, and the
maximum number of FFCs was limited to 300. To measure
the performance of the four FS methods, we employed an
accuracy measure in the range of [0,100]. Given the number
of test patterns and the number of correct classifications, the
accuracy is calculated as:

Accuracy (%) =
Number of correct classifications
Total number of classifications

× 100

where the total number of classifications is |W |×0.2 because
we employed the 8:2 hold-out cross-validation. All experi-
ments were repeated 10 times, and the average of the mea-
sured values was used to compare the performance of the
different FS methods. To validate the superiority of pro-
posed method, we performed additional experiments using
a paired t-test [61] at the 95% significance level for com-
paring the proposed method with the other methods, and the
Bonferroni-Dunn test [62] for comparing the average ranks of
the proposed method with those of the other methods. In the

Bonferroni-Dunn test, if the difference between the proposed
method and the conventional method in terms of the average
rank is larger than the value of the critical difference (CD),
their performance is confirmed to be different and the supe-
rior method can be determined. In our experiments, we set the
significance level α to 0.05, and thus, CD = 0.9773.

Table 5 shows the comparison results of the four meth-
ods in terms of average accuracy with standard deviation
from ten repeated experiments. The best accuracy value
among the four methods for each dataset is in bold. In the
table, H/M indicates that the corresponding method is sig-
nificantly worse compared to the proposed method at the
95% significance level. The experimental result indicates
that the proposed method outperforms the comparison meth-
ods for 13 datasets. For example, the proposed method
yields an accuracy of 83.67%, 63.49%, 75.70%, and 45.42%
for the Ballroom, Ballroom-Extended, GTZAN, and Sound-
tracks datasets, respectively. By contrast, the accuracy values
of the second-best method in those datasets are 73.31%,
51.82%, 66.55%, and 34.44% respectively. Thus, the differ-
ence between two methods is 10.36%, 11.67%, 9.15%, and
10.98%, respectively, indicating that the proposed method
significantly outperforms the second-best method for these
four datasets. A similar tendency can be observed from the
experiments with other datasets, resulting in an average rank
of 1.10. Thus, the experimental results indicate that our pro-
posed method can find a feature subset closely related to
tags by introducing a new complementary parent matching
process and offspring generation process based on informa-
tion theory. Based on the experimental results of Table 5,
we conducted the Bonferroni-Dunn test as shown in Figure 1.
Since the proposed method achieved the best average rank,
it is placed in the right most side in the figure. Above the
middle line, a line CD runs from the location of the proposed
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TABLE 6. Comparison of classification performance of feature subset
selected by the proposed method and original feature set (H/M indicates
that the classification performance on the original feature set is
significantly worse/better compared to the proposed method based on a
paired t-test at the 95% significance level).

method on the line. Since there are no other comparison
methods within CD, the superiority of the proposed method
is confirmed.

To validate the effect of FS onMTC, we compared the clas-
sification performance based on the feature subset selected
by the proposed method and the original set composed of
about 900 features as shown in Table 6. In the last column,
the improvement in terms of accuracy of the feature subset
selected by the proposed method over the original feature set
is provided. Although the improvement of accuracy varies
with the dataset, Table 6 indicates that the accuracy gener-
ally improved as a result of FS under the proposed method.
Specifically, the proposed method improves the accuracy for
the Ballroom, Ballroom-Extended, and GoodSounds datasets
by 10% on average. As shown in the last row of Table 6,
the FS process yields a 4.36% improvement on average. It is
interesting to note that the feature subset selected by the
other methods may yield a classification performance worse
than that based on the original feature set. For example,
the classification accuracy for the Ballroom dataset of the
original feature subset is 75.25% whereas that of the feature
subset selected by CBFS is 64.82%. Table 6 indicates that
the original feature set includes some noisy features that may
confuse classifiers. Thus, our experiments indicate that the FS
process can improve the performance of MTC, but the choice
of FS method is important.

