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ABSTRACT As a result of significant advances in deep learning, computer vision technology has been
widely adopted in the field of traffic surveillance. Nonetheless, it is difficult to find a universal model that can
measure traffic parameters irrespective of ambient conditions such as times of the day, weather, or shadows.
These conditions vary recurrently, but the exact points of change are inconsistent and unpredictable. Thus,
the application of amulti-regimemethodwould be problematic, even when separate sets of model parameters
are prepared in advance. In the present study we devised a robust approach that facilitates multi-regime
analysis. This approach employs an online parametric algorithm to determine the change-points for ambient
conditions. An autoencoder was used to reduce the dimensions of input images, and reduced feature vectors
were used to implement the online change-point algorithm. Seven separate periods were tagged with typical
times in a given day. Multi-regime analysis was then performed so that the traffic density could be separately
measured for each period. To train and test models for vehicle counting, 1,100 video images were randomly
chosen for each period and labeled with traffic counts. The measurement accuracy of multi-regime analysis
was much higher than that of an integrated model trained on all data.

INDEX TERMS Change-point algorithm, autoencoder, traffic surveillance, multi-regime model, traffic
density.

I. INTRODUCTION
Computer vision technology has been widely adopted to
measure traffic parameters such as traffic volumes, densities
and speeds [1]–[5]. This trend was accelerated when deep-
learningmodels could recognize objects within an image sim-
ilar to the way a human does [6]–[14]. In particular, vehicle
detection is an easier task than recognizing other objects,
because a vehicle takes a simple shape and the road environ-
ment for traffic surveillance is not complex.Many researchers
are trying to devise a robust vehicle detector for the use of traf-
fic surveillance based on deep learning [15], [16]. For such
a detector to be installed in the field for traffic surveillance,
however, some limitationsmust be resolved. The current level
of detection accuracy varies according to ambient conditions
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such as the time of day, weather and shadows. It remains
difficult to develop a single vehicle detector with consistent
performance both at daytime and nighttime. To recognize
vehicles at nighttime, some researchers have utilized head-
light beams, which is a feature that is unique to vehicles in
nighttime [17]. Switching detection models, however, cannot
be automatically implemented on a real-time basis.

The present study provides a robust way to determine the
switching times based on consecutive video frames under
the assumption that the video frames fully reflect ambient
conditions. Although it is easily understood that video images
include hidden features of ambient conditions such as the
time of day, how to extract them and to reduce their dimen-
sions into a tractable level is a different story. We decided to
use an autoencoder to elicit ambient conditions from video
images. An autoencoder can extract factors based on nonlin-
ear correlations between variables. The hidden features that
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an autoencoder extracts are then used as input for an algo-
rithm to determine the change-points. A novel algorithm for
finding change-points was adopted in the present study [18].
This algorithm depends on a rigorous statistical test unlike
other rule-based naïve methods. This algorithm also offers
the advantage of field application, because it recognizes the
changes in ambient conditions on a real-time basis. In addi-
tion, the algorithm has been successfully adopted to find
the change-points for signals from many engineering and
learning tasks [19]–[21].

We set up three different vehicle counting models. First,
a deep-learning-based regression model for vehicle counting
to validate the multi-regime analysis. This method is more
convenient to prepare labeled images for training, because
it does not require the drawing of a bounding box for each
vehicle; rather, it counts the number of vehicles in an image.
Second, there have been many attempts to measure traf-
fic parameters such as volume, speed, and density using
‘‘state-of-the-art’’ object detectors [22]–[24]. It is appropri-
ate to adopt these object detectors to validate the proposed
multi-regime approach to measuring traffic density. Two
‘‘state-of-the-art’’ object detectors were employed to validate
the proposed multi-regime measurement. A YOLO v3 [11],
which is a representative anchor-based model, was adopted
to measure the traffic density. A CenterNet [25], which is a
non-anchor-based object detector, was also adopted since it
recorded the best accuracy in vehicle counting. Both mod-
els were pretrained on an open dataset (UA-DETRAC) that
includes only vehicle images with labels [26].

FIGURE 1. Modeling framework.

