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ABSTRACT ACMs have been demonstrated to be highly suitable as image segmentation models for
computer vision tasks. Among other ACM, the local region-based models show better performance because
they extract the local information regarding intensity in the neighborhood and embed it into the energy
minimization function to guide the active contour to the boundary of the desired object. However, the online
segmentation of noisy and inhomogeneous is still a challenging task for local region-based ACM models.
To overcome this challenge, the paper proposes a novel region-based active contour model, named active
contour model with local dilated convolution filter (ACLD). The ACLD integrates local image information
in the form of a signed pressure force function. Then, a Gaussian kernel is applied using dilated convolution
instead of discrete convolution for regularizing the level set formulation. Finally, instead of using a constant
stopping condition, the ACLD automatically stops at the object boundaries. The proposed model shows
improved image segmentation results visually combined with less computational time in the case of synthetic
and natural images compared with the state-of-the-art models. Further, on the ISIC2017 dataset, the ACLD
yields segmentation results with the highest accuracy.

INDEX TERMS Active contours, intensity inhomogeneity, image segmentation, level set method.

I. INTRODUCTION
With the advancement of the field of computer vision, image
segmentation is becoming more important. Image segmenta-
tion methods are classified into two major types [1], namely,
discontinuity-based and similarity-based methods. The pop-
ular similarity-based models are deformable methods, which
are also called active contour models (ACMs). The underly-
ing concept of the ACMs is to work on the initial curve and
evolve it into the desired object by using different types of
formula functions to minimize the energy. Among the ACMs,
level set methods [2]–[7] have been widely studied and tested
for image segmentation. Level set methods are classified
into the following two types: edge-based ACMs [8]–[11]
and region-based ACMs [12]–[16]. The Chan and Vese (CV)
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model [17] that is derived from the study in [18] is the earliest
and most prominent ACM.

In [2] the region fitting energy ACM was introduced for
image segmentation. However, this model has limited use due
to its high computational cost and the sensitivity of initial con-
tour. LIC-ACM [3] level-set proposed the locally weighted
intensity clustering property. LIC-ACM use the K-means
clustering for the locally weighted intensities instead of clus-
tering variance, which leads to substandard segmentation
results. The local binary fitting (LBF) energy [19] and other
ACMs were proposed in [20] and [21] to solve the problem of
inhomogeneous image segmentation. These models directly
estimate the geometric characteristics of the evolution curve
of the active contour, and they satisfactorily address the
inhomogeneous image segmentation problems. Nevertheless,
these methods are sensitive to the initial position of the
contours; therefore, their use in practical applications of seg-
mentation is questionable. By extending the LBF presented
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in [19], Zang and Song proposed [22] the active contour
driven by local image fitting (LIF) energy, as well as another
method of Selective Binary and Gaussian Filtering regular-
ization level set (SBGFRLS) [12].

LSACM [4] was also proposed for specifically intensity
inhomogeneity problems in medical imaging segmentation.
LSACM handles the intensity inhomogeneity by mapping the
input image into higher dimensions of Gaussian distribution
by sliding window. LSACM uses the maximum likelihood
method for segmenting the local regions since LSACM can-
not perform online segmentation due to high computational
costs. Weighted hybrid SPF (WHRSPF) [6] ACMs proposed
for unclear object boundaries. WHRSPF is the hybrid model,
which considers both local and global information intensi-
ties. Due to consideration of global intensity information,
WHRSPF performance is questionable with inhomogeneous
images. In Hessian matrix-based (HM-ACM) [5], a new
formulation for the LSF is proposed, which improves the
segmentation performance by transforming the eigenvalue
information of the Hessian matrix into an LSF. The models,
as mentioned earlier, assume that the intensities of the image
are uniform, and they use the fixed force obtained from
the SBGFRLS; this is not reliable because there are vari-
ous types of images in real-world scenarios. Thus, we can-
not use the same force on images with different intensities
that are not uniform. Previous studies and experiments have
shown the significance of Gaussian distribution and kernel in
segmenting the inhomogeneous intensity images. To formu-
late the signed pressure force (SPF), the SBGFRLS model
uses local statistical information of image intensities from
inside and outside of the contour, and this SPF is responsible
for the direction toward which the contour should move.
Then, the Gaussian filter is used to regularize the ACM. The
online region-based ACM (ORACM) [23] redeveloped the
SBGFRLS [12] and introduced an ACM based on online
regions. The ORACM is based on a user-defined initial con-
tour and level set function (LSF) instead of the gradient
of the LSF, which gets updated after each iteration. This
method uses morphological operations (opening and clos-
ing) to smooth the LSF instead of Gaussian filters, such as
SBGFRLS and LIF models.

