
J Appl Biol Chem (2020) 63(3), 283−290

https://doi.org/10.3839/jabc.2020.038

Online ISSN 2234-7941

Print ISSN 1976-0442

Article: Food Science

Neuroprotective effect of Aster yomena (Kitam.) Honda against
hydrogen peroxide-induced oxidative stress in SH-SY5Y cells

Min Jeong Kim1  · Ji Hyun Kim2  · Sanghyun Lee3  · Eun Ju Cho1  

· Hyun Young Kim2 

Received: 6 August 2020 / Accepted: 17 September 2020 / Published Online: 30 September 2020

© The Korean Society for Applied Biological Chemistry 2020

Abstract Oxidative stress is one of the contributors of neuro-

degenerative disorders including Alzheimer’s disease. According

to previous studies, Aster yomena (Kitam.) Honda (AY) possesses

variable pharmacological activities including anti-coagulant and

anti-obesity effect. In this study, we aimed to determine the

neuroprotective effect of ethyl acetate fraction from Aster yomena

(Kitam.) Honda (EFAY) against oxidative stress. Therefore, we

carried out 3-(4,5-dimethylthiazol-2-yl)-2,3-diphenyl tetrazolium

bromide, lactate dehydrogenase (LDH), and 2',7'-dichlorofluorescin

diacetate assays in SH-SY5Y neuronal cells treated with hydrogen

peroxide (H2O2). H2O2-treated control cells exhibited reduced

viability of cells, and increased LDH release and reactive oxygen

species (ROS) production compared to normal cells. However,

treatment with EFAY restored the cell viability and inhibited LDH

release and ROS production. To investigate the underlying

mechanisms by which EFAY attenuated neuronal oxidative

damage, we measured protein expressions using Western blot

analysis. Consequently, it was observed that EFAY down-

regulated cyclooxygenase-2 and interleukin-1β protein expressions

in H2O2-treated SH-SY5Y cells that mediated inflammatory

reaction. In addition, apoptosis-related proteins including B-cell

lymphoma-2-associated X protein/B-cell lymphoma-2 ratio,

cleaved caspase-9, and cleaved-poly (ADP-ribose) polymerase

protein expressions were suppressed when H2O2-treated cells were

exposed to EFAY. Our results indicate that EFAY ameliorated

H2O2-induced neuronal damage by regulating inflammation and

apoptosis. Altogether, AY could be potential therapeutic agent for

neurodegenerative diseases.
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Introduction

As the average life expectancy of the world population is

increasing, the incidence of neurodegenerative diseases is also

increasing in parallel. According to the World Health Organization,

in 2016, about 50 million people lived with dementia and the

number is estimated to reach 152 million in 2050 [1]. Neuro-

degenerative diseases are characterized by progressive dysfunction

of neuronal system, in which damaged neurons lead to the decline

of cognitive function [2]. Although the mechanism of pathogenesis

in neurodegenerative diseases has not been fully revealed,

oxidative stress is considered as an important risk factor [3].

Oxidative stress is generated in living organisms when the

homeostasis between the production of free radicals and antioxidant

defense system gets out of balance [4]. Previous studies demonstrated

that oxidative stress exerts cellular damage including DNA injury,

inflammation, and apoptosis of brain cells including neuronal,

glial, and cerebrovascular cells [5-7]. High concentrations of

reactive oxygen species (ROS) can cause damage to cellular

lipids, proteins, and DNA because of strong reactivity [8].

Hydrogen peroxide (H2O2) is generated in mitochondria during

oxygen consumption and reacts with ions of iron or copper to
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form hydroxyl radical (·OH), which can cause direct damage to

proteins and DNA [9,10]. Furthermore, the brain is particularly

susceptible to the action of ROS. The brain has high polyunsaturated

fatty acids (PUFAs) content and ROS preferentially oxidizes

PUFAs resulting in lipid peroxidation [11,12]. These facts imply

that the brain produces a large amount of ROS compared to other

organs and ROS can induce oxidative damage in the brain.