As a result of offline training of the proposed approach,
a day was divided into 7 different periods, each of which
had unique ambient conditions, and a set of model parame-
ters was separately trained for each period in advance [see
Fig. 1]. For the regression-based vehicle counting model,
the same amount of image data (1,100 images) was sampled
for each period and used for training and testing tasks. For
the object detector-based vehicle counting, only 200 images

were labeled with bounding boxes for training and testing.
It should be noted that such a small number of labeled images
cannot lead to an acceptable level of accuracy, but it can
verify that a separate training is better than an integrated
one. All these models were, therefore, trained and tested on
the entire dataset for all periods under the expectation that
the multi-regime analysis would outperform the integrated
analysis.

The main contribution of this research is that we proposed
a robust multi-regime approach for traffic surveillance that
combines three existing technologies: 1) an autoencoder to
abstract features, 2) a change-point detection algorithm, and
3) a convolutional neural network (CNN) model for measur-
ing traffic density.We verified that the proposedmulti-regime
approach improvesmeasurement accuracy comparedwith the
use of a conventional overall model when the same train-
ing data are used. Another advantage of the multi-regime
approach is that the measurement model can be downsized.
For example, a model would require a large number of
parameters to function well during both daytime and night-
time. Thus, more time is required for the model to learn from
the data due to the increased number of parameters. However,
if a model accommodates a short period, the number of
parameters could dwindle.

The next section establishes an overall modeling frame-
work that includes the introduction of three technologies:
1) an autoencoder to abstract images, 2) a change-point detec-
tion algorithm to separate multiple regimes, and 3) traffic
density measurement models. The third section describes
how to choose testbeds and shows how the ground truth
change-points were determined for them. The fourth section
lists the results of implementing a change-point detection
algorithm when several different input dimensions are pro-
cessed by an autoencoder. The section also verifies the valid-
ity of the multi-regime approach to count vehicles for traffic
surveillance. The last section draws conclusions and suggests
further studies.

II. MODELING FRAMEWORK
The modeling framework combines three different models to
enhance traffic surveillance performance: an autoencoder to
abstract video images, a change point detection algorithm to
set up multi-regimes of ambient conditions, and a measure-
ment model for traffic density. Fig. 1 summarizes both how
to train the models offline and how to implement them for
inference online.

A. THE AUTOENCODER REDUCES THE DIMENSIONS OF
IMAGES
A video image is represented by three values of RGB
for all pixels that comprise it. If these values are used as
an input variable to find change-points, the computation
time increases exorbitantly. The most popular method to
reduce the variable dimension is to use a PCA [27], [28],
but this algorithm has a handicap whereby only a linear
relationship between variables can be accommodated when
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deriving factors with a reduced dimension. On the other
hand, an autoencoder can consider non-linear correlations
between original input features while reducing their dimen-
sion. For this reason, autoencoders have been widely utilized
in machine learning for dimension reduction [29], [30]. The
present study devised an autoencoder to change a 128 ×
512 × 3 pixel image into only 1 to 10 features. Fig. 2 shows
the model architecture of the autoencoder established in the
present study. The encoding part is composed of 6 hid-
den layers. After flattening the last convolutional layers,
5 fully connected (FC) layers are attached to reduce the
feature dimension. The number of nodes in the last FC layer
of the encoding part is decreased to six target dimensions
(1 to 5 and 10). The last layer of the encoding part is ampli-
fied again to reproduce the original input dimension through
the decoding part. part.

FIGURE 2. Architecture of the proposed autoencoder used to reduce a
feature dimension.

Training an autoencoder requires no supervision with
labeled data. The output image that an autoencoder evaluates
from an input image is refitted to the input image. Such a
self-fitting algorithm guarantees obtainment of the reduced
features in the last layer of the encoding part, and only node
values of the middle layer of an autoencoder are used as
variables for the subsequent change-point detection algorithm
once all parameters are completely trained. A change-point
algorithm that used the middle node values elicited from a
trained autoencoder was used to determine variations in the
ambient conditions.

The video image of a testbed includes both ambient and
traffic conditions. We adopted a two-step process to train
models to count vehicles in the testbed. In the first step,
only the features for ambient conditions are extracted from
images, and the times of day are divided based on these.
In the second step, a model is set up to count vehicles in an
image, andmodel parameters are separately trained and tested
for each period. The features derived in the first step, however,
should include both ambient and traffic conditions. To sup-
press the features of traffic conditions other than ambient
conditions, we tried several different numbers (1 to 5, and 10)
of final features (= numbers of middle nodes in the proposed
autoencoder) and examined how each option performed in the
counting of vehicles.

