
Received October 17, 2020, accepted November 12, 2020, date of publication November 24, 2020,
date of current version December 9, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3040024

Identifying Semantic Outliers of Source
Code Artifacts and Their Application
to Software Architecture Recovery
KI-SEONG LEE 1 AND CHAN-GUN LEE 2
1Da Vinci College of General Education, Chung-Ang University, Seoul 06974, South Korea
2Department of Computer Science and Engineering, Chung-Ang University, Seoul 06974, South Korea

Corresponding author: Chan-Gun Lee (cglee@cau.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and Information and
Communications Technology (ICT) under Grant NRF-2017R1E1A1A01075803.

ABSTRACT Understanding software architecture is essential to software maintenance. There has been
much effort to derive software architecture views from source code artifacts. Typically, along with structural
information, the semantic information derived from an identifier name and comments are helpful. However,
because code vocabulary choice depends on a developer’s subjective decision, some source code may have
semantically low text quality, leading to an inaccurate architecture recovery. This paper aims to improve
the architecture recovery of a software system by identifying and removing the semantic outliers of source
code artifacts. Accordingly, we propose a novel measure Conceptual Conformity (CC), which computes the
similarity between two latent topic distributions obtained from both the source code and its package. We use
CC to identify source code that is not relevant to the package’s semantic context and define it as a semantic
outlier. Because the semantic outliers may cause inaccurate architecture recovery, we remove them during
the recovery process. We apply our approach to three open-source projects. The results demonstrate that, for
projects with low recovery performance, removing outliers leads to higher recovery accuracy.

INDEX TERMS Software architecture recovery, software quality, semantic outlier.

I. INTRODUCTION
The foundation of software maintenance is an understanding
of the software. Understanding software is so laborious and
time-consuming that it may be the most significant bur-
den in the maintenance stage. Automated efforts to under-
stand software have continued steadily in an attempt to
reduce this burden [1]. Software architecture is a beneficial
product for maintenance engineers because it provides a
high-level view of a software system. However, in practice,
the architecture document is prone to becoming outdated
or unavailable over time. Accordingly, various methods for
automatically recovering software architecture have been
studied [2].

Architecture recovery is a technique for deriving a module
view of a system from software artifacts. The recovered archi-
tecture can be used in several ways: to identify architectural
changes [3], to find architectural decay [4], or to understand
the overall structure of the software.

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabrizio Messina .

A static software structure helps re-modularize a software
system because structural dependencies, such as inheritance,
method calls, or object references, provide intuitive and direct
relationships between the software entities. In contrast, there
have been several attempts to consider the semantic similarity
between software entities [5]–[10]. In this approach, textual
information in the source code and comments is analyzed to
determine the semantic similarity between software entities.
Many studies have revealed the usefulness of a semantic
approach in architecture recovery because semantic informa-
tion can complement the simplicity of structural information.
Furthermore, evolutionary information—a method that uses
software development history—is used for recovery [11].

Several studies have considered the quality of soft-
ware entities and their relationships for architecture recov-
ery [12], [13]. The common argument is that low-quality
software dependency information and structural noise harm
architecture recovery. However, these studies focus only on
structural information. Although semantic information is a
beneficial factor in software analysis, little attention has been
paid to its quality.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 212467

https://orcid.org/0000-0002-0906-9552
https://orcid.org/0000-0001-9734-4456
https://orcid.org/0000-0002-3685-3879

K.-S. Lee, C.-G. Lee: Identifying Semantic Outliers of Source Code Artifacts and Their Application

Semantics-based studies in software analysis consider a
source code artifact as a text document (called a ‘‘source
code document’’ in this paper). The premise is that terms
that appear in a particular source code document are cho-
sen to represent its domain and implementation concepts
accurately. Most software developers try to follow the code-
naming convention of the organization to which they belong.
Nevertheless, because the source code is written manually,
the identifier names and comments are dependent on the
developer’s writing ability. Semantic analysis may produce
a completely different output if someone’s term choice is not
desirable or consistent with the software component’s design
concept. Therefore, we must identify and filter noisy entities
in semantic-information-based software analysis.

In this paper, we propose a novel measure to identify
the semantic outliers of source code artifacts and improve
architecture recovery accuracy. We identify the semantic out-
liers by defining a new software measure called Conceptual
Conformity (CC), which quantifies the extent to which the
source code’s topic matches the package topic. We identify
and remove noisy entities from a software representation
model and reconstruct the software system’s architecture
module-view using thismeasure.We clarify our work through
the following research questions:
RQ1 - Can we identify source code that is semantically far

from the software design decision?
RQ2 - Does removing outliers affect software architecture

recovery?
RQ3 - How does the choice of the outlier affect recovery

accuracy?
The contributions of this paper are as follows.
• We propose a software quality measure to identify the
semantic outliers of source code.

• We reveal that outlier detection and filtering are effective
in semantic-information-based architecture recovery.

The remainder of this paper is organized as follows. Section 2
presents the background and related work on architecture
recovery and semantic analysis. Section 3 explains how to
identify semantic outliers. Section 4 presents the proposed
recovery method, and Section 5 analyzes the experimen-
tal results. Section 6 presents threats to validity. Finally,
Section 7 concludes the study.

II. BACKGROUND AND RELATED WORK
A. SOFTWARE ARCHITECTURE RECOVERY
In software architecture recovery, an easily understandable
module-view is created to represent the overall system. In the
literature, software architecture recovery has been referred to
as decomposition, re-modularization, partitioning, clustering,
and reconstruction. Architecture recovery follows four steps:
(1) identification of software entities, (2) calculation of the
similarity between the entities, (3) clustering, and (4) eval-
uation [14]. Many studies have evolved within this research
area.

Early studies focused on clustering methods. Man-
coridis et al. [15], Mitchell and Mancoridis [16] proposed

Bunch, an architecture recovery method based on opti-
mization. Bunch finds the optimal modularization solution
for decomposing a software system. Its objective func-
tion is called Modularization Quality (MQ), which mea-
sures the cohesion and coupling of modules with intra- and
inter-dependencies among the software entities. Bunch pro-
vides two optimization algorithms: a hill-climbing algorithm
and a genetic algorithm. Shokoufandeh et al. [17] found that,
although the genetic Bunch algorithm finds a solution more
quickly, the hill-climbing Bunch algorithm produces higher-
quality clustering results.