Aster yomena (Kitam.) Honda (AY) is a perennial plant, widely

distributed in Asia. It is used as traditional medicine and edible

herb in Korea. According to previous studies, AY possesses

variable pharmacological activities such as anti-coagulant and

anti-obesity effect [13,14]. It has been demonstrated that AY

showed radical scavenging effect through in vitro assays against

1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl (·OH), and

superoxide (O2

-) radicals [15]. According to Bae and Kim [16],

ethyl acetate fraction of AY (EFAY) was the most effective

fraction with antioxidative activity compared to other extract and

fractions and it was believed that there were abundant active

compounds in EFAY, with strong pharmacological activities [16].

Nevertheless, until date, none of the studies have examined the

neuroprotective effect of EFAY against oxidative stress in

neuronal cells. Hence, we aimed to investigate the protective

effect of EFAY on H2O2-induced oxidative damage in SH-SY5Y

neuronal cells.

Materials and Methods

Materials

Dulbecco’s modified eagle’s medium (DMEM), penicillin-

streptomycin solution, fetal bovine serum (FBS), and trypsin-

EDTA solution were obtained from Welgene Inc. (Daegu, Korea).

3-(4,5-Dimethylthiazol-2-yl)-2,3-diphenyl tetrazolium bromide

(MTT) was purchased from Bio Basic Inc. (Toronto, Canada).

2',7'-Dichlorofluorescin diacetate (DCFH-DA) was from Sigma

Chemical Co. (Saint Louis, MO, USA). Radioimmunoprecipitation

(RIPA) buffer was purchased from Elpis Biotech. (Daejeon,

Korea) and polyvinylidene fluoride (PVDF) membrane was

obtained from Millipore Co. (Billerica, MA, USA). Primary and

secondary antibodies were purchased from Cell Signaling Tech.

(Beverly, CA, USA), Calbiochem Co. (San Diego, CA, USA),

Bioss Inc. (Beijing, China), and Santa Cruz Biotech. (Santa Cruz,

CA, USA).

Preparation of sample

AY was obtained from Gurye-gun (Jeollanam-do, Korea) and

verified by Dr. K. Choi, Korea National Arboretum, Korea.

Voucher specimen (LEE 2016-01) was deposited at Department of

Plant Science and Technology, Chung-Ang University, Anseong,

Korea. The leaf part of AY (1,645 g) was extracted with methanol

(MeOH) at 65-75 oC and refluxed at the same time. After 8 times

of repeated extraction, 393.9 g of AY MeOH extract was obtained.

The partitioning of MeOH extract was conducted using n-hexane,

dichloromethane, ethyl acetate, and n-butanol. Consequently, 4.2

g of EFAY was obtained.

Cell culture

The SH-SY5Y cell line was obtained from KCLB (Korean Cell

Line Bank, Seoul, Korea). SH-SY5Y cells were maintained in

DMEM supplemented with 10% FBS and 100 units/mL penicillin-

streptomycin. The humidified incubator was set at 37 oC and 5%

CO2/95% air. When the adherent cells reached approximately

80% confluence, they were harvested using 0.05% trypsin-EDTA

in phosphate buffered saline (PBS, pH 7.4).

MTT assay

Harvested SH-SY5Y cells from T-75 flask were seeded at the

density of 5×104 cells/mL in 96-well plate. After incubation for

24 h, the cells were treated with EFAY (2.5, 5, and 10 μg/mL) for

2 h and H2O2 (300 μM) was added followed by 24 h incubation.

Subsequently, the cells were incubated with MTT solution (1 mg/

mL) for 3 h and later solubilized by DMSO. The absorbance of

each well was read at 540 nm [17].