Liu [7] proposed a new ACM (GLSEPF) with penalty
energy using distance-regulated LSF for smoothness of the
contour and its evolution process around the object bound-
ary. In GLSEPF, the distance feature of the contour is con-
strained to 1 in the evolution process. The multi-scale level
set method in [24] also shows the importance of Gaussian
kernel filtering through using a Gaussian kernel as the local
maximum description difference. In [25], dilated convolution
(atrous convolution) filtering is proposed; it was shown that
the context module increases the efficiency of segmentation
models of deep convolutional neural networks. To this end,
we propose a new ACM method to enhance the segmen-
tation results of inhomogeneous images, referred to as the
active contours with local dilated convolution filter (ACLD),
yielding higher accuracy and less computational complexity.

In particular, the significant contributions of this study are
as follows:

• A complex ACM is investigated by integrating local
energies into the LSF and regularizing it using a Gaus-
sian kernel with dilated convolution, whereas discrete
convolution is used in the regularization step of tradi-
tional active contours.

• We propose a new LSF that uses an SPF function that is
formulated using local intensity fitting energy.

• Previous models are sensitive to initialization of contour
and biased. In contrast, the ACLD is insensitive to the
initial position of contour owing to robust SPFACDL
function given in (22).

• The proposed model uses dilated convolution with a
dilation factor of 2. As shown in Figure 5, dilated con-
volution has a more receptive field (5x5) without loss
of resolution of the input image while using the same
computation time as discrete convolution.

• Finally, for qualitative and quantitative analysis, the
ACM that is extensively tested on both synthetic and
natural images [26] and the ISIC2018 dataset [27], [28].
The experimental results of the ACLD model
confirm the efficiency and superiority over the
state-of-the-art.

The rest of this paper is organized as follows. The related
research is briefly described in order to better understand and
develop the ACM in Section II. In Section III, we provide
the formulation and a detailed description of the proposed
ACM. Then, in Section IV, a comparison with well-known
ACMs and the experimental results are presented. Finally,
in Section V, the conclusions and discussion of future
research are provided.

II. RELATED WORK
Numerous active contour methods are widely used in dif-
ferent computer vision-based applications for segmentation
tasks. For example, the CV [29] proposed an ACM for
segmentation that works well on synthetic uniform images.
Still, it does not work well on complex natural images
and has a higher computational cost. Another model, i.e.,
SBGFRLS [12], introduced the SPF and regularizing term
with Gaussian filtering to eliminate the area and length
parameters from the CV’s energy functional of the active con-
tour owing to its high computational time. However, although
the area and length parameters are removed, the SGBFRLS
does not work well as it has a higher computational time as
discrete convolution.

A. SBGFRLS
The SBGFRLS [12] proposes the SPF ACM, where the user
initializes the active contour. Let I : �→ < an input image
and evolving curve is = within the image domain �. As the
boundary: ω ⊂ � and = = ∂ω. In short, the =inside represents
the region ω and =outside represents the region � \ ω. This
initial active contour continuously evolves at every step of
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FIGURE 1. The schematic diagram of the proposed ACLD model.

the iteration with a SPF. SPF that is defined as follows:

SPFSBGFRLS (I ,=) =
I − =i+=o2

max
(
|I − =i+=o2 |

) , I ∈ � (1)

where =i and =o are the constants defined in Eqs (2)
and (3), respectively. Zhang [12] also used the α and Heav-
iside function with eps = 0 instead of the simple CV energy
minimization function. This SPFSBGFRLS function is respon-
sible for the movement of the active contour. If the contour
is outside of the object, it shrinks, and if the active contour is
lying inside the object, it expands.
=i and =o are described as:

=i(φ) =

∫
�
I (H (φ))∫
�
H (φ)

