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ABSTRACT Bug triage processes are intended to assign bug reports to appropriate developers effectively,
but they typically become bottlenecks in the development process—especially for large-scale software
projects. Recently, several machine learning approaches, including deep learning-based approaches, have
been proposed to recommend an appropriate developer automatically by learning past assignment patterns.
In this paper, we propose a deep learning-based bug triage technique using a convolutional neural network
(CNN) with three different word representation techniques: Word to Vector (Word2Vec ), Global Vector
(GloVe), and Embeddings from Language Models (ELMo). Experiments were performed on datasets from
well-known large-scale open-source projects, such as Eclipse andMozilla, and top-k accuracy was measured
as an evaluation metric. The experimental results suggest that the ELMo-based CNN approach performs best
for the bug triage problem. GloVe-based CNN slightly outperforms Word2Vec-based CNN in many cases.
Word2Vec-based CNN outperforms GloVe-based CNN when the number of samples per class in the dataset
is high enough.

INDEX TERMS Bug triage, CNN, GloVe, Word2Vec, ELMo, word representation, word embedding, bug
report, bug fixing, recommending bug fixer, deep learning.

I. INTRODUCTION
The process of finding and assigning an appropriate devel-
oper for a given bug is referred to as ‘‘bug triage.’’When a bug
is found, it is typically documented in a bug report containing
information about the bug. The bug report is then assigned to a
developer who investigates and fixes the related bug. A triager
typically references histories of fixed bug reports and their
fixers (developers) to choose an appropriate developer who
has fixed similar bugs.

Bug triage is challenging in today’s large-scale software
projects where many bug reports are issued daily. Choosing
the appropriate developer is complicated because there are
many developers with diverse skills. For example, more than
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333,000 bugs were reported in the Eclipse project, with
approximately 99 bugs daily from October 2001 to
December 2010 [1]. Identifying an appropriate developer can
be a time-consuming and challenging task for human triagers.
In many cases, manual bug-triaging can be error-prone due
to a lack of knowledge among developers [2]. Many software
engineering studies have investigated the bug triage problem.
Automated techniques for bug triaging that exploit the knowl-
edge from large sets of fixed bugs stored in public repositories
have gained attention in both industry and academia. Many
large-scale open-source projects, such as Mozilla, Eclipse,
and Google, maintain a history of fixed bugs and can be used
to develop automated bug triage systems. Maintaining this
history can become a bottleneck of the development process,
especially for large-scale software projects such as Eclipse
and Mozilla, because it requires manual labor by triagers and
a large number of daily bug reports.
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A bug report contains an identifier, status (fixed or not),
fixer (the developer who fixed the bug), type, title or sum-
mary, detailed description, reporter name, and report time [3].
The fixer information is not entered until the bug is fixed.
Among the information in the bug report, previous stud-
ies commonly use the summary and description of the bug
report. In contrast, other studies also include more sophisti-
cated information, such as developer community network and
expertise scores, by analyzing various data recorded in bug
tracking systems.

Many previous studies have been conducted to propose
automated bug triage systems that recommend a list of devel-
opers appropriate for a given bug report. We classify these
studies into two categories. In the first category, we sum-
marize the studies that did not use machine learning meth-
ods along with minimal or no Natural Language Processing
(NLP) techniques. In the second category, we briefly describe
the trends of the studies that rely on various machine learning
techniques. The literature in this category is discussed in
Section II.

The studies in the first category are not based on machine
learning and use minimal or no NLP; however, they demon-
strated comparable performance. Yadav et al. proposed an
approach that recommends the fixers for bug reports by iden-
tifying similarity among the bug reports and calculating the
developer expertise score [4]. Another technique extracts the
keywords from tags and triage based on the social expertise
of the developers [5]. Peng et al. proposed to use a search
technique exploiting inverted indexed terms from different
topics for the bug triage problem [6]. Recently, Kumari et al.
proposed to use a bug dependency-basedmathematical model
by interpreting a bug’s summary and description in terms of
entropy to develop software reliability growth models [7].

For the second category, various machine learning tech-
niques, including deep learning, have been adopted. They
often useNLP techniques spanning from simple tf-idf to word
embedding methods to process metadata fields, categorical
attributes, and text fields (e.g., summary, description, and
comments) in the bug reports. Section II presents the latest
literature. Classical machine learning techniques, such as
Naïve Bayes, Support Vector Machine (SVM), and k-nearest
neighbor, require hand-crafted features to train the classifier.
However, deep learning techniques can learnmore diversified
features automatically.

In this paper, we restrict our discussion to the deep
learning-based approaches and assess new opportunities
in this direction. Recent approaches based on neural
networks often exploit word-embedding techniques to
convert words and sentences into vector forms. Word
to Vector (Word2Vec), Global Vector (GloVe), Embed-
dings from Language Models (ELMo), and Bidirectional
Encoder Representations from Transformers (BERT) are
word-embedding techniques frequently adopted in recent
NLP-based approaches. As suggested by a recent study by
Stein et al., a selection among different word embedding
techniques such as Word2Vec, GloVe, and fastText may

significantly impact the performance of a text classification
task [8]. Unfortunately, there has been little effort to measure
such impacts on the bug triage problem.

This paper studies the performance of a convolutional
neural network (CNN)- based bug triage system on different
word-embedding techniques and presents an analysis of the
experimental results. The adopted CNN model is derived
from our previous work [9]. We consider three embedding
techniques: two context-insensitive (Word2Vec and GloVe)
and one context-sensitive (ELMo).

The intent of our paper is not to argue that deep learning
is superior to traditional machine learning in an automated
system for the bug triage task. Instead, we investigate the
performance impact based on the chosen word-embedding
technique when the system is built on a CNN model.

To the best of our knowledge, our study is the first to
address the effects of different word-embedding techniques
for the bug triage problem. Furthermore, we review recent
efforts in automated bug triage using deep learning, such as
CNNs and recurrent neural networks (RNNs), and report the
comparison results for their performance on the same dataset.

The main contributions of our paper are as follows:
• We compare three word-embedding techniques in the
context of the bug triage problem: Word2Vec, GloVe,
and ELMo.

• We compare our implementation with others presented
in recent deep learning-based studies, such as Deep
Triage [3], CNN-based approach [9], [10] and ELM
based bug assignment method [11].

The rest of the paper is organized as follows. Section II
presents the literature review and our motivation for improv-
ing the task of bug triage. Section III explains the preprocess-
ing technique and the proposed methodology for bug triage.
Section IV presents the data collection sources, evaluation
metrics, experimental results, comparisons, and evaluation
of the proposed methods. Threats to validity are discussed
in Section V. Some limitation are discussed in Section VI
Finally, we conclude our findings and briefly state potential
future directions in Section VII.

II. RELATED STUDIES AND MOTIVATION
This section provides a brief review of recent studies and the
motivation of our study, assessing the impacts on bug triage
of different embedding techniques.