Tzerpos and Holt [18] proposed the Algorithm for
Comprehension-Driven Clustering (ACDC), which recovers
the software architecture using patterns. The authors found
that specific patterns occur while grouping software entities.
For example, (a) procedures/variables in the same file are
grouped, (b) directories may correspond to subsystems, and
(c) the body (.c) and header (.h) are grouped. Themain pattern
is a subgraph dominator pattern, which detects a dominator
node and its dominated set. ACDC finds the node and its
subgraph as a cluster.

Maqbool and Babri [19], [20] proposed a Weighted Com-
bined Algorithm (WCA), a hierarchical approach to archi-
tecture recovery. It measures the distance between software
entities and merges the closest pair into a cluster. WCA also
measures the distance between clusters and merges them into
a high-level cluster. WCA uses the Jaccard coefficient and
Unbiased Ellenberg to measure the inter-cluster distance.

Andritsos and Tzerpos [21] proposed the scaLable Infor-
Mation Bottleneck (LIMBO) algorithm. It is also based on
hierarchical clustering but differs from WCA. LIMBO aims
to enable the software system to have minimum information
loss (IL), which is based on the mutual information concept
from information theory.

Researchers began considering entity relationships from
different perspectives—typically a semantic relationship.
Corazza et al. [5] proposed architecture recovery using
zone-based lexical information. They extracted terms from
the software’s source code and classified them into six
types: class names, attribute names, method names, param-
eter names, comments, and code statements. The authors
used the expectation-maximization (EM) algorithm to assign
a weight to each type and then performed hierarchical
clustering.

Garcia et al. [8] proposed Architecture Recovery using
Concerns (ARC). They recovered software entity concerns
using the Latent Dirichlet Allocation (LDA) statistical lan-
guage model [22]. ARC is based on lexical information,
similar to the method proposed by Corazza et al. [5],
but it manages additional conceptual information using a
latent topic. Garcia et al. combined structural and con-
ceptual information and clustered it with the hierarchical
algorithm.

Recently, attention has been shifted to the quality of the
entity. Lutellier et al. [13] described how previous studies
did not consider the impact of software dependency quality

212468 VOLUME 8, 2020

K.-S. Lee, C.-G. Lee: Identifying Semantic Outliers of Source Code Artifacts and Their Application

on architecture recovery. They experimentally demonstrated
that using an accurate dependency could improve the quality
of existing architecture recovery techniques. Furthermore,
Constantinou et al. [12] emphasized that structurally-noisy
classes must be identified in a preparatory procedure for
architecture recovery. They computed a class’s signifi-
cance value using graph theory techniques and classified
omnipresent classes as noises according to their significance
values. Their experiments demonstrated that a noise-filtering
technique provides superior MQ [15] and Mojo [23] values
for architecture recovery.

Against this research background, we propose incorporat-
ing semantic-information quality into architecture recovery.
Our recovery is based on semantic information derived from
LDA, as in [8]. Furthermore, the proposed recovery applies
an outlier removal strategy, which has not been addressed in
previous semantic-information-based recovery studies.

B. SOFTWARE ANALYSIS WITH SEMANTIC INFORMATION
The semantic information in source code contains domain-
specific software concepts—resulting from developers
reflecting their knowledge in identifier names and comments.
Thus, there have been many studies on the application of
information retrieval techniques to software analysis.

Kuhn et al. [6] proposed applying latent semantic index-
ing (LSI) [24] to compute the linguistic similarity between
source code documents written in Java. LSI is an informa-
tion retrieval technique based on the vector space model.
In a term-document matrix, LSI computes latent structures
to reduce various noises such as synonymy and polysemy.
It then yields the vector space of the latent structures with
relatively small dimensions. Based on LSI results, the authors
estimated the semantic similarity between source code based
on the cosine similarity, and they clustered codes from similar
topics.

Scanniello et al. [7] analyzed the text of software entities
and computed the dissimilarity between all pairs of the soft-
ware entities using LSI in both C/C++ and Java projects.
During preprocessing, they listed a set of stopwords (a set of
keywords of the C/C++ and Java languages) and then filtered
the list from the extracted text. Furthermore, the authors
applied the Porter stemmer [25]—a method similar to natural
language processing—to reduce the number of semantically
duplicated terms.

Corazza et al. [26] proposed a zone-based textual anal-
ysis technique. They extracted terms from four zones: nat-
ural language comments, Javadoc comments, method/class
signatures, and variable identifiers in Java classes. The
authors refined the semantic information using term
frequency–inverse document frequency (tf–idf) and then
weighted them with a probabilistic model.

Furthermore, LDA-based semantic analysis has attracted
attention in the field of software analysis. LDA identifies
latent topics and the probability distribution of the top-
ics within a given corpus. A latent topic is denoted by a
set of terms, which can be derived from statistical word

co-occurrences. Each topic corresponds to a concept in the
document. In LDA, to compute the topic distribution, two
critical Dirichlet prior parameters are required: α (per-
document topic distribution) and β (per-topic word distri-
bution). With LDA, Maskeri et al. [27] extracted domain
topics from source code, Lukins et al. [28] automated bug
localization, Tian et al. [29] categorized software systems
regardless of the programming language, and Garcia et al. [8]
improved architecture recovery performance.

Concernedwith LDA-based software analysis, Gethers and
Poshyvanyk [9] proposed a coupling measurement between
classes based on LDA and its extension. They studied each
source code document’s topic distribution using LDA and
then measured the link probability between the documents
using the relational topic model [30]. The authors demon-
strated with a case study that their coupling measure cap-
tures new dimensions not covered by the existing coupling
metrics.

Furthermore, some studies focused on a semantic measure-
ment to capture the software cohesion. Marcus et al. [31] pro-
posed Conceptual Cohesion of Classes (C3), which measures
how class methods are coherent. Their semantic coherence
is based on the cosine similarity between method vectors
derived from LSI. The authors adopted the average similarity
among methods as conceptual cohesion. Liu et al. [32] pro-
posed an LDA-based cohesion measure, Maximal Weighted
Entropy (MWE), which captures topic cohesion using infor-
mation entropy. They demonstrated that MWE is available in
bug prediction.