(2)

=o(φ) =

∫
�
I (1− H (φ))∫
�
(1− H (φ))

(3)

Furthermore, they proposed the new variational level set for-
mulation method, defined as:

∂φ

∂t
= SPFSBGFRLS (I · Hε(φ) · α · |∇φ|) (4)

where α is constant and it is responsible for the speed of
the level set update. where H (φ) represents the Heaviside
function and δ(φ) is the Dirac function. The graphical rep-
resentation of the Heaviside and Dirac function is illustrated
in Figure 2, and which are described as follows:

Hε(φ) =
1
2

(
1+

2
π
arctan(

φ

ε
)
)
, δε(φ) =

d
dφ

H (φ) (5)

The major drawback of the SBGFRLS is that it relies
on α for the update of the level set and the movement of
the active contour. Thus, the user must adjust the α value for
different images to get a better result.Moreover, this approach
cannot self-tune the constant value α. Thus, this approach is
not practical owing to the wide variety of real-life images.
On extent, this method uses the |∇φ| from [30] defined as:

∇φ =

√
ϕ2x + ϕ

2
y (6)

with{
ϕx = ϕ · Gx , Gx = I (x + 1, y)− I (x − 1, y)
ϕy = ϕ · Gy, Gy = I (x, y+ 1)− I (x, y− 1)

It takes a significant amount of time to calculate the energy
minimization function for the next iteration of the current
contour. Therefore, to smoothen the transition from the previ-
ous contour to the current contour, a Gaussian kernel is used
with a kernel size of 5. For re-initialization of this current φ,
SBGFRLS use the following function:

φ(x, ti) =

{
1 if x ≥ 0
−1 if x < 0

(7)

B. LSACM
Zhang proposed [4] the local statistical based active contour
model for medical image segmentation of images having
intensity inhomogeneity. LSACM deal with intensity inho-
mogeneity problem by mapping the given medical image
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FIGURE 2. Heaviside and Dirac functions according to eps(ε) values.

into higher dimension using Gaussian distribution by sliding
window. For segmenting the local regions LSACM uses the
maximum likelihood method. The energy function of the
LSACM model can be defined as:

ELSACMθ ,B,φ =

n∑
i=1

∫
�

Fi(y)Mi(φ(y))dy (8)

where n = 2 or 4, and force function Fi(y) defined as:

Fi(y) ,
∫
�

Kρ(x, y)(log(σi)+
(I (y)− B(x)Ci)2

2σ 2
i

)dx (9)

where B(x) is the normalized convolution to smooth the
contour, and Fi(y) is the force function construct the force
to guide the level-set function to evolve towards the object.
The final level-set formulation defined as:

∂8

∂t
= −

∂ELSACMθ ,B,φ

∂φ
= (F̃2 − F̃1)δ(φ) (10)

where δ(φ) is the Dirac function. To regularize the level-set
formulation after each the LSACM model uses the stable
method, which defined as:

φl+1 = φl +1t · ∇2φl (11)

LSACM performs well on magnetic resonance, inho-
mogeneity images. While it considered the noise is
Gaussian-distributed with zero mean, therefore the segmenta-
tion results of noisy and irregular distributed images are very
poor. Furthermore, LSACM ignores the spatial constraint
between neighborhood and its central pixel values, which is
important factor in region-based ACMs.

FIGURE 3. Representation of energy: outside of contour is represented
with positive sign (+), and the inside of the contour is represented with
negative sign (−).

FIGURE 4. 3-D Gaussian filter’s kernels with different values of standard
deviation (sigma).

C. ORACM
The ORACM is an online region-based ACM for segmenta-
tion. This model [23] proposed a new level-set formulation
that does not require different constant parameters. In con-
trast, it performs on a block thresholding process on each
iteration of the active contour evolution. This thresholding
affords approximate rigid results as segmentation active con-
tour boundary. For smoothness, this method uses morpho-
logical operations. The level-set formulation of ORACM is
defined as follows:

∂φ

∂t
= H (SPFORACM (I (x, y))) · φ(x, y) (12)

where H (φ) is the Heaviside function defined in Eq (5), and
I (x, y) is the given input image for segmentation. SPFORACM
is the SPF that is defined as:

SPFORACM (I ,=) =
I − =i+=o2

max
(
|I − =i+=o2 |

) (13)

The morphological operations, such as opening and clos-
ing, are used to smooth and remove the unnecessary small
regions and areas in the current active contour.