Anvik et al.’s seminal research on automated bug triage
adopted supervised-learning algorithms and proposed a semi-
automated system to recommend developers for a given bug
report [12]. Ahsan et al. presented a comparison between
information retrieval and machine-learning methods, such as
SVM, to acquire effective compositional recommendation
methods for the bug triage problem [13]. Wu et al. proposed
a k-nearest neighbor based triage system with an expertise
ranking-based approach [14]. Zhou et al. introduced an infor-
mation retrieval-based approach and proposed BugLocator,
which ranks bug reports and source files based on text
similarity [15]. Shokripour et al. proposed an information

213730 VOLUME 8, 2020



S. F. A. Zaidi et al.: Applying CNN With Different Word Representation Techniques to Recommend Bug Fixers

TABLE 1. Literature review of recent studies related to bug triage.

retrieval-based approach that uses commit messages to rec-
ommend appropriate developers [16]. Later, a follow-up
study by Shokripour et al. used the title, description, and
source code information from the bug report for the bug
triage task, adopted weighted unigram noun terms as fea-
tures, and used the bug location and developer expertise for
triage [17]. Alenezi et al. performed bug triage processes
using text mining [18] and used the title of the bug reports
to train the Naïve Bayes classifier. They also used four term-
selection methods to reduce the high dimensionality of the
term space: log odds ratio, chi-square, term frequency rele-
vance frequency, distinguishing feature selector, and mutual
information. Zimmermann et al. used open-source reposito-
ries such as GitHub and Bugzilla [19] to study the impact

of switching bug-detection tools for medium-sized projects.
In Table 1,literature related to bug triage published in the last
five years is reviewed and presented in chronological order.

Yang et al. [20] used the Stanford Topic Modeling Toolbox
(TMT) to analyze datasets and exploit topic similarity for bug
triage. Xuan et al. [21] used tf-idf to extract features and the
Naïve Bayes classifier for classification. Badashian et al. [5]
used the title, description, keywords, project language, and
Stack Overflow as features andmatching keywords for triage.
Dedik et al. [22] used tf-idf for feature extraction and SVM
for the classification task. Jonssons et al. [23] used tf-idf
for feature extraction and stacked generalization for clas-
sifier ensembles. Xuan et al. [24] used tf-idf to tokenize
and extract features and the Naïve Bayes algorithm with
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expectation-maximization for classification. Peng et al. [16]
used inverted indexing to sort the terms extracted from the
summary and descriptions and applied search techniques to
recommend developers.

Following the deep learning trend, several studies have
also used deep learning-based techniques for the bug triage
problem. Lee et al. [9] proposed a CNN-based bug triage
approach using Word2Vec, which provides pre-trained word
vectors for NLP. They observed the performance differences
for both industrial and open-source projects. They attributed
higher accuracy to the controlled quality of the bug reports
and characteristics such as stable and smaller developer pools
for industrial projects. Yin et al. [11] used tf-idf to extract fea-
tures and apply a genetic algorithm-based optimized Extreme
Learning Machine (ELM) for bug triage. The ELM is a
type of feed-forward neural network and does not use the
back-propagation algorithm [25]. Mani et al. [3] proposed a
bi-directional recurrent neural network-based technique for
automatic bug triage. They used an attention mechanism that
learns the syntactic and semantic features from long word
sequences. They used Word2Vec for word representation.
Their experimental results demonstrated that deep learning-
based approaches are superior in performance compared to
classical machine-learning-based approaches.

Recently, Guo et al. [10] proposed a developer activity-
based convolutional neural network (CNN-DA) method for
bug triage that recommends a list of developers. They
used Word2Vec with 200 embedding dimensions for word
representation and applied word segmentation, stop word
removal and stemming technique in the preprocessing step.
Their method was validated on three large datasets; Mozilla,
Eclipse, and Netbeans. They compared CNN-DA with One-
hot CNN [26]. They used summary and description from bug
reports for training the network.

In what follows, we summarize several recent studies on
text classification because their approaches are often similar
to those of the studies on bug triage systems. Kapočiūtė-
Dzikienė et al. applied traditional machine learning and deep
learning methods to the sentiment analysis of Lithuanian
texts. Their analysis results demonstrated the superior per-
formance of traditional techniques over deep learning tech-
niques, although the performance gap was not significant.
Furthermore, deep learning methods were useful for small
datasets [27]. Jang et al. implemented a Word2Vec-based
CNN to classify news articles and tweets. Their experiments
compared the performance of two implementation variants
of Word2Vec, continuous bag-of-words (CBOW), and skip-
gram. The CBOWmodel exhibited higher accuracy for news
articles, but the skip-gram model outperformed the CBOW
model for tweets [28]. Stein et al. studied hierarchical text
classification tasks and assessed the effectiveness of different
strategies—flat or hierarchical—for modeling the category
information. Furthermore, they presented the impact analysis
of various word-embedding techniques such as Word2Vec,
GloVe, and fastText on the hierarchical text classification [8].

Arguably, one of the most important achievements made
in the deep learning-based NLP area is a mechanism for
representing textual words into dense vector space models,
referred to as a word-embedding technique. Young et al. [29]
states that the deep neural networks based on various word-
embedding techniques have demonstrated superior results
on various NLP tasks because they enable multi-level auto-
matic feature-representation learning. However, traditional
machine learning-based NLP approaches depend heavily on
hand-crafted features, which are time-consuming and often
incomplete.

Typical word-embedding techniques frequently adopted in
recent NLP-based approaches includeWord2Vec, GloVe, and
ELMo. The former two approaches are context-insensitive,
and the latter is context-sensitive. Each word is always
mapped to a specific single vector. However, the word
can take on different meanings in different situations with
context-insensitive embedding techniques (which do not con-
sider the context). In contrast, the context-sensitive word-
embedding techniques may generate different vectors for the
same word in different contexts. One of the evident limi-
tations in context-insensitive embedding techniques is that
a polysemous word is forced to share the same representa-
tion, which could pose various disadvantages for applications
using such embedding techniques.

ELMo [30] is one of the most popular context-sensitive
word-embedding approaches. It generates contextualized
representations of a word by concatenating the internal
states of a two-layer bidirectional long short-term mem-
ory (BiLSTM) language model. Due to the advantage of
context-sensitive representations, ELMo has been applied
successfully to many NLP problems and demonstrated per-
formance improvements. For example, ELMo has demon-
strated superb performance in concept extraction [31],
discourse relation recognition [32], and named entity recog-
nition [33]. Qi et al. [34] used ELMo for bi-directional
semantic matching of Chinese sentences.

In recent years, deep learning-based approaches have
become popular and often adopt word-embedding tech-
niques. However, to the best of our knowledge, the impact
of different word-embedding techniques has not been stud-
ied in the context of the bug triage problem despite their
importance. In the next section, we present the experimental
setup designed to measure the performance of a CNN-based
bug triage system on three word-embedding techniques:
Word2Vec, GloVe, and ELMo.

III. METHODOLOGY
This section introduces the framework and training process
of the proposed bug triage system. The general structure
of the bug triage system is depicted in Figure 1. The data
is passed through the preprocessing phase. Then, the pro-
cessed data is converted into word vectors using the word-
embedding technique. These word vectors are the input for
the CNN network. After training on the given word vectors,
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FIGURE 1. CNN Architecture with word representation for the automated bug triage system. The tensor shapes of each layer are explained on the top of
the layer, where L denotes the sentence’s sequence length/maximum length. The tensor shape on convolution and pooling layers shows the structure
for filters 3, 4, and 5. The Dev.n indicates the number of total developers or class. Each convolution and pooling layer has 256 filters. Also, we use
512 number of filters to perform some experiments in this work.

the CNN model makes predictions to recommend a ranked
list of appropriate developers. The details are discussed in the
following subsections.

A. PREPROCESSING
Preprocessing is required to train NLP applications effec-
tively. A bug triage system using a large set of bug reports
from different open-source projects is proposed. The title
and description are used for input data, with other attributes
filtered out. Then, special characters, extra spaces, line
breaks, code snippets, URLs, and directory paths are removed
in the preprocessing phase. Furthermore, the preprocessed
summary and description are converted into tokenized words
to create the input vectors.

B. CNN MODEL WITH WORD REPRESENTATION
The proposed CNN technique consists of the word repre-
sentation by vector, convolutional layer, pooling layer, and
softmax regression layer.