These previous studies focused on extracting and refining
the semantic information in a software system and using it
helpfully. However, they did not consider semantic quality.
Because they assumed that all text data are valuable in anal-
ysis, they used the data as-is, irrespective of text data quality.
In contrast, we concentrate on the semantic quality of the
source code in this study. We propose a novel measure to
judge whether the semantic information is useful.

III. IDENTIFYING SEMANTIC OUTLIERS OF SOURCE
CODE ARTIFACTS
A. MOTIVATION AND APPROACH
In this section, we explain the semantic outliers of source
code artifacts. As mentioned in the introduction section,
the accuracy of semantic-information-based software analy-
sis depends on the text quality’s trustworthiness. Thus, iden-
tifying text quality is essential.

Manual code review by experts (e.g., a senior programmer,
component designer, or project manager) is the optimal solu-
tion for judging the quality of a text document. However, it is
neither practical nor possible because the scale of a software
system is continuously increasing. Moreover, it is not easy
to quantify whether the document’s terms are appropriate for
the development concept. Therefore, we adopt an automated,
objective method.

A software component or subsystem of software has a
design concept for satisfying a particular requirement and is

VOLUME 8, 2020 212469

K.-S. Lee, C.-G. Lee: Identifying Semantic Outliers of Source Code Artifacts and Their Application

designed at an early stage of the software lifecycle. Because
the domain expert determines each component’s design
concept, such design decisions are reflected in the source
code as textual information during the implementation stage.
However, developers occasionally make minor decisions to
name variables for various reasons (e.g., a lack of concern
about semantics, time-to-market pressure, and the absence of
naming criterion). Such decisions lower the software’s textual
quality and hinder semantics-based analysis. We intend to
identify source code that inadequately follows the design con-
cept. We try to understand the semantics of a component and
identify the most heterogeneous entity among its members.
Suppose the semantics of a particular entity differ from the
design concept of the component. In that case, we assume
that the entity is not useful for analysis, and we define it as
a semantic outlier. In this paper, a software entity represents
a class (or a file), and a component or subsystem indicates a
software package.

B. SEMANTIC QUALITY MEASURE : CONCEPTUAL
CONFORMITY (CC)
We judge whether the semantic information of a source
code artifact complies with its design concept by compar-
ing the latent topic distribution in source code to that of a
package—latent topic distribution can explain the meaning
of a document concept. Accordingly, we propose a novel
measure, CC, which computes the similarity between the
two topic distributions obtained from both the source code
and the package. The CC’s similarity is computed using
the Jensen-Shannon divergence (JSD) [33], a suitable met-
ric for measuring the similarity between two probability
distributions.

We compute the CC of a source code document by applying
a latent topic distribution. The latent topic is composed of
a set of words and is stochastically determined by LDA.
In LDA, if a document focuses on a specific subject, par-
ticular words associated with the subject may occur more
frequently. For example, assume a document focuses on the
subject ‘‘network communications.’’ The document may use
words such as ‘‘server,’’ ‘‘socket,’’ ‘‘connect,’’ and ‘‘listen,’’
which are related to ‘‘network communications.’’ With LDA,
we take a set of terms as a topic based on the likelihood of
co-occurrence to obtain the topic distribution composed of
several topics. The topic distribution of a document reveals
how many different topics are distributed, so we can use it to
determine the document’s subject matter.

TABLE 1. An example of the topic distribution.

Table 1 presents an abstract model of the LDA topic dis-
tribution. The example assumes that there are five topics in

a corpus with three documents. This structure makes it easy
to identify which documents address which topics. Several
notations in our study are defined as follows.
Pi : topic distribution of Doc i
pji : probability of topic j in Doc i
Pi = (p1i , p

2
i , p

3
i ,. . . , p

k
i), where k is the total number of

topics
Pi is a semantic concept of document i, and the sum of all

values in Pi becomes 1 because it is a probability distribu-
tion. Applying this to the software, we can obtain the topic
distribution P from each source code file. The following is an
example of the topic distribution in Table 1.

P1 = (0.5, 0.1, 0.1, 0.2, 0.1)

P2 = (0.1, 0.6, 0.1, 0.1, 0.1)

P3 = (0.3, 0.2, 0.1, 0.2, 0.2)

After obtaining P vectors for each file, semantic informa-
tion for each package is required. We obtain the mean value
of each topic in a package to capture package-level semantic
information. Related notations are defined as follows.
Pkgi: a package containing Doc i
Qi : topic distribution of Pkgi
qji : mean probability of topic j in Pkgi
Qi = (q1i , q

2
i , q

3
i ,. . .q

k
i), where k is the total number of

topics

qji =

∑
m∈Pkgi

pjm

|Pkgi|
(1)

|Pkgi| is the number of documents in a package containing
document i. Therefore, qji is the mean value of a specific
topic in a particular package. For example, Table 2 presents
the topic distribution of a software system with a package
structure—there are two packages and six documents with
five topics. We compute the mean value of each topic in a
package and then generate a package-level topic distribution.
The following presents the calculation process of the case
in Table 2.

q11 =
p11 + p

1
2 + p

1
3

|Package A|
=

0.5+ 0.1+ 0.3
3

= 0.3

q21 = 0.3, q31 = 0.1, q41 = 0.17, q51 = 0.13,

∴ Q1 = (0.3, 0.3, 0.1, 0.17, 0.13), Q1 = Q2 = Q3

TABLE 2. A software representation model with package structure.

212470 VOLUME 8, 2020

K.-S. Lee, C.-G. Lee: Identifying Semantic Outliers of Source Code Artifacts and Their Application

Subsequently, we measure whether the subject of each
document relates to the subject of the package. In the soft-
ware semantics study, the cosine similarity is used for word
vector base, but this study introduced information-theory
metric because it is based on probability distribution of topics.
We measure the similarity using the JSD, an information-
theoretic metric for computing the information divergence of
two probability distributions P and Q. JSD is a symmetrized
and smoothed equation of Kullback-Leibler divergence [34]
D(P||Q) and is denoted by

JSD(P||Q) =
1
2
D(P||M)+

1
2
D(Q||M) (2)

where M = 1/2(P + Q). We measure the similarity between
the document concept and package concept using the JSD.
The original JSD only measures the distance of the probabil-
ity distributions; it has a value between 0 and 1 and converges
at 0 when the distance is closest. Therefore, we modify the
metric to the concept of similarity. The proposed measure CC
is defined as follows.