V. ANALYSIS AND REMARKS
In this study, we created music datasets using the same
acoustic feature extractor and identified important features
for the given music tags. Since all the datasets in our study

share a common feature structure, a subsequent analysis was
conducted over multiple datasets for clues such as the impor-
tant features for general MTC tasks, specific domains, and
nationalities. In this section, we analyze the selected features
over multiple music datasets.

A. OVERALL DESCRIPTION OF TOP 50 FEATURES
SELECTED
Of the features in the fields of dynamics, rhythm, timbre,
pitch, and tonality given by MIRtoolbox, features selected
through the proposed method differed based on the dataset.
Figure 2 shows the frequently selected 50 features across the
entire experiment. The full names are detailed in Table 9 in the
Appendix. In Figure 2, each bar represents the different fea-
ture fields ofMIRtoolbox. Since we ran ten iterations for each
dataset and we have 20 datasets, each feature can be selected
for a maximum of 200 times. The dynamics and pitch features
are excluded from the figure because they were not selected
across all the datasets, indicating that the top 50 selected fea-
tures are from the rhythm, timbre, and tonality fields. Timbre,
in particular, with 27 features among the top 50, is clearly
important for MTC. Among the 50 features, 16 are related
to mfcc, which are widely used in the study of traditional
audio signal processing such as voice and music, accounting
for the largest proportion. These 16 features consist of five
mfcc features, six delta − mfcc(dmfcc) features representing
the audio rate, and five delta−delta−mfcc(ddmfcc) features
representing the acceleration of audio. The next most popular
feature set within the timbre field is that of spectrum-related
features. Seven spectrum-related features are extracted based
on the Fast Fourier Transform, representing spectral distance,
the coefficient of skewness, entropy, and so on. The timbre
field also includes rolloff and brightness, which estimate
the number of high frequencies, and spectral_irregularity,
which shows fluctuations in the successive peaks of the
spectrum. For the tonality field, 15 features were selected.
The features related to keystrength that distinguish the major
and minor keys account for the largest proportion, with six
features. The chromagram, which comprises four features,
shows the distribution of energy along with the pitches or
pitch classes. The rest are: three modal-related features,
one HarmonicChangeDetectionFunction feature, and one
keyclarity feature. Finally, in the rhythm field, a total of eight
features were selected, including six tempo-related features
and one each for peak , and attack . The six tempo-related
features estimate the tempo by detecting periodicities from
the event detection curve.

B. ANALYSIS BASED ON CORRELATION COEFFICIENT FOR
EACH DOMAIN
For a more detailed analysis, we calculated the correlation
coefficient (CC) between the selection frequencies of fea-
tures from each dataset, where the selection frequency of
each feature from a given dataset is the number of times
that each feature is selected during ten iterative experiments.
An array representing the selection frequency of each feature
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FIGURE 2. Top 50 frequently selected features and the number of times selected across the entire experiment (Features in Rhythm, Timber, Tonality field
given by MIRtoolbox represented in different style).

can be obtained for each dataset, and CCs between the arrays,
which represent the similarity of FS between two datasets,
can be calculated. Since there can be differences in tendency

according to the domain of the datasets, we showed the
CCs at an overall level (considering all 20 datasets), and
by genre, instrument, and emotion (mood). Figure 3 shows
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FIGURE 3. Dataset pairs with the highest correlation coefficient values.

the CC matrices between dataset pairs with the highest CCs,
while Table 7 details our experiments. In the table, Coverage,
Dataset, # of commonly selected features refer to the datasets
that the experiment was conducted on, the dataset pair for
which the CC value is calculated, and the common features in
the top 50 features for each dataset. The dynamics and pitch
fields are excluded from the column as they do not feature
among the commonly selected features.