B. CHANGE-POINT DETECTION ALGORITHM
Change-point detection algorithms are widely used in sci-
ence and engineering fields. Applications include signal

processing, dynamic social networks, and online marketing.
In similar manner, various change-point detection algorithms
have been developed such as the segment neighborhood
model [31], piecewise IID data models [32], the structural
change model [33], PELT [32], and the Group-Fused Lasso
(GFL) [34]. Whereas a univariate model prevails in the
field [32]–[34], few models can successfully accommodate
multivariate problems [35]–[37]. Other researchers recently
developed a robust multivariate algorithm under the assump-
tion that target data follows a parametric probability den-
sity [18]. This assumptionmakes it possible to use a statistical
test to judge the validity of a change-point. The present
study applied the algorithm to separating different regimes of
ambient conditions in video images for traffic surveillance.

Once an image is represented in a smaller dimension after
being processed by an autoencoder, the abstracted features
constitute multivariate time-series data. First, the data are
regarded as random variables with a Gaussian probabilistic
density. Parameters of the Gaussian distribution include the
means, variances and covariances. The number of parameters
to be estimated varies according to the feature dimension.
Second, the abstracted features can be assumed to follow
a Dirichlet probabilistic distribution. To use the Dirichlet
distribution, the features need to be compositional data that
take a proportional value and should be summed to 1. Such
data encompasses the percentage contribution of goods sold
every month, the proportion of time spent by each task that
comprises a whole production process in a given time period,
and probabilities from a discrete distribution, etc. Data need
to be preprocessed so that the Dirichlet probabilistic distribu-
tion can be applied. Raw data must be placed on a simplex in
a hyperspace, and to do so the raw signal data of each interval
should be changed to a compositional form via the use of
a multi-dimensional Expit function (inverse of multinomial
logit function), the details of which are described later in this
section.

The theory behind the change-point detection algorithm
in reference [18] is described as follows. The symbols
{x1, . . . , xT } denote the sequence of feature variables where
xi ∈ Rd is a feature vector at interval i ∈ {1, . . . ,T },
T denotes the total number of time periods, and d is the
dimension of the feature vector that corresponds to the size of
the middle layer of an autoencoder in the present study. The
change-point detection algorithm determines {τ1, . . . , τk−1},
where k is the number of regimes to be differentiated and
τi is the change-point that separates the (i+ 1)th period
from the ith period (i ∈ {1, . . . , k − 1}). These multi-
ple change-points are detected by repeatedly implementing
a single change-point detection algorithm. Once an active
window size (I) is determined, the portion of the sequence
data that is covered by the window can then be investi-
gated from the start point. The initial search period then
becomes [1, I]. If a change-point is identified within this
time window, it becomes the first change-point, τ1, and the
next time window is moved to [τ1, τ1 + I]. When finding a
change-point within the current range fails, the next search
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range is increased to [1, I + B] by a predefined update
interval (B). This process continues until the end-point of
the incumbent range reaches the final interval, T . An online
implementation of the process is possible once a small B is
selected.

The change-point detection algorithm is dependent on the
assumption that signals at different time steps would be inde-
pendently distributed according to a parametric probability
density. We mobilized two parametric probability densities,
a Gaussian distribution and a Dirichlet distribution, to test
whether a change-point could divide a period into two dif-
ferent sub-periods, and a null hypothesis (H0) was set up
whereby data within a range (A = [1, t]) would come from a
single probabilistic distribution. Under the null hypothesis,
the maximum log-likelihood could then be computed by
Eq. (1) such that the probability that the data were collected
could be maximized.

LL0 = max
θ

LL(θ )

= max
θ

[
log(f θ (x1))+ . . .+ log(fθ (xt ))

]
(1)

In Eq. (1), fθ is a multivariate probability density function
of d-dimensional feature variables, and θ is the vector of
function parameters to be estimated.

The log-likelihood under the null hypothesis is a baseline
that computes a test statistic to reject the hypothesis and to
conclude that a change-point exists within the range. To com-
pute the statistic, another log-likelihood is necessary. The
log-likelihood value should be computed under an alternative
hypothesis (Hτ ). The alternative hypothesis says that a given
range would be divided into two sub-ranges, each of which
has a different set of parameters while sharing a probabilis-
tic density. Since there are (t − 2) potential change-points
in a range (A = [1, t]), the most plausible change-point
(τ ∗) should be chosen to obtain the maximum log-likelihood
(LLτ∗ ). To do so, for every candidate change-point (τ )
from 2 to (t − 1), two maximum log-likelihoods are com-
puted for two sub-ranges [see Eq. (2)], and then an optimal
change-point (τ ∗) is chosen such that the sum of the two
log-likelihoods is maximized [see Eq. (3)].