CC (i) = 1− JSD(Pi||Qi) (3)

where Pi is the topic distribution of document i and Qi is the
mean topic distribution of the package containing document i.
Because CC is a document level measure, we can compute the
CC score for all source code files in a software system. The-
oretically, if a document perfectly complies with a package
design concept, CC is 1; otherwise, it is 0. The CC aims to
quantify how much the semantic information of the source
code complies the design concept of the architecture.

C. IDENTIFYING SEMANTIC OUTLIERS
We apply the proposed measure CC to the identification of
semantic outliers. An outlier is defined as an object with
distinctly unique properties in a dataset.We can find semantic
outliers in disparate text documents that may harm the con-
sistency of a software design concept.

1) EXPERIMENTAL DESIGN
We conducted an experiment to evaluate the feasibility of CC
in detecting semantic outliers. The purpose of the experiment
was to examine how accurately CC discriminates semantic
outliers from software documents. Accordingly, we intention-
ally created qualitatively low-quality documents. We hypoth-
esize that if a document describes concerns unrelated to the
design concept or contains several meaningless terms, the
CC value of the document is lower than that of a normal
document. In this context, we injected fake documents into
Apache Hadoop-core 0.19 [35], which is an open-source
project written in the Java language. We randomly selected
one package into which we injected three fake documents.
The descriptions of the fake documents are as depicted
in Table 3.

We generated a topic distribution using ‘‘LDA: Collapsed
Gibbs Sampling Methods for Topic Models’’ [36]. The

TABLE 3. Description of outlier files.

parameter setting for LDA is not trivial. We referred to Grif-
fiths and Steyvers’s study [37]. They tried to obtain a superior
LDA result experimentally. According to their report, the out-
put of LDA is sensitive to the number of topics. Thus, we var-
ied the number of topics T from 10 to 100 by increments
of 10 and used an alpha of 10/T and a beta of 0.1—alpha
is the topic distributions per document and beta is the topic
distributions per topic. Because LDA is a statistical approach,
the more the algorithm iterates, the more stable the output.
Therefore, we set the iteration to 250, a reasonable value for
the LDA parameter considering the computational cost of
our data.

In our experiment, we adapted an additional outlier detec-
tion technique to evaluate CC more objectively. We applied
a distance-based outlier detection approach [38]. With this
technique, we could identify a distinguishing document from
all documents by considering the similarity between docu-
ments. We adopted the k-Nearest Neighbors (k-NN) algo-
rithm [39] for outlier scoring. Although determining a proper
k value is not a trivial problem in k-NN, we used some
typical k values to facilitate our experiment. The k values
in the experiment were set to 10, 2/n, and n-1, but we
report only the 10 case because it produced the optimal
output—a small k outperforms a large one. Another small
k value should be considered, but we omitted a discussion
about k because k optimization is not a significant issue in
this study.

2) EXPERIMENTAL RESULT AND RQ1
Table 4 presents the outlier rank of the injected files in
Hadoop-core 0.19. The rank is based on the measured val-
ues of both CC and k-NN. Because we obtained multiple
LDA outputs to vary the number of topics, both the high-
est and mean ranks are presented. In 608 Java source files,
injected file A ranks highest, which indicates that file A
is the most disparate document. Similarly, files B and C
are ranked second and eighth, respectively, for CC’s opti-
mal case. The experiment demonstrates that the proposed
measure can identify lexically heterogeneous documents.
Furthermore, CC outperforms k-NN in identifying those
documents.

Moreover, CC can identify not only lexically low-quality
documents but also semantically-unrelated documents. The
CC value of file C is ranked eighth among all 608 files.
Although file C contains ordinary Java source code, it does

VOLUME 8, 2020 212471

K.-S. Lee, C.-G. Lee: Identifying Semantic Outliers of Source Code Artifacts and Their Application

TABLE 4. Comparison between CC and k-NN outlier detection in
Hadoop-core 0.19.

not belong to the org.apache.hadoop.fs package. This obser-
vation is hardly discernible in the k-NN manner.

Recall the first research question as follows:
RQ1 - Can we identify source code that is semantically

far from the software design decision?
In response to RQ1, our outlier detection method tries

to identify documents that do not follow the component’s
concept, and the proposed measure operates effectively.

Figure 1 presents the distribution of the CC score in
Hadoop-core 0.19. The horizontal axis denotes the CC value
with a 0.1 range; the vertical axis illustrates the document
frequency of each CC range. Most of the documents have a
high CC value, which indicates significantly high semantic
conformity to the design decision of Hadoop-core.

FIGURE 1. CC distribution in Hadoop-core 0.19.

IV. IMPROVING SOFTWARE ARCHITECTURE RECOVERY
USING SEMANTIC OUTLIERS REMOVAL
A. SOFTWARE CLUSTERING USING LATENT TOPIC
For software architecture recovery, we use software cluster-
ing techniques introduced in the literature. Most software
clustering techniques are based on two types of approaches:
(1) a graph-based approach using a heuristic method to sat-
isfy its objective function [16], [40], [18] and (2) a vector
space-based approach using a hierarchical clustering algo-
rithm and a distance metric [5], [6], [21], [8]. In this study,
we use the latter techniques to cluster a topic-vector model.
Figure 2 illustrates an overview of the proposed recovery
process. The gray highlighted part of Figure 2 is the dif-
ference from the existing study, indicating the originality of
this study.

1) REPOSITORY DATA ACQUISTION
In the first step, all terms contained in the source code are
extracted. Because the term extractor that we implemented

targets source code written in the Java language, some
reserved keywords—such as ‘‘continue,’’ ‘‘extends,’’ and
‘‘throw’’—are eliminated in the extraction process. Then,
the use of the stemming algorithm ensures that only the stem
words remain. We executed the stemming process using the
snowball library [41], which provides a stemmer for the C and
Java languages.