Our experiment showed that the top five dataset
pairs with the highest CCs from the perspective of all
datasets are: (Ballroom-Extended, Seyerlehner:Unique),
(Ballroom, Ballroom-Extended), (FMA-SMALL, HOM-
BURG), (Ballroom-Extended, FMA-SMALL), and (Ball-
room, Seyerlehner:Unique). The (Ballroom-Extended,

Seyerlehner:Unique) dataset pair had the highest CC of 0.4,
with 23 commonly selected features among the top 50 fea-
tures (46%), the highest ratio compared to other dataset
pairs. The 23 features consist of two in the rhythm field,
15 in the timbre field, and six in the tonality field. Of the
15 feature in the timbre field, 12 were mfcc-related features
(two mfcc, three dmfcc, and seven ddmfcc). The six features
of the tonality field consist of one Mode_Periodentropy
and five keystrength-related features. The five overlapping
keystrength-related features indicate that the two datasets
consist of songs similar in major and minor. Next, we observe
that the value of CCs for the (Ballroom, Ballroom-Extended)
dataset pair is 0.39, which is the second highest CC in the
experiment. However, only 11 features (three rhythm, seven
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TABLE 7. Correlation coefficients of selection frequency between dataset-pairs and the number of commonly-selected features among the
top 50 frequently selected features for each dataset.

timbre, and one tonality-related features) are common to both
datasets. This pair contains one each of mfcc, dmfcc, and
ddmfcc. Only Keystrength_Slope, the most popular feature
in the tonality field, was included in the commonly selected
features. The (FMA-SMALL, HOMBURG) dataset pair are
unrelated datasets from the viewpoint of the considered
music excerpts, but ranked high with a CC value of 0.39.
In this pair, 20 features are commonly selected (two rhythm,
14 timbre, and four tonality-related features), and 11 out of
the 14 features in the timbre field are mfcc-related (three
mfcc, three dmfcc, and five ddmfcc). The tonality field
includes Keystrength_Slope and Mode_periodEntropy fea-
tures. The (Ballroom-Extended, FMA-SMALL) dataset pair
had a CC value of 0.38, with 12 commonly selected features
(one rhythm, six timbre, and five tonality-related features).
In addition to Rolloff _PeriodFreq and Entropy_PeriodFreq,
which were selected in all dataset pairs, this pair contains
two spectral_irregularity and two mfcc features. Regard-
ing the tonality field, this pair contains the most diverse
features among the pairs in the genre domain, such as
chromagram, mode, and keystrength. Finally, the (Ballroom,
Seyerlehner:Unique) dataset pair had the fifth-highest CC of
0.37, and the second most 20 features overlapped. It consists
of four rhythm, 14 timbre, and two tonality fields. Two mfcc,
three dmfcc, and four ddmfcc features that are categorized
into the timbre field are commonly selected.

In the genre domain, three dataset pairs—(Ballroom-
Extended, Seyerlehner:Unique), (Ballroom, Ballroom-
Extended), and (Ballroom, Seyerlehner:Unique)—yield the
largest CC values. Since these three dataset pairs are a subset
of the overall dataset pairs, we omitted a detailed analysis
of the dataset pairs from the viewpoint of the genre domain.
Next, in the instrument domain, we compared all three
datasets simultaneously. The GoodSounds dataset selected
only 27 features from the 888 features, so we analyzed the
overlapping features from the Medley-solos-DB and PCMIR
datasets. The (Medley-solos-DB, PCMIR) dataset pair had a
CC value of 0.27 with only eight commonly selected features
(one rhythm and seven timbre features). Except for the one

spectral_irregularity and four mfcc-related features (two
mfcc and two dmfcc), the other commonly selected features
were different compared to those for the genre domain,
indicating differences in the tendency of selected features
from the genre and instrument domains. Finally, we con-
ducted our experiment on datasets in the emotion (mood)
domain. The values of CC for (MIREX-like_mood, Sound-
tracks), (Soundtracks, MER500), and (MER500, MIREX-
like_mood) are 0.24, 0.11, and 0.07, respectively. Since
the (MIREX-like_mood, Soundtracks) dataset pair yields
the best CC value—with the remaining two dataset pairs
having very small values—we conducted our analysis on
the (MIREX-like_mood, Soundtracks) dataset pair. In these
two datasets, seven features of the timbre field are selected
commonly, all of which were mfcc-related (one mfcc, one
dmfcc, and five ddmfcc). Two of the three features in the
tonality field were keystrength-related features.