LLτ = max
θL

[
log(fθL (x1))+ . . .+ log(fθL (xτ ))

]
+ max

θR

[
log(fθR (xτ+1)+ . . .+ log(fθR (xt ))

]
(2)

In Eq. (2), θL and θR are different parameter sets of a
probabilistic density function for the left and right ranges
separated by a change-point (τ ). The statistic (z∗) that is
used to reject the null hypothesis is the difference between
the log-likelihood (LL0) under the null hypothesis and that
(LLτ∗ ) under the alternative hypothesis with the optimal
change-point (τ ∗). The test statistic represents the ratio
between two different likelihoods [see Eqs. (3) and (4)].

τ ∗ = argmax
τ

LLτ (3)

z∗ = LLτ∗ − LL0 (4)

Every statistical test is conducted under the assumption
that a null hypothesis is true. A statistic is computed using
a sample and measures how far the sample deviates from
the population under the null hypothesis. Thus, the statistic
is a random variable that varies from sample to sample. If a
statistic follows well-known probabilistic distributions such
as a normal distribution, a t-distribution, or a chi-square dis-
tribution, the probability of being more extreme than a given
statistic can be computed based on the probabilistic density
function. The null hypothesis can be rejected if the probability
(p-value) is less than a predefined threshold (5%), which is
called the significance level. The p-value means the risk of
a type I error that is committed when the null hypothesis is
rejected even though it is true.

There was a problem, however, when the statistical test was
applied to the change point detection. The chosen statistic
(z∗) was not distributed as any well-known probabilistic dis-
tribution. Therefore, setting up an empirical distribution was
necessary to obtain a threshold to reject the null hypothesis.
In principle, the full permutations of data in a given sequence
should be enumerated to derive the distribution. The com-
puting time for this, however, is exorbitant. As a practical
solution, a sampling scheme was employed in the original
paper [18]. A random sample of an arbitrarily chosen size
was extracted from the original sequence and regarded as
the left sub-sequence. The remainders of the variables were
then regarded as the right sub-sequence. This scheme was
appropriate because variables in different time intervals were
assumed to be independent. A test statistic was computed
from the two sub-sequences using Eqs. (2 - 4). Once this sam-
pling task was sufficiently repeated, an empirical distribution
of the test statistic could be obtained.

If an optimal test statistic (z∗) ranks in the top 5% of
the distribution, the null hypothesis can be rejected, and the
corresponding change-point is accepted. This statistical test
can confirm the change-point (τ ∗) found by the algorithm
for every time window. Thus, when considering M random
permutations, the computational complexity of the statistical
test isO(MI ). In the present study, a 5% significance level was
chosen because it is a market standard, and the sampling task
was repeated 100 times to derive an empirical distribution for
every time window.

The change-point detection algorithm was applied to fea-
tures extracted from video images. The algorithm adopted
both Gaussian and Dirichlet distributions. For each dis-
tribution density function, six different feature dimensions
(d = 1 to 5, and 10) were tested. Features extracted by
an autoencoder were assumed to be distributed as either of
the probabilistic distributions. Eq (1) shows how to derive
the log-likelihood (LL) based on a chosen probabilistic
density [fθ (xi)].
A Gaussian probabilistic density function has three groups

of parameters: means, variances, and covariances. The num-
ber of parameters increases proportional to the feature dimen-
sion [= d(d+3)/2]. The parameters are estimated every time
a log-likelihood is computed. Eq. (5) denotes the multivariate

VOLUME 9, 2021 40983



S. Jeong et al.: Multi-Regime Analysis for Computer Vision-Based Traffic Surveillance

Gaussian density function.

f (xi) =
1

(2π)d/2 |6|1/2
exp

(
−
1
2
(xi − µ)T6−1(xi − µ)

)
(5)

In Eq. (5), xi = (xi1, . . . , xid )T is a feature vector in time
step i, µ ∈ Rd is a vector that contains the mean of each
feature component, and6 is a variance and covariance matrix
for feature components.