2) EXTRACTING SEMANTIC INFORMATION (LDA)
Using the collected terms, LDA determines the topic dis-
tribution of each source code document. Then, a document
is denoted by an n-dimensional vector, where n denotes the
number of topics. We set the LDA parameters to be the same
as those used in the previous experiment: number of topics
|T| = 10–100, alpha= 10/T, beta= 0.1, and iteration= 250.
From the LDA, several topic-documentmatrices are obtained.
A column denotes a topic in the matrices, and a row denotes
a document (as in Table 1).

3) REFINING SOFTWARE REPRESENTATION MODEL
Before software clustering, we refine the topic-document
matrices to improve recovery. Refinement refers to the detec-
tion and removal of semantic outliers—refined softwaremod-
els are downsizedmatrices. The details are described in a later
section.

4) SOFTWARE CLUSTERING
This step decomposes the software entities into several sub-
systems using clustering algorithms. Our recovery is similar
to [8] because it uses LDA data. We use agglomerative hier-
archical clustering [42] like studies of [19], [20], a bottom-
up clustering algorithm that groups the target entities based
on their connectivity. Typically, this algorithm employs Jac-
card similarity, but we use JSD because our software entity
is based on probability distribution using LDA. We imple-
mented a clustering tool using scikit-learn, a package library
for machine learning in python.

5) EVALUATION OF THE ARCHITECTURE RECOVERY
The difference between the clustering output and ground-
truth architecture [43] is considered for evaluating the recov-
ery result. The ground-truth is an architecture module-view
manually recovered by experts. Therefore, we can assess how
accurately our output complies with the ground-truth. How-
ever, because available ground-truth architectures are lim-
ited, we use only three projects—Apache Hadoop-core [35],
Apache-oodt [44], and ArchStudio [45]—that have publicly
available ground-truth architectures associated with the Java
programming language.

MoJoFM [46] quantifies the discrepancy between two
architectural decompositions. Because MoJoFM has been
widely used in studies on architecture recovery, we also
use the measure. Equation (4) defines MoJoFM, where mno
indicates the minimum number of Move or Join operations

212472 VOLUME 8, 2020

K.-S. Lee, C.-G. Lee: Identifying Semantic Outliers of Source Code Artifacts and Their Application

FIGURE 2. Overview of the architecture recovery process.

required to transform one structure into the other.

MoJoFM (M) =
(
1−

mno (A,B)
max (mno (∀A,B))

)
× 100% (4)

B. SEMANTIC OUTLIERS REMOVAL
If any source code is of low lexical quality, the recovered
architecture is not reliable. Therefore, we propose a technique
to exclude semantic outliers to improve the accuracy of archi-
tecture recovery.

CC measures how well a source code document conforms
to the design concept of a component to which the file
belongs. As depicted in the previous experiment on fake file
injection, CC can be used to identify the degree of semantic
quality. Thus, we can discriminate noisy source code from
a software system. Based on this idea, we introduce an out-
lier removal technique into the software clustering process.
We refine the software representation model to exclude the
outlier entities before clustering.

First, we measure CC for all source code artifacts in a soft-
ware system. After the files are sorted according to low CC
value, high-ranked files are candidates for semantic outliers.
Next, we set a cut-off threshold to restrict the size of the
outliers. Because the outliers are removed during the refine-
ment, a large threshold causes significant loss of architectural
information. Therefore, a valid threshold is needed based on
the scale of the software system. Consequently, final outlier
candidates are determined. The corresponding outlier tuples
are removed from a topic-document matrix, and only the
remaining tuples are used for clustering.

V. CASE STUDY
A. ARCHITECTURE RECOVERY FOR OPEN-SOURCE
PROJECTS
A case study was conducted on open-source projects to
evaluate the effectiveness of the proposed recovery method.
Table 5 presents three open-source Java projects that have a
ground-truth architecture.

TABLE 5. Open-source projects used in this study.

From the software projects, we generated the software
representation models (topic-document matrices). Two types
of representation models are then used to identify the impact
of outlier removal: a base model and an outlier removal
model. The former indicates original LDA data, and the
latter indicates a model some outliers removed. For the out-
lier removal, the cut-off threshold is assumed to be from
0.1 to 0.6. For example, for a threshold of 0.1, 10% of
documents that have low CC scores are excluded as outliers.
A large threshold is not needed because an excessive loss
of entities is meaningless in the recovery. We found that an
overly large cut-off causes an abnormal or invalid recovery
output—the number of remaining entities becomes less than
the number of clusters. Therefore, we do not consider values
over 0.6.

Next, in the clustering phase, to cover a broad spectrum
of parameter configuration, we varied the number of clus-
ters k from 10 to 100 by increments of 10. Furthermore,
we increased the number of topics |T| from 10 to 100 to obtain
the highest recovery output. The value of |T| for the highest
recovery performance varies across projects, so it is desirable
to find it experimentally.

For the final step, we evaluated the recovery results by
measuringMoJoFM between the model and the ground-truth.

B. EXPERIMENTAL RESULTS AND ANALYSIS
(RQ2 AND RQ3)
Table 6 presents the MoJoFM values of Hadoop-core recov-
ery. Because the experiment produced a vast number of

VOLUME 8, 2020 212473

K.-S. Lee, C.-G. Lee: Identifying Semantic Outliers of Source Code Artifacts and Their Application

TABLE 6. MoJoFM of recovery results in Hadoop-core (|T| = 80 is
optimal).

outputs, only the optimal results are reported. The high-
est recovery performance was observed at |T| = 80 in
Hadoop-core.

The optimal MoJoFM of the base recovery is 44.4% when
|T| = 80 and k = 90. The bold number indicates the high-
est score for each removal case; the underlined number is
the mean value. For each k, the outlier removal technique
illustrates a gradual improvement over the base recovery.
Although unstable cases are observed, such as MoJoFM
falling below the previous level, the mean value increases
linearly. We think these unstable changes in MojoFM are due
to the variability of the clustering algorithm. This experiment
case confirms that the recovery accuracy of Hadoop-core can
be improved gradually through the removal of outliers. This
trend was similarly observed in Apache-oodt. Table 7 is the
result of Apache-oodt.

TABLE 7. MoJoFM in Apache-oodt (|T| = 100 is optimal).

In the Apache-oodt project, the mean value of MoJoFM
increases slightly along with the application scale of the out-
lier removal. LDA-based recovery in Apache-oodt exhibits
relatively low accuracy. The optimal MoJoFM is 27%, and
the mean MoJoFM is 9.3% at the base recovery. However,
regardless of poor performance, our outlier removal method
increases MoJoFM linearly.