D. GLSEPF
The GLSEPF [7] is the region based ACM. This model
uses the both global signed energy and local signed energy
based pressure force. First, It computes the global signed
energy pressure force (GSEPF) by using the energy dif-
ference between the outer and inner energies. Secondly,
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It computes the local pixel-by-pixel signed energy based
pressure force (LSEPF). At the end GLSEPF ACM combine
the both GSEPF and LSEPF by automatically balancing the
weights of both pressure forces. For regularization of the
GLSEPF uses the regularization and penalty function to avoid
the contour re-initialization problem.

The global SEPF function is defined as:

1EgSEPF (I ) = Eg2 (I )− E
g
1 (I ) (14)

where EgSEPF (I ) can be redefined in term of motion of the
ACM as:

1EgSEPF (I ) =
∫
�

(c1 − c2)(I −
c1 + c2

2
)dx (15)

where c1 and c2 are the inside and outside average intensities
of the contour, which is defined as:{

c1 = mean(I (x) ∈ x ∈ �|φ(x) > 0)
c2 = mean(I (x) ∈ x ∈ �|φ(x) < 0)

(16)

the local SEPF can is defined as:

1E lSEPF (I ) = 1E
l
2(x)−1E

l
1(x) (17)

Gaussian kernel is used for the local information extrac-
tion, the local information extraction function is defined as:

E l1(x) =
∫
�

∫
�x

κ(I − m1)2H (x)dydx

E l2(x) =
∫
�

∫
�x

κ(I − m2)2(1− H (x))dydx
(18)

where m1 and m2 are the average intensities of the inner and
outer regions of the evolution contour. which is defined as:{

m1 = mean(y ∈ �1, �1 = (�x ∩ (φ(y) > 0)))
m2 = mean(y ∈ �2, �2 = (�x ∩ (φ(y) < 0)))

(19)

The final evolution curve for the GLSEPF can be defined
as:

∂φ

∂t
= wg · SPF

g
SEPF (I ) · ∇φ

+wl · SPF lSEPF (I )α2(I ) · ∇φ

+µδ(φ) · div(
∇φ

|∇φ|
)+ v(∇2φ − div(

∇φ

|∇φ|
)) (20)

where wl and wg are the weighted variable for the local and
global variance in the input image. µ and v are the constants
which helps the balancing the energy force between global
and local forces. Therefore, this model have high computa-
tional cost due gradient and calculating the both local and
global energies with penalty function. In online segmentation
this computational cost is really effect the results.

III. PROPOSED MODEL
In this section, we present an ACM for robust image seg-
mentation. The proposed model consists of three major parts.
Firstly, a SPF function inspired by LIF [22] is formulated
using the local image information. Next, the Gaussian kernel
with dilated convolution that is inspired by the multi-scale

level set method [24], [25] regularizes the SPF function. The
dilated convolution also shows improvement in the results
as compared with the discrete convolution. Secondly, the
energy minimization is done by the newly proposed level-set
formulation with the help of Heaviside function and Dirac
function. Finally, the automatic stopping conditions check
for the active contour at the object boundary. A flowchart
of the complete process of the proposed ACLD model for
a given input image that is segmented into a binary image,
is illustrated in Figure 1. We divided the proposed model for
this method into the following subsections.

A. FORMULATION OF SPF FUNCTION
The SPF function is the critical part and backbone of the
ACMs, which is responsible of the evolution process of the
contour from its current position towards the object boundary.
Based on observation and different experiments we are able
to construct the modified SPF function which is follows:

SPFACLD(φ) =
I (x, y)− 1

2 (ψ1 + ψ2)

max
(
|I (x, y)− 1

2 (ψ1 + ψ2)|
) (21)

where ψ1 and ψ2 are the constants which are defined as
follows:

ψ1 = mean(I ∈ (x ∈ �|φ(x) < 0 ∩ Gσk ))