A Dirichlet distribution density function is the best fit
when dealing with compositional data. Features for the dis-
tribution are constrained such that their components should
sum to 1. The support for a Dirichlet distribution on the
order of d is the (d-1)-simplex (xik > 0,

∑d
k=1 xik = 1).

In other words, each point of a sequence should lie on the
(d-1)-simplex. The number of parameters to be estimated
equals the feature dimension, which are fewer than that for
a Gaussian distribution density. The computing time for eval-
uation when using a Dirichlet distribution, on the other hand,
is onerous. Eq. (6) denotes the probabilistic density function
for a Dirichlet distribution, where α = (α1, . . . , αd )T is a set
of parameters to be estimated.

f (xi) =
1

B(α)

∏d

k=1
xikαk−1 (6)

In Eq. 6, xik > 0,
∑d

k=1 xik = 1, and B (α) =
∏d
k=1 0(αk )

0(
∑d

k=1 αk )
.

It should be noted that each datapoint must be standardized
and normalized prior to applying a Dirichlet distribution to
detecting a change-point. Data are shifted with the global
mean and scaled by the global standard deviation, and then
normalized with an Expit function. An Expit function is the
inverse of a multinomial logit function that transforms a
point in the d-dimensional feature space into a point on the
d-simplex [see Eq. (7)]. The original paper [18] verified how
the transformation of data does no harm to the statistical test
established above.

g (xi) =

[
exi1

1+
∑d

k e
xik
, . . . ,

exid

1+
∑d

k e
xik
,

1

1+
∑d

k e
xik

]T
(7)

C. VEHICLE-COUNTING MODELS FOR MEASURING
TRAFFIC DENSITY
Our previous work [38] developed a CNN to count the num-
ber of vehicles in the image of a road segment. The CNN
took the form of a regression model that could collectively
count vehicles rather than adopting a counting-after-detection
scheme that depends on a robust object-detection model. The
latter model is more accurate, since individual vehicles in
an image can be detected and tracked. However, in order to
obtain such accuracy, much human effort should be exerted
in securing training images labeled with bounding boxes. The
architecture of the regression-based CNN model is simple.
Former convolutional layers of the model abstract features
from an image, and the subsequent dense layers feed a final

single node to collectively count the number of vehicles in
the image. Labeling images for the model is also much easier
than ‘‘state-of-the-art’’ detection models that require drawing
a bounding box for every object in an image. Only the number
of vehicles in an image can be counted to provide the present
CNN model with labeled images.

An abbreviated CNNwas devised by removing some of the
convolutional layers from the regression-based CNN devel-
oped in our previous study [38]. This version of a CNN was
applied to counting vehicles in the first testbed. The model
estimated vehicle counts separately for each period that the
change-point detection algorithm divided. Each period shared
the same model architecture but had a separate set of model
parameters, because the model was trained and tested on a
separate dataset for each period. Fig. 3 shows the proposed
architecture of a CNN to count vehicles.

FIGURE 3. The CNN architecture used to predict the number of vehicles in
an image.

As references, we applied the two representative object
detection models in the present study for comparison.
A YOLO v3 was chosen because many forms of traffic
surveillance have been studied based on this [11]. A key-
point-based detection model (CenterNet) [25] developed
without anchor boxes was also tested for comparison, since it
recorded the best mAP (mean average precision) score when
applied to detecting vehicles within images. We pretrained
the two models using an open dataset (UA-DETRAC) that
included only labeled vehicles [26]. The architectures of both
models are featured in the original papers [11] and [25].

III. TESTBED AND DATA COLLECTION
The purpose of detecting change-points is to increase the
measurement accuracy of multi-regime analysis for traf-
fic surveillance. Computer vision-based traffic surveillance
is largely affected by ambient conditions. Typically, video
images vary significantly according to the time of day.
Multi-regime analysis can be accomplished by identifying
change-points online if model parameters are separately pre-
pared for each recurrent regime. Three testbeds were chosen
in an effort to reflect real-world conditions. Three intersection
approaches located in Buchon city, Korea, were selected,
as shown in Fig. 4, and video images were taken for two
days for the former two testbeds. The video in the first testbed
was taken in summertime, whereas that in the second testbed
was taken in wintertime. In particular, the third testbed was
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FIGURE 4. Three testbeds located in Buchon city, Korea.

selected to confirm if the proposed change point detection
algorithm could detect the weather change. A video stream
taken on a snowy day was obtained to detect the beginning of
snowfall.