1) WORD REPRESENTATION BY VECTOR
The word representation layer is the first layer that takes the
preprocessed summary and description as inputs and converts
them into vector forms. The layer adopts word-embedding
techniques for the conversion step, and the converted vec-
tors are supplied to a convolution layer designed to learn
the features effectively. The shape of the input vector is
set to the maximum length of the sentence. In Figure 1, L
denotes the sequence length (or maximum length) of the sen-
tence. The adopted embedding technique converts the input
vector to a 300-dimension word representation form. The
resultant vector of the layer has the shape (L, 300). Three
types of word-embedding techniques— Word2Vec, GloVe,
and ELMo—are used in this research and introduced in the
next section.

a: Word2Vec WORD EMBEDDING
Word2Vec converts pre-processed data into vector repre-
sentations. Each word of a bug report is converted using

pre-trainedWord2Vec1 generated fromGoogleNews datasets
with approximately 100 billion words. The pre-trained model
has 300-dimensional vectors for 3 million words and phrases.
Each row in the input matrix of the dataset corresponds to a
single word. Thus, training data are organized into rows of
dimensions and columns of words in a bug report. The length
of the rows is 300, which is consistent with our settings for the
Word2Vec-based vectors. The length of the columns matches
the number of words in the bug reports.

b: GloVe WORD EMBEDDING
In contrast to Word2Vec, GloVe focuses on the ratio of
co-occurrence probabilities instead of the co-occurrence
probabilities themselves. A harmonic function is used while
weighting contexts in GloVe’s implementation: if a context
word is three tokens away, this context word will be counted
as one-third of an occurrence. In contrast, the weighting of a
contextual word is calculated by dividing the distance from
the focus word by the window size in Word2Vec. In GloVe,
the ratio of probabilities offers the information. This informa-
tion is then encoded as vector differences. A weighted least-
squares objective J (cost function) that attempts to minimize
the difference between the dot product of two vectors has
been proposed.

J =
v∑

i,j=1

f (Xij)(wtiw
′
j + bi + b

′
j − logXij)2 (1)

In the above equation, X is the word-word co-occurrence
count matrix. where Xij illustrates the number of times
the word j occurs in the context of word i. wi and bi are
the word vector and bias of word i. Similarly, w′j and b′j
are the context word vector and bias of word j. A weight-
ing function f assigns relatively lower weights to rare
and frequent co-occurrences. GloVe takes the word-context
co-occurrence matrix instead of the whole corpus because

1The pre-trained Word2Vec vectors are publicly available on:
https://code.google.com/archive/p/Word2Vec/GoogleNews-vectors-
negative300.bin.gz
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the co-occurrence counts can be encoded in the word-context
co-occurrence matrix.

In this word representation layer, each word of a bug
report is converted using pre-trained GloVe 2 vectors. These
pre-trained vectors are a word-word co-occurrence file that
contains 840 billion tokens, 2.2 million vocabulary words,
and 300-dimensional vectors. Similar toWord2Vec, each row
in the input matrix of the data sets corresponds to a single
word.

ELMo word embedding: ELMo is a context-sensitive
technique that solves two challenging tasks of learning rep-
resentations. The first challenge is representing the complex
characteristics of a word: syntax and semantics. The second
challenge is model polysemy. The vectors are derived from
biLSTM, and the biLSTM is trained with a coupled language
model objective on a large corpus. ELMo word representa-
tion is more in-depth than other contextualized techniques
because it is the function of all internal bidirectional language
models (biLMs). The biLM layer has two language models:
a forward language model and a backward language model.
The biLM is implemented using LSTM memory cells and
calculates the probability of the sequence by modeling the
probability of a token with the context in both directions (for-
ward and backward) [30]. The pre-trained model of ELMo3

model is used in this study. The embedding has trainable
parameters in which module exposes four trainable scalar
weights for layer aggregation.

2) CONVOLUTION LAYER
Let z ∈ RM be a vector with M dimensions corresponding
to a bug report. Each element in the vector is also a vector
generated by Word2Vec, GloVe, or ELMo embedding. The
convolution layer performs a convolution of input matrix z
with convolutional filters ck , with a different output computed
for each filter. Three different filters with kernel sizes k =
3, k = 4, k = 5 are used to extract features of different
lengths from the input vector.

For each feature window size, the N filters or neurons
are used to learn complementary features. A convolution
operation with a filter ck is applied to the z word vec-
tor to generate a feature map F with stride (S) 1. Zero
padding (P) is used where necessary because the word vec-
tor dimensions are fixed at 300. The feature map F =

{f1, f2, f3, . . . fl . . . , f(n−k+1)} is extracted by applying the
convolution operation on n-length data. In F , fl represents the
lth feature.

The convolution layer uses the embedded word vectors
with tensor shape (None,L, 30, 1) as the input. L is the
maximum length of the sentence or sequence. The shape of
each of the three convolution filters is (height of the filter,
width of the filter, in channels, out channels). The three
types of convolution filters are used with heights of 3, 4, and

2 http://nlp.stanford.edu/data/wordvecs/GloVe.840B.300d.zip
3 The trained model is available at https://tfhub.dev/google/ELMo/2.

These are the embedding from the languagemodel trained on 1 Billion words
benchmark.

5 and widths of 300. There are 1 in-channel and 256 out-
channels because of the 256 filters/neurons in each layer.
For some experiments, we used 512 inputs. After sliding
the convolution filter with stride 1, the tensor of the shape
(None,L − Filterheight , 1, 256) was obtained. The height is
the height of the convolution filter, which can be 3, 4, or 5.
These details are illustrated in Figure 1.

Back-propagation is applied to calculate the gradient,
which is needed to determine the weights used for training
the neural network. The Rectified Linear Unit (ReLU) is
used as a nonlinear activation function to compute the feature
map from the convolution layer. The ReLU is defined as:
f (x) = max (0, x). This function is zero for all negative values
and grows linearly for positive values [35], [36]. There are
many other functions used, such as binary step, linear, and
sigmoid functions. Linear functions and binary step functions
are both linear functions. Although the sigmoid function is
nonlinear, the ReLU function (Which is also nonlinear) is
generally preferred because the sigmoid function suffers from
the problem of a vanishing gradient. We also adopted dropout
to avoid overfitting.

3) POOLING LAYER
The pooling layer is used to sub-sample the features from the
feature map F . Three types of pooling techniques are avail-
able: min-pooling, max-pooling, and average pooling. This
study uses the max-pooling function to select the maximum
value from F because it is widely adopted in the literature
and illustrates high performance. Kernel k is also applied on
the feature map with a Stride (S) of 1. Multiple filters with
varied sizes provide results with a diverse F . As described
in [9], when the number of filters is h, the Fpool is calculated
using the max-pooling function with the following equation:

Fpool = max
1≤j≤h

Fkj (2)

Here, k is the kernel size, and j is the index for the number
of filters.

Similar to the convolution layer, the max-pooling layer
uses three different filters or kernels to sub-sample the feature
map. The size of the kernel is (1,L − Filterheight + 1, 1, 1),
and the filter height can be 3, 4, or 5. These three kernels
apply to the outputs of the convolution layer with a stride of 1.
The resultant tensor with shape (None, 1, 1, 256) is obtained,
which includes the 256 out-channels.