Lactate dehydrogenase (LDH) release assay

LDH release assay was carried out employing an LDH cytotoxicity

detection kit (Takara Bio Inc., Shiga, Japan). SH-SY5Y cells were

harvested from T-75 flask and plated at a density of 5×104 cells/

mL in 96-well plate followed by 24 h incubation. The cells were

treated with EFAY (2.5, 5, and 10 μg/mL) for 2 h. Subsequently,

H2O2 (300 μM) was added and the cells were incubated for 24 h.

The supernatant was mixed with a reaction solution in a 96-well

plate, and then incubated for 30 min at room temperature. The

amount of LDH release was measured using a microplate reader

at 490 nm.

DCFH-DA assay

SH-SY5Y cells were plated in 96-well black plate at a density of

5×104 cells/mL and incubated for 24 h. Before treating with H2O2

(300 μM) for 24 h, EFAY (2.5, 5, and 10 μg/mL) was pretreated

with the cells for 2 h. After incubation with DCFH-DA (80 μM)

for 30 min, fluorescence was measured at excitation - 480 nm and

emission - 535 nm for 60 min.

Western blot analysis

Proteins were extracted using RIPA buffer supplemented with 1X

protease inhibitor cocktail. These proteins were electrophoresed

on 10-13% sodium dodecyl sulfate-polyacrylamide gels and then

transferred to PVDF membranes. The membranes were blocked

with 5% skim milk in PBS with tween 20 for 50 min and

incubated overnight at 4 oC with primary antibodies. The primary

antibodies used were: β-actin (1:1000; Cell Signaling Tech.);

COX-2 (1:1000; Calbiochem Co.); IL-1β (1:1000; Bioss Inc.);

cleaved caspase-9 (1:1000; Cell Signaling Tech.); cleaved PARP
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(1:500; Cell Signaling Tech.); Bax (1:500; Santa Cruz Biotech.);

and Bcl-2 (1:500; Santa Cruz Biotech.). After incubation with

appropriate HRP-conjugated secondary antibodies for 1 h,

immunoreactive proteins were visualized using a chemiluminescent

imaging system (CoreBio, Seoul, Korea).

Statistical analysis

The results of this study are shown as the mean ± standard

deviation (SD). The significance of data was determined by one-

way analysis of variance (ANOVA) and Duncan’s multiple range

test for multiple comparisons. Statistical significance was considered

when p was less than 0.05.

Results

Effect of EFAY on cell viability in SH-SY5Y cells treated with

H2O2

The cell viability was measured to determine the protective effect

of EFAY on H2O2-treated SH-SY5Y cells by performing MTT

assay. As illustrated in Fig. 1, H2O2 reduced cell viability to

40.75% compared with 100% of normal cells. However, when

SH-SY5Y cells were treated with EFAY, cell viability was restored

to up to 45.50% at the concentration of 10 μg/mL.

Effect of EFAY on LDH release in SH-SY5Y cells treated with

H2O2

LDH release assay was used to evaluate the protective effect of

EFAY on neuronal damage induced by H2O2 in SH-SY5Y cells.

A significant increase in the amount of released LDH was

observed in H2O2-treated cells compared with normal cells

(57.37%), as shown in Fig. 2. Meanwhile, the treatment with

EFAY significantly decreased the release of LDH compared to

control cells, indicating inhibition of neuronal cytotoxicity

induced by H2O2 in SH-SY5Y cells.

Effect of EFAY on ROS production in SH-SY5Y cells treated

with H2O2

In order to investigate the neuroprotective effect of EFAY against

ROS production, DCFH-DA assay was carried out employing

H2O2-treated SH-SY5Y cells. Figure 3 shows the effect of EFAY

on H2O2 mediated production of ROS in SH-SY5Y cells (100%)

compared with the non-treated group (79.38%). Treatment with

10 μg/mL of EFAY resulted in a decrease in ROS production by

85.99%. The results demonstrated that ROS production caused by

H2O2 was blocked by EFAY with subsequent reduction in

neuronal cell death. 