C. REMARKS
In our experiment with multiple datasets, we observed
which features were frequently selected by domain and
what musical characteristics those features represent. First,
spectral_irregularity, mfcc, and keystrength-related features
are important not only in the genre domain but also in
the instrument and emotion (mood) domains. Features such
as Rolloff _PeriodFreq, Entropyofspectrum_PeriodFreq,
spectral_irregularity, mfcc, and keystrength are commonly
selected throughout the entire dataset. These common fea-
tures mean that they play an important role in feature selec-
tion, and it is essential to include them when performing
feature selection in a limited number. Second, the top five
correlation coefficients are all from the genre domain. This
implies that genre domain datasets have more overlapping
features than the other two domains do. It is easier to know
which features are important when classifying the genre
domain.

Third, the instrument and emotion (mood) domains lack
a rhythm or tonality field, and the overall number of over-
laps is also small. Whereas in the genre domain, many
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TABLE 8. List of abbreviations used in Table 1.

TABLE 9. List of abbreviation used in Figure 2.

similar features were selected in addition to frequently over-
lapping features, completely irrelevant features except for
essential features were extracted in the instrument and emo-
tion (mood) domains. The results of the correlation coeffi-
cients are relatively lower than in the genre domain. Although
they share essential features, it is important to share other
similar features as well. Lastly, six features from the dynam-
ics field are all related to root-mean-square. These features
appear useless when classifying, even though the features
were extracted through MIRtoolbox.

VI. CONCLUSION
In this study, to resolve existing difficulties in comparing
the performance of various MTC methods, we created and
evaluated 20 music datasets using the same feature extractor.

As a result, all the 20 datasets have the same acoustic feature
structure. To verify the true effect of FS on MTC tasks,
we devised a novel evolutionary FS algorithm. Owing to the
same acoustic feature structure of the 20 datasets, we were
able to conduct additional experiments withmultiple datasets,
leading to valuable insights.

In the future, we plan on conducting an experiment based
on convolutional neural network (CNN), which is which has
been in the spotlight in music classification. We intend to uti-
lize the findings of this study in the CNN research. In previous
studies using CNN, the spatial information obtained through
an analysis of music signals such as a melspectrogram, was
considered an input to the CNN. Considering the important
features found in this study, performance improvement is
expected by providing higher quality input information to
the CNN.

APPENDIX
Table 8 lists all of the abbreviations used in Table 1. Table 9
provides a detailed description of the y-axis in Figure 2.

REFERENCES
[1] P. Ginsel, I. Vatolkin, and G. Rudolph, ‘‘Analysis of structural complexity

features for music genre recognition,’’ in Proc. IEEE Congr. Evol. Comput.
(CEC), Jul. 2020, pp. 1–8.

[2] K. Leartpantulak and Y. Kitjaidure, ‘‘Music genre classification of audio
signals using particle swarm optimization and stacking ensemble,’’ inProc.
7th Int. Electr. Eng. Congr. (iEECON), Mar. 2019, pp. 1–4.

[3] G. Campobello, D. Dell’Aquila,M. Russo, andA. Segreto, ‘‘Neuro-genetic
programming for multigenre classification of music content,’’ Appl. Soft
Comput., vol. 94, Sep. 2020, Art. no. 106488.

[4] J. Lee, W. Seo, J.-H. Park, and D.-W. Kim, ‘‘Compact feature subset-based
multi-label music categorization for mobile devices,’’ Multimedia Tools
Appl., vol. 78, no. 4, pp. 4869–4883, Feb. 2019.

[5] I. Vatolkin, ‘‘Improving supervised music classification bymeans of multi-
objective evolutionary feature selection,’’ Ph.D. dissertation, Dept. Com-
put. Sci., Technische Universitat Dortmund, Dortmund, Germany, 2013.

[6] C. N. Silla, A. L. Koerich, and C. A. A. Kaestner, ‘‘A feature selection
approach for automatic music genre classification,’’ Int. J. Semantic Com-
put., vol. 3, no. 2, pp. 183–208, Jun. 2009.