RQ2 is again presented to associate the results with the
research questions, as follows:
RQ2 - Does removing outliers affect software architec-

ture recovery?

In response to RQ2, the outlier removal method outper-
forms the base recovery. Furthermore, it has the effect of
gradually increasing accuracy according to the removal ratio.

However, it is also necessary to verify whether these
results are simply due to removing entities or removing real
outliers. Therefore, we conducted additional experiments to
confirm the relevance of the removal target. We randomly
selected some source code and performed clustering without
the selected files. Tables 8 and 9 illustrate the compari-
son between random removal and semantic outlier removal
in Hadoop-core and Apache-oodt, respectively. Because the
random removal method produces a different output each
time, the mean MoJoFM was measured for more than five
clustering results.

TABLE 8. Comparison of MoJoFM between semantic outliers removal and
random removal in Hadoop-core.

TABLE 9. Comparison of MoJoFM between semantic outliers removal and
random removal in Apache-oodt.

In both tables, the random choice does not have a partic-
ular trend; furthermore, accuracy is worse than in the base
recovery. Accordingly, the removal of software entities does
not have a positive effect on boosting recovery performance.
Nevertheless, the semantic outlier case presents a linearly
increasing pattern. Based on this observation, we can infer
that exact selection is important. RQ3 is again presented,
as follows:
RQ3 - How does the choice of the outlier affects the

recovery accuracy?
In response to RQ3, the naïve removal of software entities

cannot increase recovery accuracy but functions correctly if
the correct outliers are selected and removed.

In contrast, the last open-source project exhibits consid-
erably different results. Tables 10 and 11 present the recov-
ery data from Archstudio. The recovery accuracy is high,
such that the optimal MoJoFM at the base model reaches
80%, and the mean value is 52.6%. However, outlier removal
does not exhibit a linear increase like those of Hadoop-core
and Apache-oodt. At the 0.1 and 0.2 removal ratios, mean
MoJoFM values increase temporarily, whereas the rest dis-
play an irregular flow.

212474 VOLUME 8, 2020

K.-S. Lee, C.-G. Lee: Identifying Semantic Outliers of Source Code Artifacts and Their Application

TABLE 10. MoJoFM in Archstudio (|T| = 60 is optimal).

The irregular flow is also similar to that of random choice,
as depicted in Table 11. The MoJoFM values of both the
semantic outliers and random case are very close. Unfor-
tunately, in Archstudio, outlier removal techniques do not
outperform base recovery as in the previous experiments.

TABLE 11. Comparison of MoJoFM between semantic outliers removal
and random removal in Archstudio.

We observe the impact of outlier removal by presenting
a mean MoJoFM graph of the three open-source projects
in Figure 3. The results illustrate a linear increase and
irregular flow observed in the experiments—a noticeable
improvement in Hadoop-core accuracy, a slight increase in
Apache-oodt, and an irregular decrease in Archstudio.

FIGURE 3. Mean MoJoFM variation of three open-sources.

We inferred the reason for the irregularity of Archstudio
from the CC distribution.We realized that the CC distribution
varies slightly across projects. In some cases, CC values are
restricted within a narrow range; in other cases, they are
spread across a wide range. Table 12 and Figure 4 illustrate
this phenomenon.

In Figure 4, the upper graphs denote the increasing order
of CC in each project, and the lower ones are histograms
of each case. A similar number of files were used for both
Hadoop-core and Archstudio, but their histogram shapes
differ significantly. The CC distribution of Hadoop-core
extends to a higher value than that of Archstudio. Moreover,
in Table 12, the variance σ 2 of Archstudio is approximately
three times larger than that of Hadoop-core. The data con-
firms that the CC of Archstudio is more widely distributed
than other projects. In a case similar to Archstudio, outlier
removal may be ineffective. Because many files have low
CC values, it is difficult to determine which files are outliers
precisely.

TABLE 12. Summary of CC value of three open-source projects.

Archstudio has the highest recovery performance among
the three projects. The other two projects’ maximum recov-
ery accuracy results are 44.4% and 27.0% in base recovery,
while Archstudio reaches 80.2%, corresponding to a very
high value that is generally difficult to observe. Accord-
ingly, the semantic information in Archstudio follows the
ground-truth architecture very closely, indicating it is unnec-
essary to search for outliers. Consequently, our technique
improves accuracy for projects with low semantic-based
recovery.

VI. THREATS TO VALIDITY
For internal validity, parameter settings in the experiment
do not cover all possible ranges. Although our experiments
follow the work of [13], [37] and attempt to change the
parameters, we cannot exclude that new observations and
analyses can be derived if the parameters have a broader range
and more granular steps.

For external validity, because this study is limited to open-
source analysis, it may be a threat that our findings are gener-
ally applied to all software. We selected three open-source
projects in which semantic-based recovery has been per-
formed in previous studies. The number of selected projects is
small because there are not enough ground truths and projects
in which architecture recovery is performed by semantic anal-
ysis. We have selected projects within candidates addressed
in related works, rather than using entirely new ones, to align
with existing research.

Another threat is that open-source projects have
high-quality text information because identifier-naming is
relatively well managed. This feature of open projects can
undermine our purpose to find semantic outliers. Never-
theless, we have found that outliers affect semantic analy-
sis results in the experimental environment, which can be
expected to be more applicable in lower-quality projects.

VOLUME 8, 2020 212475

K.-S. Lee, C.-G. Lee: Identifying Semantic Outliers of Source Code Artifacts and Their Application

FIGURE 4. CC distribution of three open-source projects.

VII. CONCLUSION
Semantic-information-based architecture recovery provides
the conceptual decomposition of a software system. How-
ever, the accuracy of the decomposition depends on the
semantic quality of the source code. In this paper, we tried
to improve recovery accuracy by excluding the semantic
outliers. We proposed a software measure for identifying
the outliers that quantifies the semantic conformity between
the source code semantics and a component design con-
cept. With this measure, the semantic outliers are identified
and removed during architecture recovery. The experimental
results revealed that the proposed outlier removal technique
affects architecture recovery performance in open-source
projects.