Effects of EFAY on inflammation-related protein expressions

in H2O2-induced SH-SY5Y cells

To evaluate the effect of EFAY on inflammatory processes in

H2O2-treated SH-SY5Y cells, Western blot analysis was performed.

As shown in Fig. 4, protein levels of interleukin-1β (IL-1β) and

cyclooxygenase-2 (COX-2) were increased in the presence of

H2O2 as compared to normal cells, indicating that H2O2 induced

inflammation in neuronal cells. However, treatment with EFAY

significantly down-regulated protein levels of IL-1β and COX-2

compared with H2O2-treated control cells. In particular, EFAY

Fig. 2 Effect of ethyl acetate fraction from Aster yomena (Kitam.) Honda

on LDH release in SH-SY5Y cells treated with H2O2. SH-SY5Y cells

were treated with EFAY (2.5, 5, and 10 μg/mL) for 2 h and H2O2 (300

μM) was added followed by 24 h incubation. H2O2-untreated cells served

as a normal group. H2O2-treated cells served as a control group. Values

are mean ± SD. a~eMeans with the different letters are significantly

different (p <0.05) by Duncan’s multiple range test

Fig. 1 Effect of ethyl acetate fraction from Aster yomena (Kitam.) Honda

on cell viability in SH-SY5Y cells treated with H2O2. SH-SY5Y cells

were treated with EFAY (2.5, 5, and 10 μg/mL) for 2 h and H2O2 (300

μM) was added followed by 24 h incubation. H2O2-untreated cells served

as a normal group. H2O2-treated cells served as a control group. Values

are mean ± SD. a~eMeans with the different letters are significantly

different (p <0.05) by Duncan’s multiple range test
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effectively reduced COX-2 protein expression in H2O2-treated

SH-SY5Y cells. These results suggested that EFAY protected

H2O2-induced neuronal inflammation by down-regulating IL-1â

and COX-2 expressions.

Effects of EFAY on apoptosis-related protein expressions in

H2O2-induced SH-SY5Y cells

We investigated the effect of EFAY on apoptosis pathway in SH-

Fig. 3 Effects of ethyl acetate fraction from Aster yomena (Kitam.) Honda on ROS production in SH-SY5Y cells treated with H2O2. (A) Change of

ROS fluorescence during 60 min; (B) The intensity of ROS fluorescence at 60 min. SH-SY5Y cells were treated with EFAY (2.5, 5, and 10 μg/mL) for

2 h and H2O2 (300 μM) was added followed by 24 h incubation. H2O2-untreated cells served as a normal group. H2O2-treated cells served as a control

group. Values are mean ± SD. a~dMeans with the different letters are significantly different (p <0.05) by Duncan’s multiple range test

Fig. 4 Effects of ethyl acetate fraction from Aster yomena (Kitam.)

Honda on inflammation-related protein expressions in H2O2-treated SH-

SY5Y cells. SH-SY5Y cells were treated with EFAY (2.5, 5, and 10 μg/

mL) for 2 h and H2O2 (300 μM) was added followed by 24 h incubation.

β-actin was used as the loading control. H2O2-untreated cells served as a

normal group. H2O2-treated cells served as a control group. Values are

mean ± SD. a~eMeans with the different letters are significantly different

(p <0.05) by Duncan’s multiple range test

Fig. 5 Effect of ethyl acetate fraction from Aster yomena (Kitam.) Honda on

the level of Bax/Bcl-2 in H2O2-treated SH-SY5Y cells. SH-SY5Y cells were

treated with EFAY (2.5, 5, and 10 μg/mL) for 2 h and H2O2 (300 μM) was

added followed by 24 h incubation. β-Actin was used as the loading control.

H2O2-untreated cells served as a normal group. H2O2-treated cells served as

a control group. Values are mean ± SD. a~eMeans with the different letters

are significantly different (p <0.05) by Duncan’s multiple range test
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SY5Y cells under oxidative stress induced by H2O2. Figure 5

illustrates that H2O2 significantly up-regulated B-cell lymphoma-

2-associated X protein (Bax)/B-cell lymphoma-2 (Bcl-2) ratio.