[7] O. Lartillot and P. Toiviainen, ‘‘A MATLAB toolbox for musical feature
extraction from audio,’’ in Proc. Int. Conf. Digit. Audio Effects, vol. 237.
Bordeaux, France, 2007, p. 244.

[8] J. Gholami, F. Pourpanah, and X. Wang, ‘‘Feature selection based on
improved binary global harmony search for data classification,’’ Appl. Soft
Comput., vol. 93, Aug. 2020, Art. no. 106402.

[9] T. Özseven, ‘‘A novel feature selection method for speech emotion recog-
nition,’’ Appl. Acoust., vol. 146, pp. 320–326, Mar. 2019.

[10] Z. Ma, ‘‘Detecting music genres from music data set: Select features by
genetic algorithm, implement an artificial neural network, simplify it and
comparewith other works,’’ inProc. 2nd ANUBio-Inspired Comput. Conf.,
Jul. 2019, pp. 1–10.

[11] Y. V. S. Murthy and S. G. Koolagudi, ‘‘Classification of vocal and non-
vocal segments in audio clips using genetic algorithm based feature selec-
tion (GAFS),’’ Expert Syst. Appl., vol. 106, pp. 77–91, Sep. 2018.

[12] P. Kalapatapu, S. Goli, P. Arthum, and A. Malapati, ‘‘A study on feature
selection and classification techniques of Indian music,’’ Proc. Comput.
Sci., vol. 98, pp. 125–131, Jan. 2016.

[13] M. Serwach and B. Stasiak, ‘‘GA-based parameterization and feature
selection for automatic music genre recognition,’’ in Proc. 17th Int. Conf.
Comput. Problems Electr. Eng. (CPEE), Sep. 2016, pp. 1–5.

[14] R. H. D. Zottesso, Y. M. G. Costa, and D. Bertolini, ‘‘Music genre clas-
sification using visual features with feature selection,’’ in Proc. 35th Int.
Conf. Chilean Comput. Sci. Soc. (SCCC), Oct. 2016, pp. 1–6.

[15] E. Alexandre, L. Cuadra, S. Salcedo-Sanz, A. Pastor-Sánchez, and
C. Casanova-Mateo, ‘‘Hybridizing extreme learning machines and genetic
algorithms to select acoustic features in vehicle classification applica-
tions,’’ Neurocomputing, vol. 152, pp. 58–68, Mar. 2015.

VOLUME 9, 2021 147729



J. Chae et al.: Toward Fair Evaluation and Analysis of Feature Selection for Music Tag Classification

[16] G. Kour and N. Mehan, ‘‘Music genre classification using MFCC, SVM
and BPNN,’’ Int. J. Comput. Appl., vol. 112, no. 6, pp. 1–3, 2015.

[17] M. Wu and Y. Wang, ‘‘A feature selection algorithm of music genre
classification based on ReliefF and SFS,’’ in Proc. IEEE/ACIS 14th Int.
Conf. Comput. Inf. Sci. (ICIS), Jun. 2015, pp. 539–544.

[18] Y.-F. Huang, S.-M. Lin, H.-Y. Wu, and Y.-S. Li, ‘‘Music genre classifica-
tion based on local feature selection using a self-adaptive harmony search
algorithm,’’ Data Knowl. Eng., vol. 92, pp. 60–76, Jul. 2014.

[19] M. Athani, N. Pathak, and A. U. Khan, ‘‘Dynamic music recommender
system using genetic algorithm,’’ Int. J. Eng. Adv. Technol., vol. 3, no. 4,
pp. 230–232, 2014.

[20] I. Vatolkin, M. Preuß, G. Rudolph, M. Eichhoff, and C. Weihs, ‘‘Multi-
objective evolutionary feature selection for instrument recognition in poly-
phonic audio mixtures,’’ Soft Comput., vol. 16, no. 12, pp. 2027–2047,
Dec. 2012.

[21] I. Vatolkin, M. Preuß, and G. Rudolph, ‘‘Multi-objective feature selection
in music genre and style recognition tasks,’’ in Proc. 13th Annu. Conf.
Genetic Evol. Comput. (GECCO), 2011, pp. 411–418.