For the first and second testbeds, the video frames taken on
the first day were used to train an autoencoder to reduce the
feature dimensions. The video frames of the second day were
divided into times of day based on manual inspection. As a
result, 7 different periods were considered: dawn, morning,
daytime, afternoon 1, afternoon 2, evening, and nighttime.
The criterion used to divide the afternoon periods was based
on shadow patterns at the site. Representative images for each
period are shown in Fig. 5 along with threshold times. The
next section describes how the proposed algorithm was used
to detect these thresholds in time and describes the detection
accuracy. For the third testbed, a video stream of only a short

periodwas acquired. The video stream includes frames before
and after snowfall. Three different regimes were manually
identified such as cloudy weather, transient conditions, and
heavy snowfall.

For models used to measure traffic density, only video
from the first testbed was utilized because of the burden to
manually label images. The regression-based measurement
model utilized 1,100 video images that were randomly chosen
from each period of the second day. For short periods from
which the predefined number of images could not be chosen,
video frames taken for the same period in both dates were
summed. For each period, 100 images were reserved for
testing, and the remaining images were used for training. The
overall model was trained and tested on the total amount of
data (7,000 images for training and 700 images for testing).
The ‘‘state-of-the-art’’ object detectors (YOLO v3 and Cen-
terNet) were fine tuned and tested using 200 images that were
randomly chosen for each period and manually labeled with
bounding boxes. Half of the images were used for training,
and the other half for testing. No less than 1,400 images were
labeled with bounding boxes.

IV. ANALYSIS RESULTS
A. REDUCING THE DIMENSION OF IMAGES
Training an Autoencoder is relatively easy by comparison
with training other types of supervised deep-learning mod-
els. When training an autoencoder, once an input image is
processed by an encoder and a decoder, then the output
image is refitted against the input image. This mechanism is
unsupervised so that no human effort is required to tag images
with labels. In other words, there is no need to secure labeled
images because images are simultaneously used as both input
and target when training an autoencoder. That is, the mean
squared error (MSE) is minimized between input images and
the estimated output images. This simple scheme guarantees
convergence when training an autoencoder. A trained model
is utilized to reduce the dimension of 128 × 512 × 3 pixel
images into a vector of a smaller size (1-5, and 10).

Figs. 6 and 7 depict profiles of reduced features extracted
by an autoencoder from video images. Each color indicates a
specific feature extracted by an autoencoder. It is impressive
that the profile can show different patterns according to spe-
cific times of the day. The dotted vertical lines in each graph
indicate the predicted change-points, whereas small arrows
in the top timeline mark the ground-truth change-points that
were determined by manually examining the video images.
Regarding the first testbed, in cases where the Gaussian
density was adopted for 3-dimensional abstracted features,
changing patterns in the features are exactly consistent with
those from the ground-truth change-points [see Fig. 6 (a)].
There were slightly inferior results from the second testbed.
No case was found with a perfect match. A false positive was
shown even for the best cases of both theGaussian andDirich-
let probabilistic densities where 3-dimensional features were
adopted [see Fig. 7 (a) and (b)]. The proposed algorithm
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FIGURE 5. Different ambient conditions by times of day in testbeds. it is clear that the shadow length and the sunlight
intensity are quite different among the three daytime periods (daytime, afternoon1, and afternoon2).

falsely detected a redundant change point in the fifth ground
truth period. Nonetheless, all ground truth change-points
were found exactly.

The objective to choose the third testbed is different from
the former two testbeds. About four hours of video stream,
which includes conditions before and after snowfall, was
used for detecting weather change. With the naked eye we
recognized a transient period between cloudy weather and
heavy snowfall. The proposed change-point detection algo-
rithm exactly found the beginning and end of the transient
period. Fig. 8 shows the search cases of weather changes from
cloudy conditions to heavy snowfall according to the choice
of probabilistic density function or window sizes. With the
exception of the first case [Fig. 8 (a)] with a false positive,
the remaining searches were perfect. It should be noted that
the main objective of the present study was not to recognize

weather change but to find homogeneous periods that are
recurrently found daily. The latter detections would be much
more difficult for the algorithm to carry out.