Furthermore, the protein levels of cleaved caspase-9 and cleaved

poly (ADP-ribose) polymerase (PARP) were down-regulated

compared to the normal cells, as can be seen in Fig. 6. However,

treatment with EFAY significantly down-regulated Bax/Bcl-2

ratio and up-regulated cleaved caspase-9 and cleaved PARP

protein levels. These results indicated that the treatment of H2O2-

induced damaged SH-SY5Y cells with EFAY suppressed apoptosis

pathway by modulating Bax/Bac-2 ratio, cleaved caspase-9, and

cleaved PARP.

Discussion

Neurodegenerative diseases are characterized by abnormal deposition

of specific proteins in the brain, which could cause neuronal

dysfunction and cell death [18]. For example, in the brain of a

patient with Alzheimer’s disease, amyloid beta plaque and the

neurofibrillary tangles are commonly observed as pathological

markers [19]. The major lesion of Parkinson's disease is selective

degeneration of dopaminergic neurons around substantia nigra

[20]. Previous studies demonstrated that the modification and

abnormal deposition of proteins in the brain are closely related to

oxidative stress resulting from overgeneration of ROS [21].

Therefore, the accumulation of oxidized protein is dependent

upon the balance between protein oxidation and degradation of

the oxidized protein. A battery of ROS, including free radicals

(such as ·OH and O2
−) and non-radical oxygen derivatives (such

as H2O2 and ONOO−), contributes in maintaining the balance by

promoting protein oxidation [22]. H2O2, one of the oxygen

derivatives, is generated from O2
−, catalyzed by superoxide

dismutase in the mitochondria. When the concentration of H2O2

exceeds that of antioxidant enzymes, H2O2 undergoes ferrous ion-

catalyzed cleavage process by the Fenton reaction to produce ·OH

[23]. The ·OH is one of the critical free radicals in the body

because it could indiscriminately damage targets and mediate

tissue damage consequently [24]. H2O2 can also induce neuronal

cell death in SH-SY5Y cells via inflammatory and apoptotic

processes [25,26]. Thereby, SH-SY5Y cells are widely used to

study the pathogenesis of neurodegeneration. It was reported that

H2O2 activated nuclear translocation of nuclear factor-kappa B

(NF-κB) in SH-SY5Y cells and it up-regulated COX-2 and

inducible nitric oxide synthase (iNOS) in the inflammatory

pathway [26]. Our previous study also demonstrated that H2O2

activated apoptosis pathway in SH-SY5Y cells and several

therapeutic agents reduced the cell death [5].

In our previous study, AY exhibited antioxidant effects by

suppressing generation of free radicals including DPPH, ·OH, and

O2
- radicals [15]. It has been demonstrated that phenolic

compounds from AY also had antioxidant activity. The phenolic

compounds in AY are esculetin, caffeic acid, and apigenin [27].

Esculetin showed antioxidant activity by regulating glutathione

system and lipid peroxidation in liver supernatants from male

C57BL/6J mice [28]. Caffeic acid had antioxidative effects on

intestinal ischemia-reperfusion injury in rats [29]. Especially,

apigenin showed neuroprotective effects from H2O2-induced

oxidative damage in SH-SY5Y cells [30]. However, the protective

effect of AY from oxidative stress in neuronal cells has not been

revealed yet. Therefore, we examined whether EFAY has a

neuroprotective effect against oxidative stress that is induced by

treating SH-SY5Y cells with H2O2.

It has been observed that the treatment of SH-SY5Y cells with

H2O2 induced cellular toxicity and subsequently cell death [31].