4) SOFTMAX-REGRESSION LAYER
The softmax regression layer concatenates all of the sub-
sampled features Fpool for each kernel size. Softmax regres-
sion is used as an activation function and calculates the
assignment probability of all developers for a given bug
report. Softmax can be defined by the Bayes’ Theorem [37],
and its equation is as follows:

P(Ck |x) =
P(x|Ck )P(Ck )∑n
j=1 P(x|Cj)(P(Cj)

(3)

213734 VOLUME 8, 2020



S. F. A. Zaidi et al.: Applying CNN With Different Word Representation Techniques to Recommend Bug Fixers

Ck is the selected developer class, and Cj is the jth developer
class. P is the probability.
All outputs of the max-pooling layers are concatenated and

produce the tensor of shape (None,768) for the 256 filters for
each filter size. The Softmax classifier completes the training
and produces the output of shape (768, number of classes).
The number of classes depends on the number of fixers in the
datasets. The classifier’s results are the probability score of
each class. The developer that has the maximum probability
value is selected as the first-ranked developer.

Overfitting is a significant challenge while working on a
neural network. Overfitting customizes the weights of neural
networks on training data very tightly [38]. If an overfitted
model is exposed to unseen data, its accuracy can be signif-
icantly worsened compared to the training accuracy. There-
fore, the following techniques are used to avoid overfitting
and improve performance:

Dropout: Dropout randomly drops some units (neu-
rons) during the training process to prevent the many
co-adaptions [39]. Therefore, neural networks forget specific
learned weights during training and prevent the model from
becoming over-trained or over-fitted. The value of dropout
can be a real number between 0 and 1.

l2_regularization: A penalty is applied to the out-
liers to prevent the model from being distorted using
l2_normalization. Outliers increase the mean error. There-
fore, l2 loss with l2 regularization is used to foist the outliers.
The l2 loss with regularization lambda λ is applied to all
model parameters. These parameters are then combined with
the softmax cross-entropywith logits function to calculate the
cost of the model.

Xavier Initializer: Initialization is essential to achieving
convergence. Xavier initialization keeps the scale of gradi-
ent the same for all layers in the network using uniform a
distribution, which maintains activation variance and back-
propagated gradients at controlled levels [40], [41].

Weights ∼ U
[
−

√
6

√
wt + wt+1

,

√
6

√
wt + wt+1

]
(4)

In the above equation, U is the normal distribution, wt is the
tensor weight of an input layer, and wt+1 is the tensor weight
of the output layer.

C. TRAINING THE CNN
The Adam optimizer is used to train the CNN. The Adam
optimizer controls the learning rate using the Kingma and
Ba’s Adam Algorithm [42]. The Adam optimizer uses
momentum (the average of the parameters), which enables
a larger step size during training and converges to the step
size without fine-tuning. It also removes noise and oscillation
using momentum [43].

The dynamic learning rate is computed during training,
starting with a high learning rate. The minimum learning rate
is set to 0.0001, and the maximum learning rate is set to
0.0050. The learning rate is computed for the training of each

TABLE 2. Hyper-parameters for training CNN models.

batch using the following equation:

ρ = ρmin + (ρmax − ρmin)× e
−s
d (5)

In the above equation, ρ is the learning rate, where ρmin and
ρmax represent the minimum and maximum learning rate, and
s is the total step count. The decay d is calculated by the
decay coefficient and the ratio between the total number of
training examples and batch size. Therefore, d = decay ×
((#trainingdata)/(batch − size)). The model is trained on
20 epochs with 0.5 dropout probability and dynamic learning
rate ρ. Different batch sizes and numbers of filters are used
in training to identify superior results. The hyper-parameters
are depicted in Table 2. The results are compared with other
studies in the next section.

The proposed technique is implemented using the Python
scripting language with the Keras library and TensorFlow.

IV. EVALUATION AND RESULTS
This section evaluates the performance of the proposed
method and addresses the following research questions:
• Which is more effective for word representation in
CNN-based bug triage, and does it make any difference
if a different word embedding is used?

• Which method is best to achieve superior top-1
accuracy?

• Does the number of filters in CNN and batch size affect
the performance of Word2Vec-CNN and GloVe-CNN?

• Does data imbalance degrade the performance of learn-
ing, and do increases in sample per class have any effect?

A. DATA COLLECTION
Eclipse and Mozilla are examples of large-scale open-source
projects with a vast corpus of bug reports. Eclipse datasets
(Platform and JDT) and two variants of Mozilla Firefox
datasets were used in this study. One Firefox dataset was
used by Lee et al. [9], and the other Firefox dataset was
used by Mani et al. [3]. These datasets are used to verify the
performance and trend of the proposedmethod by varying the
number of samples (reports) per class (developer). Eclipse’s
Platform dataset has 4,825 bug reports recorded between
2013–08–01 and 2016–07–31. The number of total develop-
ers (or owners) was 225. Eclipse’s JDT dataset and Firefox
dataset were recorded between 2013–10–20 and 2016–10–20
and between 2013–08–01 and 2016–07–31, respectively. The
number of developers for JDT and Firefox were 70 and
848, respectively. The dataset information is summarized
in Table 3. The datasets and model are available on GitHub.4

4https://github.com/farhan-93/bugtriage
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TABLE 3. Dataset used for experiment & evaluation.

The second Firefox dataset [3] has 162,307 bug reports.
Mani et al. [3] used 138,093 for training and 24,214 for
classification tasks. The dataset is available in four formats,
separated by thresholds: 0, 5, 10, and 20. These thresholds
are used to create datasets with different numbers of samples
per class. Therefore, all bug reports are included when the
threshold is zero. The second dataset variant is derived using
a threshold of 5 that includes all developers who have fixed
at least five bug reports; other bug reports and developers
are excluded. Similarly, developers who have fixed less than
10 and 20 bug reports for thresholds 10 and 20 were also
excluded. These four dataset variants are derived from the
Firefox dataset. The processed Firefox dataset is publicly
available on the web page5 in JSON format.

Four more datasets are used for comparing our models with
recent studies. One is the GNU compiler collection (GCC) 6

dataset, which is a small dataset that has 2102 bug reports
with an average of 32 bug reports for each developer which
was used in [11]. The 64% of bug reports are selected for
training, and the rest is used for testing.

The other three datasets have been used in CNN-DA [10],
which have a massive number of bug reports. The
Eclipse7 dataset is the largest dataset with 39669 bug
reports and 771 developers, collected between 2001-10-10
and 2014-12-29. The NetBeans8 dataset has 19149 bug
reports with 265 developers, recorded between 2000-10-21
and 2014-12-31. The last one is the Mozilla9 dataset
having 15501 bug report with 1022 developers, collected
between 1999-03-21 and 2014-12-31. Only those bug reports
are selected that have status ‘‘FIXED’’ and marked as
‘‘CLOSED,’’ ‘‘VERIFIED,’’ and ‘‘RESOLVED.’’ For train-
ing we used 80% of the bug reports and their fixers, and
the remaining 20% were used as a test dataset. The cleaned
datasets and models are available on GitHub.10

B. EVALUATION MEASURE
The proposed method was evaluated by top-k accuracy: top-1
to top-10 accuracies were calculated to make a valid com-
parison with studies [3] and [9]. The top-k accuracy was
calculated using the following equation:

Top− k accuracy =

∑N
i=1 I (reci@k, devi)

|N |
(6)

5http://bugtriage.mybluemix.net/
6https://gcc.gnu.org/bugzilla/query.cgi
7https://bugs.eclipse.org/bugs/
8https://bz.apache.org/netbeans/query.cgi
9https://bugzilla.mozilla.org/query.cgi?
10https://github.com/farhan-93/bugtriage

In the equation, N is the total number of bug reports, and k
is the number of developers in a recommendation list. reci@k
and devi indicate recommended k developers and the fixer
for bug report bi, respectively. The function I returns 1 if the
first parameter (a recommendation list) includes the second
parameter (a fixer) and 0 otherwise.