ψ2 = mean(I ∈ (x ∈ �|φ(x) > 0 ∩ Gσk )) (22)

where Gσk is the Gaussian kernel with Dilated convolution,
with a standard deviation value of 0.5, and the size of a
given image automatically computes kernel the size. Previous
research has shown that Gaussian filtering [24] helps to high-
light the local regions centered at current pixel and provides
the optimal scale of local region for every pixel. The Gaussian
filter is defined as:

Gσk (x − y) =
1

√
2πσk

e−|x−y|
2/2σ 2k , k = 1, . . . ,m (23)

where x is the current pixel and y is the neighboring pixel. The
adjacent parameter is controlled by σk = 2k + 1. Figure 4
shows the Gaussian filter’s kernels with different standard
deviations (σ ).

1) DILATED CONVOLUTION
The dilated convolution has been known as convolution with
a dilated filter. It is also used in algorithme a trous. Let
J : P2 → R be a discrete mathematical function, �a =

[−a, a]2 ∩ P2 and κ : �a → R be a discrete kernel with
the size of (2a+ 1)2. The operator for discrete convolution is
∗ and is defined as follows:

(J ∗ κ)(p) =
∑
s+t=p

J (s)κ(t) (24)

For a general operator, let ι be a dilation factor, where ∗ι is
defined as follows:

(J ∗ι κ)(p) =
∑

s+ιt=p

J (s)κ(t) (25)
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FIGURE 5. Dilated convolution with (a) dilation factor of 1 (b) dilation
factor of 2 and, (c) dilation factor of 3. Yellow color represents the center
of the kernel and also the pixel position for which the convolution is
being performed. Blue color shows the image pixel values and red dots
are representing the kernel κ values.

where ∗ι refers to a dilated convolution or an l-dilated convo-
lution. The visual representation of dilated convolution can
be seen in Figure 5.

This kernel is responsible for the smoothness and pre-
vents the re-initialization of the SPF function at every iter-
ation during the contour evolution. Unlike SGBRLF, LIF,
and ORACM models, the proposed method is not dependent
on the user-defined initial contour. Instead, it automatically
detects the image size, creates the initial contour, and calcu-
lates the signed pressure force from the initial active contour.

B. LEVEL SET FORMULATION
The final LSF is defined as:

∂φ

∂t
= H (SPFACLD(I )) · φ(x, y) (26)

where φ(x, y) is the current active contour at the nth iteration.
The significance of the proposed level-set method and the
reason for the selection of this level-set method is described
as follows:
• It is a parameter-free method that does not require
parameter initialization, unlike previously formu-
lated ACM.

• It also does need to calculate the curvature approxima-
tion of the ∇φ, which tends to take a lot more compu-
tational time that makes the active contour movement
towards the desired object very slow.

C. ALGORITHM
The procedural steps of the proposed ACMs are summarized
in Algorithm 1:

Algorithm 1 Proposed Model
1: Initialization of initial contour (φ) according to the size

of given image I (x, y).

φt=0 =


−p, x ∈ �0 − ∂�0

0, x ∈ ∂�0

p, x ∈ �−�0.

(27)

where p is a constant parameter, �0 is a subset of the
image domain �, and ∂�0 is the boundary of �0.

2: Apply the Gaussian filter with dilated convolution on the
given image I (x, y)

3: Calculate ψ1 and ψ2 using the Eq (13)
4: Calculate the SPF function using the proposed SPFACLD

function (21)
5: Minimize the energy using the energy minimization

function using Eq (26)
6: Algorithm ends, if the termination condition is met, oth-

erwise return to step 3.
7: Apply Gaussian filter with dilated convolution on
SPFACLD function Eq (21) for smoothing the final con-
tour curve.

D. TERMINATION CRITERION FOR ACTIVE CONTOUR
EVOLUTION
The curve evolution using energy minimization extends the
active contour at the boundaries of the desired object. So, it is
an integral part of the curve evolution that automatically stops
at the object’s boundaries. Numerous ACM takes the param-
eter, such as iteration number, to evolve an active contour for
a certain evolution step. However, the proposed model uses
an automatic checkpoint to stop the evolution process of the
active contour curve. This automation step depends on the
area of L1 term. As in the Figure 3 shows the positive and the
negative energy (as long as the contour’s energy is greater
than 0 or less than 0); it implies that the contour is not at
the object’s boundary and that it has to evolve to reach the
object’s boundary where the energy will be zero.