Our approach contributes to both the semantic quality mea-
sure and architecture recovery study. In the future, we plan to
focus on architecture assessment using our software measure.
We expect to use the proposedmeasure to assess the quality of
software architecture semantically. We also expect it to con-
tribute to the prediction of the defect proneness of software.

REFERENCES
[1] S. Scalabrino, G. Bavota, C. Vendome, M. Linares-Vásquez,

D. Poshyvanyk, and R. Oliveto, ‘‘Automatically assessing code
understandability,’’ IEEE Trans. Softw. Eng., early access, Feb. 25, 2019,
doi: 10.1109/TSE.2019.2901468.

[2] J. Garcia, I. Ivkovic, and N. Medvidovic, ‘‘A comparative analysis of
software architecture recovery techniques,’’ in Proc. 28th IEEE/ACM Int.
Conf. Automated Softw. Eng. (ASE), Nov. 2013, pp. 486–496.

[3] P. Behnamghader, D. M. Le, J. Garcia, D. Link, A. Shahbazian,
and N. Medvidovic, ‘‘A large-scale study of architectural evolution in
open-source software systems,’’ Empirical Softw. Eng., vol. 22, no. 3,
pp. 1146–1193, Jun. 2017.

[4] D. M. Le, D. Link, A. Shahbazian, and N. Medvidovic, ‘‘An empirical
study of architectural decay in open-source software,’’ in Proc. IEEE Int.
Conf. Softw. Archit. (ICSA), Apr. 2018, pp. 176–185.

[5] A. Corazza, S. Di Martino, V. Maggio, and G. Scanniello, ‘‘Investigat-
ing the use of lexical information for software system clustering,’’ in
Proc. 15th Eur. Conf. Softw. Maintenance Reengineering, Mar. 2011,
pp. 35–44.

[6] A. Kuhn, S. Ducasse, and T. Gîrba, ‘‘Semantic clustering: Identifying
topics in source code,’’ Inf. Softw. Technol., vol. 49, no. 3, pp. 230–243,
Mar. 2007.

[7] M. Risi, G. Scanniello, and G. Tortora, ‘‘Architecture recovery using latent
semantic indexing and K-means: An empirical evaluation,’’ in Proc. 8th
IEEE Int. Conf. Softw. Eng. Formal Methods, Sep. 2010, pp. 103–112.

[8] J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic, and Y. Cai, ‘‘Enhanc-
ing architectural recovery using concerns,’’ in Proc. 26th IEEE/ACM Int.
Conf. Automated Softw. Eng. (ASE), Nov. 2011, pp. 552–555.

[9] M. Gethers and D. Poshyvanyk, ‘‘Using relational topic models to capture
coupling among classes in object-oriented software systems,’’ in Proc.
IEEE Int. Conf. Softw. Maintenance, Sep. 2010, pp. 1–10.

[10] D. Link, P. Behnamghader, R. Moazeni, and B. Boehm, ‘‘Recover and
RELAX: Concern-oriented software architecture recovery for systems
development and maintenance,’’ in Proc. IEEE/ACM Int. Conf. Softw. Syst.
Processes (ICSSP), May 2019, pp. 64–73.

[11] A. Shahbazian, Y. K. Lee, D. Le, Y. Brun, andN.Medvidovic, ‘‘Recovering
architectural design decisions,’’ in Proc. IEEE Int. Conf. Softw. Archit.
(ICSA), Apr. 2018, pp. 95–104.

[12] E. Constantinou, G. Kakarontzas, and I. Stamelos, ‘‘An automated
approach for noise identification to assist software architecture recovery
techniques,’’ J. Syst. Softw., vol. 107, pp. 142–157, Sep. 2015.

[13] T. Lutellier, D. Chollak, J. Garcia, L. Tan, D. Rayside, N. Medvidovic, and
R. Kroeger, ‘‘Comparing software architecture recovery techniques using
accurate dependencies,’’ in Proc. IEEE/ACM 37th IEEE Int. Conf. Softw.
Eng., May 2015, pp. 69–78.

[14] M. Shtern and V. Tzerpos, ‘‘Clustering methodologies for software engi-
neering,’’ Adv. Softw. Eng., vol. 2012, pp. 1–18, May 2012.

[15] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner, ‘‘Bunch:
A clustering tool for the recovery and maintenance of software system
structures,’’ in Proc. IEEE Int. Conf. Softw. Maintenance, Aug./Sep. 1999,
pp. 1–10.

[16] B. S. Mitchell and S. Mancoridis, ‘‘On the automatic modularization of
software systems using the bunch tool,’’ IEEE Trans. Softw. Eng., vol. 32,
no. 3, pp. 193–208, Mar. 2006.

[17] A. Shokoufandeh, S. Mancoridis, T. Denton, and M. Maycock, ‘‘Spectral
and meta-heuristic algorithms for software clustering,’’ J. Syst. Softw.,
vol. 77, no. 3, pp. 213–223, Sep. 2005.

212476 VOLUME 8, 2020

http://dx.doi.org/10.1109/TSE.2019.2901468

K.-S. Lee, C.-G. Lee: Identifying Semantic Outliers of Source Code Artifacts and Their Application

[18] V. Tzerpos and R. C. Holt, ‘‘ACDC: An algorithm for comprehension-
driven clustering,’’ in Proc. IEEE Work. Conf. Reverse Eng., Nov. 2000,
pp. 258–267.

[19] O. Maqbool and H. A. Babri, ‘‘The weighted combined algorithm: A link-
age algorithm for software clustering,’’ in Proc. Conf. Softw. Maintenance
Re-Eng., 2004, pp. 15–24.

[20] O. Maqbool and H. Babri, ‘‘Hierarchical clustering for software archi-
tecture recovery,’’ IEEE Trans. Softw. Eng., vol. 33, no. 11, pp. 759–780,
Nov. 2007.

[21] P. Andritsos and V. Tzerpos, ‘‘Information-theoretic software clustering,’’
IEEE Trans. Softw. Eng., vol. 31, no. 2, pp. 150–165, Feb. 2005.

[22] D. M. Blei, A. Y. Ng, and M. I. Jordan, ‘‘Latent Dirichlet allocation,’’
J. Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003.