A 10-fold cross-validation is used to evaluate the pro-
posed model in our paper. The model is validated using the
10 percent of the total data. Recent studies including [5], [6],
[18], [21]–[24], [44], [44], [45] also adopted cross-validation
technique.

C. EXPERIMENTAL RESULTS AND EVALUATION
This section presents the experimental results of the pro-
posed CNN-based bug triager with three-word representa-
tion techniques. First, the comparison of Word2Vec-CNN
and GloVe-CNN is conducted by performing three differ-
ent experiments with different batch sizes and numbers of
filters (neurons). Second, a comparison of Word2Vec-CNN,
GloVe-CNN, and ELMo-CNN with batch sizes of 32 and
256 filters is conducted. Third, we discuss the significance
of the reported results. Finally, the described research ques-
tions are addressed by analyzing the experimental results and
conducting a qualitative analysis.

1) COMPARISON OF Word2Vec-CNN AND GloVe-CNN
Several experiments with different hyper-parameter val-
ues were conducted to make valid comparisons between
two different embedding-based models: Word2Vec-CNN and
GloVe-CNN. The experimental results illustrate how dif-
ferent batch sizes and numbers of filters affect the accu-
racy of CNN in the bug triage problem. The following
three experiments were performed, where G and W rep-
resent GloVe-CNN and Word2Vec-CNN based approaches,
respectively:

G1/W1:GloVe-CNN andWord2Vec-CNNwere trained on
batch size 32 and 256 filters (neurons).

G2/W2:GloVe-CNN andWord2Vec-CNNwere trained on
batch size 64 and 256 filters (neurons).

G3/W3:GloVe-CNN andWord2Vec-CNNwere trained on
batch size 32 and 512 filters (neurons).

Although further experiments with different parameters
other than the above could be conducted, we only report the
results for the above experiments because the performance
pattern can be observed. Each experiment was repeated five
times, and the average top-1 to top-10 accuracy is depicted
in Figures 2, 3, and 4. The top-k values are depicted on the
x-axis, and percent accuracy values are depicted on the y-axis.

Figure 2 illustrates the comparison of the three experi-
ments on the JDT dataset. GloVe has the highest accuracy in
all experiments. G3 has a significant difference in accuracy
until top-7 and a negligible difference from top-8 to top-10.
Nevertheless, Word2Vec has superior results, and W2 and
W3 have similar accuracy. Figure 3 illustrates the results of
GloVe-CNN and Word2Vec-CNN for the Platform dataset.
GloVe-CNN emphatically outperformsWord2Vec. Similarly,
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FIGURE 2. Comparison of all three experiments on JDT dataset.

FIGURE 3. Comparison of all three experiments on Platform dataset.

top-8 to top-10 accuracy of G2 and G3 are negligibly differ-
ent, with G3 superior for less than top-8 accuracy. W1 and

W2 illustrate similar top-k accuracy, while W3 has higher
accuracy than both W1 and W2.
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FIGURE 4. Comparison of all three experiments on Firefox dataset [9].

Figure 4 Figure 4 presents the comparison of experiments
on the Mozilla Firefox dataset. GloVe-CNN is superior to
Word2Vec-CNN in all cases. Comparing the GloVe-CNN
experiments, G2 is significantly superior to G3 and G1. This
observation differs significantly from the results of other
datasets (JDT and Platform) where G3 is superior to G2.
As previously described, Firefox [9]

2) COMPARISON OF ELMo-CNN WITH
Word2Vec-CNN AND GloVe-CNN
This section presents a comparison between the suggested
models based on the three different embedding techniques:
ELMo-CNN, GloVe-CNN and Word2Vec-CNN. The param-
eters for ELMo-CNN experiments are the same as W1 and
G1. The comparison results are depicted in Tables 4 and 5.
As previously described, we used two Firefox datasets. The
dataset used in the experiment depicted in Table 4 is from
[9], and the dataset used in Table 5 is from [3]. The latter
dataset is larger than the former and contains thresholds indi-
cating the minimum number of samples per developer. The
experimental results illustrate that ELMo-CNN outperforms
Word2Vec-CNN and GloVe-CNN. The top-1 to top-10 accu-
racy is not significantly different for the JDT dataset. How-
ever, ELMo-CNN significantly outperformsWord2Vec-CNN
and GloVe-CNN. Nevertheless, ELMo-CNN presents a much
higher top-1 accuracy for the Platform and Firefox datasets.

The experimental results of the larger Firefox dataset with
thresholds present that ELMo-CNN demonstrates the highest
performance. Table 5 presents the top-1 to top-10 accuracy for

each approach; however, the DeepTriage results are depicted
only for top-10 accuracy because Mani et al. [3] reported
the top-10 case only. The results present that ELMo-CNN
outperforms GloVe-CNN, and GloVe-CNN outperforms
Word2Vec-CNN. The accuracy significantly increases with
the number of bug reports per developer. A detailed dis-
cussion of the results is included to answer the research
questions.

3) SIGNIFICANCE OF RESULTS
We performed several tests to determine whether the results
are statistically significant. A well-known non-parametric
Friedman test is adopted to verify the overall significance
of the results. The iterated results of Word2Vec-CNN,
GloVe-CNN, and ELMo-CNN are considered as separate
groups. Furthermore, a post hoc test is conducted for more
precise statistical significance of the results. For the Nemenyi
post hoc test, we count the repeated top-k accuracy’s results of
CNN variants with significant comparisons when the overall
Friedman’s test was significant. We use a significance level
of α = 0.05 for all tests in this study. We calculate the
mean-rank for each CNN variant to determine the significant
differences between them. These significance tests serve as
evidence for other research questions.

JDTDataset: The experimental results demonstrate minor
differences in the mean top-k accuracy. For top-1 accu-
racy, ELMo has the highest performance, and GloVe out-
performs Word2Vec. For top-1 accuracy, the Friedman test
has a p-value of less than 0.05, indicating the presence of a
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TABLE 4. The average top-1 to top-10 Accuracy obtained on JDT, Platform and Firefox [9] projects across the 10-fold cross validation. The best performing
values are shown in bold.

TABLE 5. The average top-1 to top-10 Accuracy obtained on Firefox project used by Mani et al. [3] across the 10-fold cross validation. The best
performing values are shown in bold.

significant difference in results. The Nemenyi test demon-
strates that ELMo has significantly different values than
Word2Vec because the p-value is less than 0.05. However,
no significant difference is found between ELMo and GloVe.
The values of the five repetitions are illustrated in Figure 5 (a)
using a boxplot. The same test is performed for top-5 accu-
racy. The Friedman test demonstrates an insignificant dif-
ference in results. Nevertheless, ELMo-CNN outperforms
the others. Furthermore, none of the p-values is less than
0.05 for the pairwise comparison of all three techniques.

Figure 5 (b) illustrates a boxplot for top-5 accuracy. The
significant test results for top-10 accuracy are equivalent to
those of top-5 accuracy. Figure 5 (c) illustrates the boxplot
for top-10 accuracy.

Platform Dataset: The Friedman test demonstrates a
p-value of less than 0.05 for top-1 accuracy. The result of the
Nemenyi test demonstrates the significance of ELMo-CNN
over Word2Vec-CNN. However, GloVe-CNN demonstrates
an in significant difference in both Word2Vec-CNN and
ELMoCNN. For top-5 and top-10, the Friedman’s p-values
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FIGURE 5. Box and Whisker plot for comparing the performance of Word2Vec-CNN, GloVe-CNN, and ELMo-CNN on JDT, Platform, and Firefox [9]
datasets. Columns 1 to 3 show the top-1, top-5, top-10 accuracies, respectively. Rows 1 to 3 show plots for JDT, Platform, and Firefox datasets,
respectively.

are greater than 0.05, which suggests an insignificant dif-
ference in the results; accordingly, the post hoc test is not
performed. Figure 5 (d), (e), and (f) illustrate the boxplots
for top-1, top-5, and top-10 accuracies, respectively.