[22] G. V. Karkavitsas and G. A. Tsihrintzis, ‘‘Automatic music genre classifi-
cation using hybrid genetic algorithms,’’ in Intelligent InteractiveMultime-
dia Systems and Services. Berlin, Germany: Springer, 2011, pp. 323–335.

[23] H.-T. Kim, E. Kim, J.-H. Lee, and C. W. Ahn, ‘‘A recommender system
based on genetic algorithm formusic data,’’ inProc. 2nd Int. Conf. Comput.
Eng. Technol., Apr. 2010, p. 414.

[24] C. N. Silla Jr., A. L. Koerich, and C. A. A. Kaestner, ‘‘Feature selection
in automatic music genre classification,’’ in Proc. 10th IEEE Int. Symp.
Multimedia, Dec. 2008, pp. 39–44.

[25] C. N. Silla, Jr., A. L. Koerich, and C. A. A. Kaestner, ‘‘A machine learning
approach to automatic music genre classification,’’ J. Brazilian Comput.
Soc., vol. 14, no. 3, pp. 7–18, Sep. 2008.

[26] S. Doraisamy, S. Golzari, N. Mohd, M. N. Sulaiman, and N. I. Udzir,
‘‘A study on feature selection and classification techniques for automatic
genre classification of traditional Malay music,’’ in Proc. ISMIR, 2008,
pp. 331–336.

[27] S. Rho, E. Hwang, and M. Kim, ‘‘Music information retrieval using a GA-
based relevance feedback,’’ in Proc. Int. Conf. Multimedia Ubiquitous Eng.
(MUE), 2007, pp. 739–744.

[28] E. Alexandre, L. Cuadra, M. Rosa, and F. Lopez-Ferreras, ‘‘Feature selec-
tion for sound classification in hearing aids through restricted search driven
by genetic algorithms,’’ IEEE Trans. Audio, Speech, Language Process.,
vol. 15, no. 8, pp. 2249–2256, Nov. 2007.

[29] R. Fiebrink and I. Fujinaga, ‘‘Feature selection pitfalls and music classifi-
cation,’’ in Proc. ISMIR, 2006, pp. 340–341.

[30] H.-D. Kim, C.-H. Park, H.-C. Yang, and K.-B. Sim, ‘‘Genetic algorithm
based feature selection method development for pattern recognition,’’ in
Proc. SICE-ICASE Int. Joint Conf., 2006, pp. 1020–1025.

[31] C. Xu, N. C. Maddage, X. Shao, F. Cao, and Q. Tian, ‘‘Musical genre
classification using support vector machines,’’ in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process. (ICASSP), Apr. 2003, p. 429.

[32] Y. Xue, B. Xue, andM. Zhang, ‘‘Self-adaptive particle swarm optimization
for large-scale feature selection in classification,’’ ACM Trans. Knowl.
Discovery Data, vol. 13, no. 5, pp. 1–27, Oct. 2019.

[33] F. Gouyon, S. Dixon, E. Pampalk, and G. Widmer, ‘‘Evaluating rhythmic
descriptors for musical genre classification,’’ in Proc. AES 25th Int. Conf.,
vol. 196, 2004, p. 204.

[34] U. Marchand and G. Peeters, ‘‘The extended ballroom dataset,’’ in Proc.
Late Breaking Demo Int. Conf. Music Inf. Retrieval (ISMIR), New York,
NY, USA, 2016.

[35] M. Soleymani, M. N. Caro, E. M. Schmidt, C.-Y. Sha, and Y.-H. Yang,
‘‘1000 songs for emotional analysis of music,’’ in Proc. 2nd ACM Int.
Workshop Crowdsourcing Multimedia (CrowdMM), 2013, pp. 1–6.

[36] M. Zentner, D. Grandjean, and K. R. Scherer, ‘‘Emotions evoked by
the sound of music: Characterization, classification, and measurement,’’
Emotion, vol. 8, no. 4, p. 494, 2008.

[37] A. Aljanaki, F. Wiering, and R. C. Veltkamp, ‘‘Studying emotion induced
by music through a crowdsourcing game,’’ Inf. Process. Manage., vol. 52,
no. 1, pp. 115–128, Jan. 2016.