We confirmed that H2O2 suppressed cell viability of SH-SY5Y

cells based on MTT assay. According to previous study, ethanol

extract from AY (EEAY) showed no cytotoxicity at concentration

up to 500 μg/mL [32]. EEAY decreased adipocyte differentiation

in the 3T3-L1 cells by suppressing adipogenic transcriptional

factors without cytotoxicity at the concentration of 200 μg/mL

[13]. Furthermore, our previous study unveiled that EFAY also

reduced adipogenesis at a concentration up to 100 μg/mL [33].

Therefore, EFAY was treated under 100 μg/mL SH-SY5Y cells,

Fig. 6 Effects of ethyl acetate fraction from Aster yomena (Kitam.)

Honda on apoptosis-related protein expressions in H2O2-treated SH-

SY5Y cells. SH-SY5Y cells were treated with EFAY (2.5, 5, and 10 μg/

mL) for 2 h and H2O2 (300 μM) was added followed by 24 h incubation.

β-Actin was used as the loading control. H2O2-untreated cells served as a

normal group. H2O2-treated cells served as a control group. Values are

mean ± SD. a~eMeans with the different letters are significantly different

(p <0.05) by Duncan’s multiple range test
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that had both no cytotoxicity and beneficial effect against

oxidative stress. Furthermore, cellular damage by the cytotoxic

stimulus, results in leaking of LDH, an enzyme normally found in

cytosol into the extracellular fluid because of the disturbed cell

membrane [34]. Our data showed that the release of LDH was

increased in H2O2-treated SH-SY5Y cells and reversed by EFAY

treatment in oxidative stress-induced SH-SY5Y cells. These

findings revealed that EFAY exhibited a cytoprotective effect in

SH-SY5Y cells against neuronal damage induced by H2O2.

Previous studies stated that treatment with H2O2 generates ROS

(e.g., ·OH), which is one of the triggers leading to apoptotic

signaling in SH-SY5Y cells [35,36]. The production of ROS could

be monitored by measuring fluorescence emission following the

conversion of DCFH-DA into DCF in the presence of ROS in

cells [37]. Our results showed that H2O2 increased the ROS

production in SH-SY5Y cells. However, EFAY significantly

decreased the levels of ROS that were generated by H2O2. We

previously confirmed antioxidative effect of AY by DPPH, ·OH,

and O2
− assay [15]. These data indicated that EFAY inhibited

H2O2-induced oxidative stress by reducing ROS production in

SH-SY5Y cells.

In the central nervous system (CNS), the up-regulation of IL-1β

is a patterned response after CNS insults such as infection and

trauma [38]. IL-1β stimulates NF-κB translocation into the nuclear

region, which increases pro-inflammatory gene expressions including

COX-2 and iNOS [39]. COX-2 is considered as a major regulator

of the inflammatory process, and neuronal inflammation, which is

a hall mark of cognitive dysfunction [40]. Many studies reported

that COX-2 participated in prostaglandin synthesis, which

mediated pathogenic mechanism such as inflammatory response

[41,42]. In the brain, COX-2 also produces prostaglandins and

subsequently induces neuronal toxicity, which can lead to

neurological diseases [43,44]. Previously, it has been demonstrated

that treatment of H2O2 activated phosphorylation of NF-κB at p65

in cells induced the productions of COX-2 and IL-1β [26]. In the

present study, it was confirmed that H2O2 up-regulated the protein

expressions of IL-1β and COX-2 in SH-SY5Y cells, suggesting

that H2O2 activated inflammatory reaction in SH-SY5Y cells. On

the contrary, treatment with EFAY down-regulated the expressions

of IL-1β and COX-2. Earlier, it has been revealed that several

phenolic compounds present in EFAY dysregulated interleukin-6

production in TNF-α stimulated MG-63 cells, proposing their role

as anti-inflammatory agents [45]. Furthermore, EFAY lowered

ovalbumin- and LPS-induced inflammation by down-regulating

NF-κB and iNOS in RAW 264.7 cells [46]. These findings

suggested that EFAY ameliorated H2O2-induced neuronal inflammation

by regulating IL-1β and COX-2 expression.