Firefox Dataset: The Friedman test suggests that top-1
accuracy is significantly different because the p-value is less
than 0.05, which is also true for top-5 accuracy. The Nemenyi
test demonstrates that ELMo has significantly different accu-
racy values than Word2Vec. Nevertheless, GloVe-CNN is
not significantly different from Word2Vec and ELMo-CNN.
The Friedman test produces a p-value greater than 0.05 and

illustrates insignificantly different results for top-10 accuracy.
Figures 5 (g), (h), (i) illustrate the boxplots for top-1, top-5,
and top-10 accuracies, respectively.

4) ADDRESSING THE RESEARCH QUESTIONS
RQ 1: Which is more effective for word representation in
CNN-based bug triage, and does it make any difference if
a different word embedding is used?

The experimental results illustrate that the CNN with
ELMo word representation achieves the highest accuracy
among the three approaches. As previously described,
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ELMo is a context-sensitive word representation, whereas
Word2Vec and GloVe are context-insensitive techniques.
Context-sensitive word presentation assists the CNN model
in learning the feature map more effectively than the context-
insensitive technique, resulting in higher triage accuracy.

The experimental results suggest that GloVe-CNN outper-
forms Word2Vec-CNN. GloVe is more effective at exploiting
parallelism than Word2Vec; thus, GloVe can be beneficial
when handling a large set of training data [46]. Further-
more, GloVe can handle negative examples more effectively
than Word2Vec. Keywords may be overlapped in many bug
reports [44]. In contrast to the method in [3], it is difficult for
CNN to remember long sentence semantics. However, CNN
performs well with GloVe properties compared toWord2Vec.
GloVe learns its vectors through dimension-reduction on the
co-occurrence counts matrix; however, Word2Vec learns its
vectors by improving the loss of predicting the words from
context words [47]. As depicted in Figures 2, 3, and 4,
the GloVe-based CNN technique achieves remarkable top-
k accuracy and supports these arguments. The boxplots also
illustrate that the ELMo-CNN achieves high mean-accuracy
than GloVe-CNN and Word2Vec CNN.

RQ 2: Which method is the best to achieve superior
top-1 accuracy?

ELMo-CNN has the highest top-1 accuracy, with signifi-
cant differences for all datasets. ELMo-CNN also has higher
accuracy than Word2Vec-CNN and GloVe-CNN for the JDT
dataset but with a negligible difference. The experimental
results on the Firefox dataset with thresholds demonstrate
significant differences in top-1 accuracy. Figures 2, 3, and
4 illustrate that GloVe-CNN performs well for top-1 accu-
racy with a noticeable difference for JDT, Platform, and
Firefox datasets in comparison to Word2Vec-CNN. G2 and
G3 demonstrate modest performance for all datasets. G3 out-
performs G2 and G1 for top-1 accuracy. The Demšar dia-
grams are depicted in Figure 6; the critical distance is
calculated using a 95% confidence level (p-value ≤ 0.05).
The Demšar diagram illustrates the average method ranks
with critical distance above the rank line. The variants of
CNN are connected in the Demšar diagram, which demon-
strates an insignificant difference in top-1 accuracy. The
Demšar diagram supports this research question partially
and reveals a significant difference for ELMo-CNN over
Word2Vec-CNN, whereas GloVe-CNN does not demonstrate
any significance. ELMo-CNN outperforms GloVe-CNN, but
it does not demonstrate any significant difference with a
95% confidence interval. These experimental results suggest
that ELMo-CNN has the highest performance, followed by
GloVe-CNN and thenWord2Vec-CNN. ELMo-CNN demon-
strates a significant difference in accuracy compared to
Word2Vec-CNN. The ELMo-CNN outperforms GloVe-CNN
but does not illustrate any significant difference for top-1
accuracy.

RQ 3:Does the number of filters in CNN and batch
size affect the performance of Word2Vec-CNN and
GloVe-CNN?

FIGURE 6. The Demšar diagram compares all three variants of CNN on all
datasets for top-1 accuracy. The CD is the critical distance calculated by
the Nemenyi test. The calculated CD value is 1.6873 with α = 0.05.
Sub-figure (a) shows the comparison for JDT, sub-figure (b) shows on
comparison on Platform dataset, and sub-figure (c) shows the
comparison on Firefox [9] dataset.

The experimental results of the JDT dataset demonstrate
that G3 performs better for top-1 to top-7 accuracies. G2
(GloVe- CNNwith 256 filters and 64 batches) exhibits similar
accuracy for top-8 to top-10. Observations of the Platform
dataset demonstrate comparable results. The Firefox dataset
exhibits different results for G2 and G3. G2 and W2 out-
perform G3 and W3, respectively. Recall that our CNN is
a shallow network. The batch size and number of filters are
key parameters among the various hyper-parameters for CNN
training.

If a complex and big dataset is given to a small CNN,
then the batch size should be substantial. However, for
small datasets, a strategy using the small batch size with
many filters is a superior choice. Recall that the Firefox
dataset is more substantial than either the JDT or Plat-
form datasets. Experimental results support the previous
statements. It is observed that G2 and W2 outperform
G3 and W3, respectively, on the Firefox dataset. However,
for the JDT and Platform datasets, G3 and W3 outper-
form G2 and W2, respectively. Word2Vec-CNN does not
outperform GloVe-CNN.
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From these observations, we can argue that the num-
ber of filters and batch size affect the performance of
Word2VecCNN and GloVe-CNN. Large numbers of filters
are recommended for small datasets such as JDT and Plat-
form, where the number of bug reports per developer is large.
When dealing with a large dataset and the number of bug
reports per developer is small, we observed a greater increase
in its batch size.

RQ 4: Does data imbalance degrade the performance
of learning and do increases in sample per class have any
effect?

Data imbalance in training can degrade the performance
of machine learning. The JDT dataset contains 1465 bug
reports and 70 developers or approximately 20 bug reports
per developer on average. However, some developers fixed
as few as five bug reports, which severely negatively affects
the performance of CNN-based models.

All three techniques are tested on the Firefox dataset [3]
with different thresholds to confirm the validity of the
previous assertion. ELMo-CNN, Word2Vec-CNN, and
GloVe-CNN perform well; however, ELMo-CNN demon-
strates a significant accuracy difference. The Friedman
test and Nemenyi test demonstrate the significance of the
stated results. The top-1 accuracy results passed the Fried-
man and Nemenyi tests, which supports the assertion that
ELMo-CNN is significantly different from Word2Vec-CNN
and GloVe-CNN. The Friedman test has a p-value of 0.015,
which is less than 0.05. The pairwise comparison using the
Nemenyi test has p-values of less than 0.05 with ELMo-CNN
for top-1 for all thresholds. Furthermore, ELMo-CNN
demonstrates significant top-5 accuracy for all thresholds
with a p-value of less than 0.05. No significant difference
exists between Word2Vec-CNN and GloVe-CNN for top-5
and top-10 accuracy.