[38] M. Defferrard, K. Benzi, P. Vandergheynst, and X. Bresson, ‘‘FMA: A
dataset for music analysis,’’ 2016, arXiv:1612.01840.

[39] P. Knees, A. F. Pérez, H. Boyer, R. Vogl, S. Böck, F. Hörschläger, and
M. L. Goff, ‘‘Two data sets for tempo estimation and key detection in
electronic dance music annotated from user corrections,’’ in Proc. 16th Int.
Soc. Music Inf. Retr. Conf., Oct. 2015, pp. 364–370.

[40] J. Gillick, A. Roberts, J. Engel, D. Eck, and D. Bamman, ‘‘Learning to
groove with inverse sequence transformations,’’ in Proc. Int. Conf. Mach.
Learn., 2019, pp. 2269–2279.

[41] O. R. Picas, H. P. Rodriguez, D. Dabiri, H. Tokuda, W. Hariya, K. Oishi,
and X. Serra, ‘‘A real-time system for measuring sound goodness in instru-
mental sounds,’’ in Audio Engineering Society Convention 138. New York,
NY, USA: Audio Engineering Society, 2015.

[42] G. Tzanetakis and P. Cook, ‘‘Musical genre classification of audio signals,’’
IEEE Trans. Speech Audio Process., vol. 10, no. 5, pp. 293–302, Jul. 2002.

[43] H. Homburg, I. Mierswa, B. Möller, K. Morik, and M. Wurst, ‘‘A bench-
mark dataset for audio classification and clustering,’’ inProc. ISMIR, 2005,
pp. 528–531.

[44] P. Cano, E. Gomez, F. Gouyon, P. Herrera, M. Koppenberger, B. Ong,
X. Serra, S. Streich, and N. Wack, ‘‘ISMIR 2004 audio description con-
test,’’ Music Technol. Group, Barselona, Spain, Tech. Rep. 2006.

[45] V. Lostanlen and C.-E. Cella, ‘‘Deep convolutional networks on the pitch
spiral for musical instrument recognition,’’ 2016, arXiv:1605.06644.

[46] S.Malekzadeh. (2020).Mer500. Kaggle. [Online]. Available: https://www.
kaggle.com/makvel/mer500

[47] S. Malekzadeh. (2018). Micm Music Dataset. [Online]. Available:
https://www.kaggle.com/dsv/193325

[48] X. Downie, C. Laurier, and M. Ehmann, ‘‘The 2007 mirex audio mood
classification task: Lessons learned,’’ in Proc. 9th Int. Conf. Music Inf.
Retr., 2008, pp. 462–467.

[49] S. M. H. Mousavi, V. B. S. Prasath, and S. M. H. Mousavi, ‘‘Persian
classical music instrument recognition (PCMIR) using a novel Persian
music database,’’ in Proc. 9th Int. Conf. Comput. Knowl. Eng. (ICCKE),
Oct. 2019, pp. 122–130.

[50] K. Seyerlehner, G. Widmer, and T. Pohle, ‘‘Fusing block-level features for
music similarity estimation,’’ in Proc. 13th Int. Conf. Digit. Audio Effects
(DAFx), 2010, pp. 225–232.

[51] T. Eerola and J. K. Vuoskoski, ‘‘A comparison of the discrete and dimen-
sional models of emotion in music,’’ Psychol. Music, vol. 39, no. 1,
pp. 18–49, Jan. 2011.

[52] C. Salazar. (2020). Tropical Genres Dataset. Kaggle. [Online]. Available:
https://www.kaggle.com/carlossalazar65/tropical-genres-dataset

[53] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie,
R. Tibshirani, D. Botstein, and R. B. Altman, ‘‘Missing value estima-
tion methods for DNA microarrays,’’ Bioinformatics, vol. 17, no. 6,
pp. 520–525, 2001.

[54] J. Li, Y. Si, T. Xu, and S. Jiang, ‘‘Deep convolutional neural network based
ECG classification system using information fusion and one-hot encoding
techniques,’’Math. Problems Eng., vol. 2018, pp. 1–10, Dec. 2018.