When cells are exposed to cellular stress, pro-apoptotic BH3-

only proteins directly activate pro-apoptotic proteins (e.g., Bax

and Bak) and inactivate anti-apoptotic proteins (e.g., prosurvival

Bcl-2-like proteins), leading to indirect activation of Bax and Bak.

The activated Bax is oligomerized and translocated to the

mitochondrial outer membrane, resulting in the release of cytochrome C

[47]. Bcl-2 is one of the prosurvival Bcl-2-like proteins and

protects apoptosis by interfering with the release of cytochrome C

from mitochondria [48,49]. The released cytochrome C leads to

caspases activation that plays a key role at the various stages of

the apoptotic process [50]. Caspase-9, one of the caspase family,

subsequently promotes downstream caspases and finally activates

PARP leasing to ultimate cell death [51]. Excessive oxidative

stress leads to neuronal apoptosis and H2O2 has been used as an

inducer of oxidative stress in SH-SY5Y cells [52]. Previous studies

demonstrated that treatment with H2O2 led to the formation of

apoptotic features such as decreased Bax/Bcl-2 ratio, activation of

the caspase cascade, and DNA fragmentation in SH-SY5Y cells

[31,53,54]. Our results showed that H2O2-mediated neuronal

apoptosis was activated in SH-SY5Y cells by up-regulating Bax/

Bcl-2 ratio, whereas EFAY treatment down-regulated Bax/Bcl-2

ratio. Furthermore, up-regulated protein expressions of cleaved

caspase-9 and cleaved PARP were observed subsequent to

treatment of SH-SY5Y cells with H2O2. However, treatment with

EFAY also down-regulated cleaved caspase-9 and cleaved PARP

expressions, suggesting that EFAY exerts a protective effect against

apoptosis in H2O2-treated neuronal cells. In addition, isoquercitrin,

one of the active compounds of EFAY acts as an antioxidant and

regulates apoptosis-related protein expressions of Bcl-2 and

cleaved PARP in H2O2-treated RGC-5 cells [55]. Isoquercitrin

was also reported to inhibit H2O2-induced apoptosis of EA.hy926

cells by mediating the PI3K/Akt/GSK3β signaling [56]. These

results indicated that EFAY exerts a protective effect on the

apoptotic effect against H2O2-induced neuronal damage in SH-

SY5Y cells by down-regulating Bax/Bcl-2 ratio and caspase

cascades.

Our findings proposed that EFAY recovered the cell viability

and diminished release of LDH by suppressing the production of

ROS against H2O2-mediated neuronal damage in SH-SY5Y cells.

EFAY attenuated inflammation-related protein expressions including

IL-1β and COX-2. Moreover, EFAY alleviated apoptosis by

regulating Bax/Bcl-2 ratio, cleaved caspase-9, and cleaved PARP

protein expressions. Based on the obtained results, the inhibitory

effect of EFAY on inflammation and apoptosis pathways is

apparent. In this study, we investigated neuroprotective effect of

AY via inflammatory and apoptosis pathway. According to

previous study, AY inhibited HO-induced growth inhibition in

RAW 264.7 cells, which was associated with expression of

nuclear factor erythroid 2-related factor-2 (Nrf-2) and heme

oxygenase-1 (HO-1) [56]. Nrf-2 and its downstream mediator,

HO-1, are important molecules in host defense against oxidative

injury. Nrf-2 is a cytoprotective factor regulating the expression of

genes coding for antioxidant proteins such as HO-1 [57]. HO-1

exerts beneficial effects through the elimination of toxic heme and

production of biliverdin, iron ions, and carbon monoxide [58].

Since Nrf-2/HO-1 pathway is confused under neurodegenerative

disease such as AD, the improvement of Nrf-2/HO-1 by AY
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treatment leads to neuronal protection. Taken together, AY

protects neuronal cells against oxidative stress and is proposed as

an effective natural agent for the prevention of neurodegenerative

disorders.
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