Similar results are observed for top-10 accuracy on
all thresholds. The results demonstrate that ELMo-CNN
achieves significantly high accuracy than Word2Vec-CNN
and GloVe-CNN. The accuracy results demonstrate a small
difference in top-k accuracy for a threshold minimum of 0
samples per class. Top-k accuracy increases as the num-
ber of samples per class increases. The top-10 accuracy of
GloVe-CNN is 45.32%, 47.64%, 51.67%, and 59.92% for
minimum samples per class of 0, 5, 10, and 20. The top-10
accuracy of Word2Vec-CNN is 43.63%, 45.91%, 51.06%,
and 58.94% for thresholds of 0, 5, 10 and 20. The findings
are similar for top-1 accuracy. ELMo-CNN has the highest
top-10 accuracy results at 50.73%, 61.41%, 67.90%, and
72.65% for thresholds of 0, 5, 10, and 20. ELMo-CNN
has the highest top-1 accuracy, with significant differences
compared to Word2VecCNN and GloVe-CNN. GloVe-CNN
outperforms Word2VecCNN. Word2Vec-CNN outperforms
GolVe-CNN only for a threshold of 20. GloVe-CNN has
higher accuracy for top-5 and top-10 accuracy with negligible
differences.

The above results suggest that the data imbalance
may degrade the performance of learning. Furthermore,

the increase in training samples per class yields superior
performance.

D. COMPARISONS WITH OTHER RESEARCH
All three models are compared with few previous stud-
ies. Table 4 presents the comparison of ELMo-CNN,
GloVe-CNN, and Word2Vec-CNN with the results of
Lee et al. [9]. The results are comparedwith batch 32 and 256
filters.

ELMo-CNN significantly outperforms that of Lee et al.,
which is our previous approach [9]. In Table 4, the
ELMo-CNN results reveal insignificant differences com-
pared to GloVe-CNN; however, they are significantly supe-
rior to Lee et al. [9] and Word2Vec-CNN for the JDT
dataset. ELMo seems to be the best choice among all
three models, and GloVe-CNN outperforms Word2VecCNN.
Word2Vec-CNN and Lee et al.’s approach [9] are almost
identical, except the former uses the pretrained embedding
vectors, and the latter is trained on the entire bug dataset
used in the experiments. In the Platform and Firefox datasets,
the approach of using pre-trained vectors outperforms the
approach trained over the dataset. However, there is no clear
winner between Word2Vec and Lee et al. [9] with the JDT
dataset.

The results in Table 5 present a small difference in
percent accuracy between GloVe and Word2Vec. Fire-
fox [3] is a large dataset compared to other datasets.
ELMo-CNN presents a significant difference for all thresh-
olds. GloVe-CNN performs well for thresholds of 0, 5,
and 10. Word2Vec-CNN performs more effectively on a
threshold of at least 20 samples per class when com-
pared to GloVe-CNN. All three approaches outperform the
approach proposed by Mani et al. [3] with noticeable differ-
ences. Table 5 presents detailed experimental results, and the
best values are depicted in bold.

Table 6 shows the comparative results of the GCC dataset,
which was used in [11]. The dataset was split in 66%
and 34% for the training set and testing set. The ELM
approach performs better than our techniques. Word2Vec-
CNN, GloVe-CNN, and ELMo-CNN perform better than
SVM,Naive Bayes, C4.5 (decision tree), andKNN.However,
ELMo-CNN shows a small difference in accuracy results with
ELM. The reported results are average of 5 experiments. The
top-5 and top-10 accuracy are also shown in Table 6.
Table 7 shows the comparison results of our models with

CNN-DA, bag of words + Naïve Bayes (BOW+NB), and
one-hot CNN methods that were reported in [10]. We use
the first 80% bug reports for training, and the last 20%
is used for testing based on a chronological order of the
submission time. The batch size is set to 50 to meet the
parameter requirements. Overall, ELMo-CNN and GloVe-
CNN perform better than the CNN-DA for all top-k accu-
racy except on Eclipse Dataset. The Word2Vec-CNN results
show a negligible difference in top-1 to top-10 accuracy.
The CNN-DA performs well on the Eclipse dataset for top-1
accuracy with a small difference. However, the ELMo-CNN
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TABLE 6. The average top-1 to top-10 Accuracy obtained on Yin et al.’s
dataset [11]. The dataset is split and 34% of data is used for testing. The
best performing values are shown in bold.

shows better results from top-2 to top-10 accuracy. The
top-10 accuracy results show a notable difference between
the performance of CNN-DA and ELMo-CNN. For NetBeans
and Mozilla datasets, ELMo-CNN and GloVe-CNN perform
better than the CNN-DA method. A small difference is found
between CNN-DA and ELMo-CNN results from top-8 to top-
10 accuracy for NetBeans dataset, and CNN-DA shows better
top-10 accuracy results than ELMo-CNN. The Word2Vec-
CNN shows similar performance with small differences in
accuracy results because CNN-DA also used Word2Vec rep-
resentation with 200-dimensions whileWord2Vec-CNN used
pre-trained vector for word-embedding with 300-dimensions.
TheGloVe-CNN and ELMo-CNN show better results most of
the time throughout the experiment compared to Word2Vec.
The superiority of the GloVe and ELMo is already explained
in RQ 1. Therefore, ELMo-CNN seems to be an appropriate
candidate to achieve good top-1 accuracy.

E. COMPLEXITY AND SCALABILITY
Deep learning methods are costly due to their onerous mem-
ory storage requirements, long learning time, and computa-
tional complexity. For our study, we used pre-trained vectors,
which do not require significant time to embed the word
vectors. The working CNN network model is shallow and
not very complicated in terms of storage. We executed the
experiments on an Intel Core i7machinewith a GeForceGTX
1080Ti GPU and 64 GB of RAM. Two to three hours were
required to embed and train the network on Firefox datasets.
For the JDT dataset, the model required less than 10 and
20 minutes for embedding and training the model on the JDT
and Platform datasets, respectively. The same model required
approximately 1 hour and 15 minutes to train the model on
the Firefox [9] dataset. We can conclude that the model is not
computationally complex.

Furthermore, our proposed technique is scalable.We tested
on a system with less main memory (16 GB) and a lower-
performing GPU (GeForce GTX 1050). Several hours were
required for embedding and training, which demonstrates
the scalability of the method, which can be readily used for

different datasets.Most of the bug reports have title/summary,
description, and fixer information. All open-source projects
and industrial projects have datasets in Extensible Markup
Language (XML) format, which can be easily converted
to Comma Separated Values (CSV) format. Therefore, this
method can be adapted to any dataset or industrial project.

V. THREATS TO VALIDITY
The following are possible threats to validity.
• Only the summaries and descriptions from bug reports
were used. The performance of the proposed work is
validated on open source projects. The summaries and
descriptions are used as input, while the owner infor-
mation is used as a class attribute. Many recent stud-
ies used only these attributes to solve the bug triage
problem. Bug triage is a software engineering problem
that is being solved by NLP techniques. In contrast,
additional information might help the machine to learn
more effectively and improve the results, but storage and
time complexities would increase.

• This study uses the pre-trained vectors for GloVe and
Word2Vec embedding and compares the results with [3].
A large corpus of the Firefox dataset for training the
Word2Vec model was used, which is publicly available.
Mani et al. [3] separate the unassigned, unresolved, and
unfixed bug reports from a large corpus to train the
Word2Vec model and fixed and resolved bug reports to
train the classifier. The same dataset is used to train our
CNN models. The dataset for the Word2Vec model’s
training is not used in this study because the proposed
method uses pre-trained vectors. Therefore, the validity
of the comparison with the proposed work can be ques-
tioned. Nonetheless, the comparison is valid because
both studies use the same dataset to train the classifier.

• The proposed method was not tested on industrial
projects. We do not argue that our method is best for
industrial projects because industrial projects may fol-
low different patterns and have different characteris-
tics than open-source projects. As previously described,
this study is an extension of the technique presented
by Lee et al. [9], which tested the proposed method
on industrial projects. Therefore, we hope that our
method is tested on industrial projects and yields similar
improvements observed in this study.