[55] A. Cano, J. M. Luna, E. L. Gibaja, and S. Ventura, ‘‘LAIM discretization
for multi-label data,’’ Inf. Sci., vol. 330, pp. 370–384, Feb. 2016.

[56] B. L. Miller and D. E. Goldberg, ‘‘Genetic algorithms, tournament selec-
tion, and the effects of noise,’’ Complex Syst., vol. 9, no. 3, pp. 193–212,
1995.

[57] W. Seo, D.-W. Kim, and J. Lee, ‘‘Generalized information-theoretic
criterion for multi-label feature selection,’’ IEEE Access, vol. 7,
pp. 122854–122863, 2019.

[58] J. Park, M.-W. Park, D.-W. Kim, and J. Lee, ‘‘Multi-population genetic
algorithm for multilabel feature selection based on label complementary
communication,’’ Entropy, vol. 22, no. 8, p. 876, Aug. 2020.

[59] M. Paniri, M. B. Dowlatshahi, and H. Nezamabadi-pour, ‘‘MLACO: A
multi-label feature selection algorithm based on ant colony optimization,’’
Knowl.-Based Syst., vol. 192, Mar. 2020, Art. no. 105285.

[60] M. A. Hall, ‘‘Correlation-based feature selection for machine learn-
ing,’’ Ph.D. dissertation, Dept. Comput. Sci., Univ. Waikato, Waikato,
New Zealand, 1999.

[61] T. K. Kim, ‘‘T test as a parametric statistic,’’Korean J. Anesthesiol., vol. 68,
no. 6, p. 540, 2015.

[62] O. J. Dunn, ‘‘Multiple comparisons amongmeans,’’ J. Amer. Statist. Assoc.,
vol. 56, no. 293, pp. 52–64, Mar. 1961.

JONGHOON CHAE received the B.S. degree
from Catholic University and the M.S. degree
from Chung-Ang University, Seoul, South Korea,
where he is currently pursuing the Ph.D. degree
with the School of Computer Science and Engi-
neering. His research interests include artificial
intelligence, data mining, feature selection, and
music classification.

147730 VOLUME 9, 2021



J. Chae et al.: Toward Fair Evaluation and Analysis of Feature Selection for Music Tag Classification

SUNG-HYUN CHO received the B.S. degree
from Korea University, Sejong, South Korea.
He is currently pursuing the M.S. degree with the
Department of Artificial Intelligence, Chung-Ang
University, Seoul, South Korea. His research
interests include recommendation systems, evolu-
tionary search, and feature selection.

JAEGYUN PARK received the B.S. degree from
Eulji University, Seongnam, and the M.S. degree
from Chung-Ang University, Seoul, South Korea,
where he is currently pursuing the Ph.D. degree
with the School of Computer Science and Engi-
neering. His research interests include continual
learning, sensor-based activity recognition, and
feature selection.

DAE-WON KIM (Member, IEEE) received the
B.S. degree from Kyungpook National Univer-
sity, Daegu, South Korea, and the M.S. and Ph.D.
degrees from the Korea Advanced Institute of
Science and Technology. He was a Postdoc-
toral Researcher with the Korea Advanced Insti-
tute of Science and Technology. He is currently
a Professor with the School of Computer Sci-
ence and Engineering, Chung-Ang University,
Seoul, South Korea. His research interests include

advanced data mining algorithms with innovative applications to bioin-
formatics, music emotion recognition, educational data mining, affective
computing, and robot interaction.

JAESUNG LEE received the B.S., M.S., and Ph.D.
degrees in computer science from Chung-Ang
University, Seoul, Republic of Korea, in 2007,
2009, and 2013, respectively. He is currently
an Associate Professor with the Department
of Artificial Intelligence, Chung-Ang University.
His research interests include machine learning,
multilabel learning, model selection, and neural
architecture search. In theoretical domain, he also
studies classification, and feature selection, espe-

cially multilabel learning with information theory.

VOLUME 9, 2021 147731