[23] V. Tzerpos and R. C. Holt, ‘‘MoJo: A distance metric for software cluster-
ings,’’ in Proc. 6th Work. Conf. Reverse Eng., 1999, pp. 187–193.

[24] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, ‘‘Indexing by latent semantic analysis,’’ J. Amer. Soc. Inf.
Sci., vol. 41, no. 6, pp. 391–407, 1990.

[25] M. F. Porter, ‘‘An algorithm for suffix stripping,’’ Program, vol. 14, no. 3,
pp. 130–137, Mar. 1980.

[26] A. Corazza, S. Di Martino, and G. Scanniello, ‘‘A probabilistic based
approach towards software system clustering,’’ in Proc. 14th Eur. Conf.
Softw. Maintenance Reeng., Mar. 2010, pp. 88–96.

[27] G. Maskeri, S. Sarkar, and K. Heafield, ‘‘Mining business topics in source
code using latent Dirichlet allocation,’’ in Proc. 1st Conf. India Softw. Eng.
Conf. (ISEC), 2008, pp. 113–120.

[28] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, ‘‘Source code retrieval for bug
localization using latent Dirichlet allocation,’’ in Proc. 15th Work. Conf.
Reverse Eng., Oct. 2008, pp. 155–164.

[29] K. Tian,M. Revelle, and D. Poshyvanyk, ‘‘Using latent Dirichlet allocation
for automatic categorization of software,’’ in Proc. 6th IEEE Int. Work.
Conf. Mining Softw. Repositories, May 2009, pp. 163–166.

[30] J. Chang and D. M. Blei, ‘‘Hierarchical relational models for document
networks,’’ Ann. Appl. Statist., vol. 4, no. 1, pp. 124–150, Mar. 2010.

[31] A.Marcus, D. Poshyvanyk, and R. Ferenc, ‘‘Using the conceptual cohesion
of classes for fault prediction in object-oriented systems,’’ IEEE Trans.
Softw. Eng., vol. 34, no. 2, pp. 287–300, Mar. 2008.

[32] Y. Liu, D. Poshyvanyk, R. Ferenc, T. Gyimothy, and N. Chrisochoides,
‘‘Modeling class cohesion as mixtures of latent topics,’’ in Proc. IEEE Int.
Conf. Softw. Maintenance, Sep. 2009, pp. 233–242.

[33] J. Lin, ‘‘Divergence measures based on the Shannon entropy,’’ IEEE Trans.
Inf. Theory, vol. 37, no. 1, pp. 145–151, Jan. 1991.

[34] S. Kullback, Information Theory and Statistics. Mineola, NY, USA: Dover,
1968.

[35] Apache Hadoop. Accessed: Oct. 2020. [Online]. Available: http://
hadoop.apache.org/

[36] LDA: Collapsed Gibbs Sampling Methods for Topic Models. Accessed:
Oct. 2020. [Online]. Available: https://cran.r-project.org/web/packages/lda

[37] T. L. Griffiths and M. Steyvers, ‘‘Finding scientific topics,’’ Proc. Nat.
Acad. Sci. USA, vol. 101, no. 1, pp. 5228–5235, Apr. 2004.

[38] E. Knorr and R. Ng, ‘‘Algorithms for mining distancebased outliers in large
datasets,’’ in Proc. Conf. Very Large DataBases, 1998, pp. 392–403.

[39] S. Ramaswamy, R. Rastogi, and K. Shim, ‘‘Efficient algorithms for mining
outliers from large data sets,’’ in Proc. ACM SIGMOD Int. Conf. Manage.
Data (SIGMOD), 2000, pp. 427–438.

[40] K. Praditwong, M. Harman, and X. Yao, ‘‘Software module clustering as a
multi-objective search problem,’’ IEEE Trans. Softw. Eng., vol. 37, no. 2,
pp. 264–282, Mar. 2011.

[41] Snowball. Accessed: Oct. 2020. [Online]. Available: http://
snowball.tartarus.org

[42] O. Maimon and L. Rokach, ‘‘Clustering methods,’’ in Data Mining and
Knowledge Discovery Handbook. Boston, MA, USA: Springer, 2005,
pp. 321–352.

[43] J. Garcia, I. Krka, C. Mattmann, and N. Medvidovic, ‘‘Obtaining ground-
truth software architectures,’’ in Proc. 35th Int. Conf. Softw. Eng. (ICSE),
May 2013, pp. 901–910.

[44] Apache OODT. Accessed: Oct. 2020. [Online]. Available: https://oodt.
apache.org/

[45] ArchStudio. Accessed: Oct. 2020. [Online]. Available: http://isr.
uci.edu/projects/archstudio/

[46] Z. Wen and V. Tzerpos, ‘‘An effectiveness measure for software clustering
algorithms,’’ in Proc. 12th IEEE Int. Workshop Program Comprehension,
Jun. 2004, pp. 194–203.

KI-SEONG LEE was born in Seoul, South Korea.
He received the B.S. degree in korean literature
in classical chinese from Sungkyunkwan Univer-
sity, Seoul, in 2005, and the M.S. and Ph.D.
degrees in computer science and engineering from
Chung-Ang University, Seoul, in 2011 and 2015,
respectively. From 2006 to 2008, he was a Soft-
ware Engineer with Internet Service Company,
Seoul. Since 2017, he has been an Assistant
Professor with the Da Vinci College of General

Education, Chung-Ang University. His research interests include software
architecture, machine learning, and natural language processing.

CHAN-GUN LEE was born in Seoul, South Korea,
in 1972. He received the B.S. degree in computer
engineering from Chung-Ang University, Seoul,
in 1996, the M.S. degree in computer science from
the Korea Advanced Institute of Science and Tech-
nology (KAIST), Daejeon, in 1998, and the Ph.D.
degree in computer science from The University of
Texas at Austin, Austin, TX, USA, in 2005. From
2005 to 2007, he was a Senior Software Engineer
with Intel, Hillsboro, OR, USA. Since 2007, he has

been a Professor with the Department of Computer Science and Engineer-
ing, Chung-Ang University. He is the author of more than 30 articles and
conference papers. His research interests include software engineering and
real-time systems. He was a recipient of the Korea Foundation of Advanced
Studies (KFAS) Fellowship from 1999 to 2005.

VOLUME 8, 2020 212477