B. PERFORMANCE OF THE PROPOSED CHANGE-POINT
DETECTION ALGORITHM
The proposed change-point detection algorithm was applied
to an image sequence of 18 hours (04:00-22:00) on the second
day for the first testbed, and to another image sequence
of 12.5 hours (06:00-18:30) on the second day for the second
testbed. The sequence used intervals of 2.0 seconds, and thus
the total number of periods was 32,123 and 20,900 for the first
and second testbed, respectively. There were some missing
video frames for the first and second testbeds. The missing
frames were ignored in the present analysis. The algorithm
employed the two probabilistic densities with 6 different
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FIGURE 6. The profile of reduced features for 128 × 512 × 3 pixel images (1st testbed).
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FIGURE 7. The profile of reduced features for 128 × 512 × 3 pixel images (2nd testbed).
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FIGURE 8. The profile of reduced features for 128 × 512 × 3 pixel images (3rd testbed).
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TABLE 1. Precision and recall when detecting change-points for the first testbed.

feature dimensions. For each density function, 4 different
window sizes were examined. We tested window sizes from
3,000 to 6,000 in increments of 1,000. The optimal window
size was determined when a maximum precision and recall
was found. The total number of intervals was tantamount to
32,123 for the first testbed, so the proportion of the candidate
window sizes ranged from 9.3 to 18.7%. The precision and
recall of the change-point detection algorithmwere computed
for a total of 48 different cases across the former two testbeds.
When a predicted change-point approximated the ground
truth within the predefined margin of error (= 420 intervals),
the detection was regarded as successful.

Tables 1 and 2 show the test results of detecting
change-points for the feature sequence of images. For the
first testbed, when using Gaussian density, a window size
of 6,000 recorded the best performance with the smaller
feature dimensions (= 3 and 5). That is, both performance

indices were 1.0, which meant that every ground truth
change-point was detected with neither false positives nor
false negatives. We also confirmed that a quite large window
size (= 6000) is necessary for the perfect detection of change-
points. It is interesting that the detection failed when the
number of features was increased to 10 [see Fig. 6 (e)].
This implies that the use of many features to accommodate
more conditions in an image may be ineffective in finding
change-points attributable only to the time of day. More con-
cretely, some of the 10 features may contain traffic conditions
that impede the recognition of ambient conditions. This result
proved that using 3 to 5 abstracted features is sufficient to
extract the necessary information from an image when using
a Gaussian probabilistic density. Regarding the Dirichlet den-
sity, the change-point detection algorithm was implemented
after using the Expit function [Eq. (7)] to transform abstracted
features into compositional data. Detection was never perfect
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TABLE 2. Precision and recall when detecting change-points for the second testbed.

when using Dirichlet density. The best performance was
recorded when 3 abstracted features were used with a window
size of 5,000. The precision was 1.0, but the recall was 0.833,
since only 5 out of 6 ground truth change-points were prop-
erly detected and the remaining one was missed. In terms of
the results above, the Gaussian distribution was more robust
than the Dirichlet in finding change-points for the times of
day.

Results from the second testbed were similar except for a
slight deterioration in performance. Fortunately, there was no
missing point among the ground truth change-points. Asmen-
tioned earlier, a single false positive was found in the second
longest ground truth period, but this is not a serious problem

because an additional calibration of a further vehicle counting
model might do little harm to the overall performance of
traffic surveillance. A more important finding is that the pro-
posed change-point detection algorithm worked well for dif-
ferent circumstances (summertime or wintertime). As shown
in Figs 6 and 7, although the signals from two testbeds
follow quite different patterns, the proposed change-point
algorithm exactly detected real multi-regimes. For the second
testbed, no performance gap was found between the Gaussian
and Dirichlet distributions. For the Dirichlet distribution,
using only a single feature yielded performance equivalent
to employing 3 features. This implies that an autoencoder
played a more significant role in abstracting ambient
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TABLE 3. Precision and recall when detecting change-points for the third testbed.

conditions in wintertime. Fig. 8 graphically shows the empir-
ical relationships between the number of features and the
window size for the Gaussian and Dirichlet distributions.
As mentioned earlier, the proposed change point detection
algorithm almost perfectly found the transient period between
before and after snowfall. Table 3 lists the precision and
recall scores of detecting snowy weather. Unlike the search
for the former two testbeds, perfect detection was achieved
for most cases of feature dimensions when a proper proba-
bilistic density function was chosen. As expected, detecting a
special weather condition proved to be easier than discern-
ing ambient conditions that change recurrently on a daily
basis.