• Another question can be raised as to why the proposed
work has been compared with only few studies. Com-
paring our results with many other studies is not possible
because most of the other studies used different datasets.
Even in the cases where the same project is considered,
the data collection duration or periods are not matched.
In [3], a benchmark dataset was created that contains a
large-scale dataset of three open-source projects. There-
fore, the Firefox dataset is used to validate this work.

• Yet another risk is related to the difficulties with repro-
ducing the training and testing datasets utilized in the
previous research. The cleaned datasets are unavailable
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TABLE 7. The average top-1 to top-10 Accuracy obtained on Guo et al.’s dataset [10]. The dataset is split and 20% of data is used for testing. The best
performing values are shown in bold.

in many cases. Most researchers reported limited infor-
mation only such as Bugzilla main page/source URL,
time interval, resolution, and status, etc. Especially,
the cleaning recipes are not explained in detail in most
previous research, hence it is hard to make sure that
we are performing the experiments on the same dataset.
We tried our best to reproduce the dataset by following
the information provided in the previous research; how-
ever, we should admit that there still can be a chance that
different bug reports might be selected during cleansing
of data.

• ELMo-CNN is only compared to the other tech-
niques using one parameter set (32 batch size and 256
filters). ELMo is a context-sensitive technique; how-
ever, Word2Vec and GloVe are context-insensitive tech-
niques. The word vectors of Word2Vec and GloVe are
available with 300 dimensions. The ELMo generates
the 1024-dimensional embedding vector, but the dimen-
sions of ELMo are reduced to 300 dimensions. For a
valid comparison, only Word2Vec and GloVe embed-
ding techniques were used, and they were sufficient to
observe the trend between two parameters (the batch size
and number of filters).

• We did not use batch sizes smaller than 32 or larger
than 64 for the final results. We performed experiments
with smaller batch sizes of 10 and 16, which exhibited
the lowest performance and thus did not include those
results. Larger batch sizes demonstrated a similar trend,

so we did not include those results either. By increasing
batch size, deep learning performance is increased, but
significant memory is required for computation. Com-
parative studies also used a batch size of 32, so we used
batch sizes of 32 and 64; these are sufficient to identify
trends. Performance is increased by increasing the batch
size for more massive datasets. The use of a small batch
size is a superior choice if the dataset is not too large.

VI. LIMITATIONS
This section describes the limitations of our work. Most
automated approaches for the bug triage which are utilizing
machine learning techniques like our study typically exploit
the information of resolved bugs in the past. Such approaches
suggest a set of developers based on the participation records
of the developers in bug fixing activities, hence their rec-
ommendations do not include new developers who do not
appear in the history of the resolved bugs. For example,
a new developer hired by an organization is not recorded as
a fixer for any resolved bugs, hence the developer will not
be considered as a candidate by the automated triager. Our
approach also suffers from this limitation.

Another point is that typical bug triage dataset is highly
imbalanced and skewed. There exist many developers who
has fixed very few bug reports. These developers can be
treated as outliers by the machine learner during the training,
hence these outliers may negatively affect the performance of
the models.
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The above problems can be addressed by a sub-field of
machine learning known as one-class classification, which
is widely used for detecting outliers or anomalies. One-class
classification is an unsupervised learning algorithm that can
model normal examples to classify a new input as either
normal or abnormal.

The one-class classification technique can be useful for
imbalanced multi-class datasets where few instances are
available for minority classes, or no coherent structure exists
to separate the class that could be learned by a supervised
technique. We are intended to use the one-class classification
technique in the future to address the imbalance problem in
the context of the bug triage application.

The one-class classification technique can also be used for
addressing the issue of new developers. We can fine-tune the
existing model with a new developer’s feature using one-
class classification, hence the model can be manipulated to
recommend a new developer. Perera et al. [48] have pro-
posed the idea of learning deep features using the one-class
classification for anomaly detection and novelty detection,
which showed good performance. The proposed methods
operated on top of CNN and produced descriptive feature
space while maintaining a low intra-class variance in the
feature space for the target class. Hempstalk et al. [49] used
one-class classification for the multi-class classification task.
They collected positive examples of each class for train-
ing and testing. They evaluated their five techniques; multi-
class classification (biased), two-class classification (biased),
multi-class classification (unbiased), two-class classification
(unbiased), and one-class classification. The one-class classi-
fication performed better than the unbiased multi-class clas-
sifier because the one-class classification is intended to deal
with new classes and learns only the target class during the
training. So, we can use combinations of multiple one-class
classifiers for multi-class classification problems.

In summary, we are planning to adopt one-class classi-
fier to improve the performance of the automated bug-triage
approach in our future research.

VII. CONCLUSION
Bug triage is a crucial software engineering problem. In this
paper, we proposed a CNN-based technique that uses two
context-insensitive and one context-sensitive word represen-
tation techniques. The pre-trained vectors Word2Vec and
GloVe are used for word embedding, whereas the trainable
ELMo model is used for context-sensitive word embedding.
The proposed technique learns the summaries and descrip-
tions from bug reports and recommends a ranked list of ten
appropriate developers. We use top-k accuracy as an evalu-
ation metric. For the experimental analysis, the bug reports
are collected from Eclipse’s Platform, Eclipse’s JDT, and
Mozilla’s Firefox datasets, GCC and NetBeans. The exper-
imental results demonstrate that ELMo-CNN outperforms
GloVe-CNN andWord2Vec-CNNmodels. The Friedman and
Nemenyi tests were conducted to confirm the significance of
the results. The experimental results demonstrate significant

differences in top-1 accuracy. The ELMo-CNN demonstrated
significant top-1 and top-5 accuracy compared to the other
two techniques for large Firefox datasets except for the
minimum 0 class threshold. The Nemenyi test demonstrated
that ELMo-CNN has significant top-1 accuracy compared to
Word2Vec-CNN. However, there was no significant differ-
ence in top-1 accuracy for GloVe-CNN. The mean-accuracy
results demonstrate that ELMo-CNN is superior for all top-1
to top-10 accuracies. Word2Vec-CNN achieves higher top-1
accuracy compared to GloVe-CNN, where the number of
samples is at least 20 for each class; otherwise, GloVe-CNN
outperforms Word2Vec-CNN. In all cases of large Firefox
datasets except 0 thresholds, the Nemenyi test demonstrates
higher performance for ELMo-CNN compared to the other
two techniques for top-1 and top-5 accuracy.

Furthermore, three types of experiments were conducted
with different parameters for GloVe-CNN and Word2Vec-
CNN to study the trend between batch size and number of
filters in the CNN. The comparison of experimental results
finds that if a large dataset with a considerable number of
classes is available, increasing the batch size is a suitable
option. If a small dataset is available, then increasing the
number of filters is a suitable option. We also conclude that
context-sensitive word-embedding techniques yield superior
results to context-insensitive techniques. The ELMomodel is
trainable because it uses the softmax classifier. ELMo model
has four trainable scalar weights for layer aggregation so that
the ELMo model can be fine-tuned on the given training data
during the embedding task. A shallow network was used for
the training of the classifier. Finally, the technique is scalable
and can be easily adapted to any dataset.

In the future, we plan to experiment with other forms
of neural networks for bug triage problems, such as a bio-
inspired spiking CNN (SCNN). Such a network lies in the
third generation of neural networks and is considered higher
performing than the traditional, non-spiking neural networks
because of its bio-realism. Moreover, we intend to use an
extensive corpus of bug data in the future. Also, we are
intended to improve the triage system to assign the new
developers to the bug reports.
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