C. PERFORMANCE OF THE MULTI-REGIME APPROACH IN
MEASURING TRAFFIC DENSITY
A regression-based simple detector was employed as a base-
line in the present study. The reason the model was selected
as a baseline was because of the ease of labeling the data.
As reference models, a YOLO v3 [11] and a CenterNet [25],
which are representative object detectors, were applied to
supporting the validity of the chosen multi-regime analy-
sis. The two models were pretrained on an open dataset
(UA-DETRAC) that provides annotated vehicle images.
To fine tune and test the models for each period, only
200 local images were manually labeled with bounding
boxes. Due to the difficulty of labeling local images, the test
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FIGURE 9. The performance to detect change-points according to the window size.

TABLE 4. Model performance used to measure traffic density (RMSE) for different times of the day.

for the traffic density measurement was carried out only for
the first testbed.

Each model was trained in two different ways to dis-
tinguish the utility of the proposed multi-regime measure-
ment. Basically, the models were trained on images from
each period divided by the proposed change-point detection
algorithm (=separate training). They were also trained using
the entire dataset for all time periods (=integrated training).
The model performance was measured by the root mean
square error (RMSE) between observed and predicted vehicle

counts. The test performance was measured for each period.
We did not compare the performance across three different
models because the performance depends on the amount of
training data. Instead, the enhancement in the performance
by separate training was the focus for each model.

The test results from the three models are listed in Table 4.
Regarding the results from the regression-basedmeasurement
model, separated learning outperformed integrated learning
for the 5 periods highlighted in the table. The remaining
two periods were too short to secure a sufficient amount of
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TABLE 5. Model performance used to measure traffic density (RMSE) for all time periods.

different images, although data collected during the two days
were used. The performance of the overall model with inte-
grated training was slightly better than that of the separated
model for the remaining two periods. If multi-date data are
available, the performance would be enhanced because the
two periods turned out to be non-homogeneous according to
the results of change-point detection.

A YOLO v3 was pretrained on the UA-DETRAC, which is
an open dataset that includes only vehicle objects with labels.
This ‘‘state-of-the-art’’ detector turned out to be somewhat
less accurate than the proposed regression-based model (see
Table 4). The performance would be improved if the detector
was fine tuned with more locally annotated images. How-
ever, such a labeling task required too much effort for the
present study. Nonetheless, the vehicle counting performance
of separate training was superior to integrated training when a
YOLO v3was adopted to count vehicles. This implies that the
proposed multi-regime approach would also work well with
a ‘‘state-of-the-art’’ computer vision algorithm. The reverse
results were obtained only for a period of afternoon 1 that was
relatively short. When a CenterNet was employed to count
vehicles, the results were similar. Separate fine tuning was
superior to the integration of training for every period. The
integrated training was better for two relatively short periods,
but the remaining periods showed the same results as the
former two measurement models.

Table 5 shows the overall RMSEs that were computed over
all periods based on both the separated and the integrated
trainings. The overall performance verifies that the proposed
multi-regime analysis with separate training is superior to
single-regime analysis with integrated training, even though
integrated training outperformed separate training for some
periods, as shown in Table 4. This superiority was secured
regardless of the choice of measurement models.

V. CONCLUSION
The present study dealt with the problem whereby computer
vision-based traffic surveillance technology must account for
the effects of different times of the day. A multi-regime
analysis was set up and tested for counting vehicles in an
image. The adopted change-point detection algorithm was
robust in finding changing patterns in images according to
times of the day. A statistical test method supported the
theoretical background that was used to determine thresholds
that separate multiple periods. An autoencoder was used to
extract a small number of features from an image containing
ambient conditions. Such an abstraction made it possible

to implement the change-point detection algorithm within a
practical computing time.

The test results from counting vehicles in the testbed ver-
ified that the proposed multi-regime analysis outperformed
an integrated model that was trained on the entire dataset
that encompassed all periods. The test results proved that the
proposed change-point detection algorithm could be applied
to real-world online traffic surveillance.

In further studies, robust models for measuring traffic
volumes and speeds will be tested together using the proposed
change-point detection algorithm. In addition, the perfor-
mance of detecting change-points should be validated for
more diverse cases including special weather conditions.
It is also necessary to video extended periods of time in
order to deal with seasonal changes. The proposed approach
is expected to detect such special conditions once such an
extended video is available for training the model, because
the approach works well for discerning conditions during
a normal day, which is much harder than detecting special
conditions.
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