IV. SIMULATION AND EXPERIMENTAL RESULTS
This section explains the different types of experiments per-
formed to evaluate the proposed model’s results using syn-
thetic, natural, and medical images. We also compared the
proposed ACLD model with other well-known ACMs, such
as SBGRLFS [12], LIF [22], ORACM [23] and GLSEPF [7],
LSACM [4]. The proposed ACLD model was implemented
in MATLAB 2020b on a 2.8 GHz Intel Core processor with
16GB of RAM.

A. DATASETS
Various measures are available to evaluate the segmentation
results of different models. We used three significant types
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FIGURE 6. Segmentation results on synthetic images [26]: (a) Original image with initial contour, (b) Local Image Fitting (LIF) [22] model, (c) SBGFRLS [12],
(d) ORACM [23], (e) GLSEPF [7], (f) LSACM [4], (g) Proposed model (ACLD).

TABLE 1. ACLD model execution time(ET) in seconds(s) and Iteration numbers(IT) of Figure 6 of state-of-the-art models and proposed ACLD model.

of images for our model’s evaluation. The first group was
computationally generated synthetic images. These types of
images do not have the masks or labels for the objects in
the image. Secondly, natural images from the Weizmann
database [26]. Thirdly, skin melanoma (medical) images
from ISIC 2018: Skin Lesion Analysis Towards Melanoma
Detection [27], [28].

B. EVALUATION MEASURES
For quantitative measurements and evaluation of the seg-
mentation results of the proposed model as compared with
other state-of-the-art models, such as LIF [22], GLSEPF [7],
and LSACM [4]. We used BF (Boundary F1) Score [31]
and Hausdorff distance [32] for segmentation performance
(Presented in Eqs (28)-(29)).

BFscore(I (x, y),P(x, y)) = 2 ∗
p ∗ r
(r + p)

(28)

where I (x, y) is the input image and P(x, y) is the binary mask
of segmentation result, r is the Recall, and p represents the
Precision. BF Score is the contour matching score used for

the evaluation of the image segmentation techniques. In our
example, the two groups are the object’s binary mask, and the
segmentation results from the active contour. Hausdorff dis-
tance is broadly used as a performance measure to calculate
the distance between two points. The applications of Haus-
dorff distance in medical image segmentation are significant.
Hausdorff distance can be defined as:

HD(X ,Y ) = (
1
X

∑
x∈X

min
y∈Y

d(x, y)+
1
Y

∑
y∈Y

min
x∈X

d(x, y))/2

(29)

where X and Y are the two given points, Hausdorff distance
is used to calculate the difference between the binary mask
of the given image and the segmentation mask generated by
the ACMs.

C. EXPERIMENTAL RESULTS USING SYNTHETIC IMAGES
For evaluating the proposed ACM, we tested it on different
types of images for segmentation. Firstly, we applied our
model to synthetic images with simplistic structures and
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FIGURE 7. Segmentation results on color (Weizmann segmentation evaluation database) [26]: (a) Original image with initial contour, (b) Local Image
Fitting (LIF) model [22], (c) SBGFRLS [12], (d) ORACM [23], e) GLSEPF [7], (f) LSACM [4], (g) Proposed model, (h) Proposed model final segmentation.

TABLE 2. ACLD model execution time(ET) in seconds(s) and Iteration numbers(IT) of Figure 7 of state-of-the-art models and proposed ACLD model.

uniform intensity distribution within the regions of inter-
est. These artificial images are computer-generated grayscale
images usually used to evaluate different segmentation mod-
els. Figure 6 shows qualitative segmentation results and
comparisons with the state-of-the-art methods using differ-
ent synthetic images. From the first column to the seventh
column it shows, the original grayscale images with initial
active contour, segmentation results of the LIF energy model,
segmentation results of the SBGFRLS model, segmentation
results of the ORACM model, segmentation results of the
GLSEPF model, segmentation results of the LSACM model
and the proposed ACLD model, respectively. The LIF model
failed to detect the boundaries properly. This is the reason
for not distinguishing between the regions of interest and
background; thus, this resulted in region overlap in the seg-
mentation result for all images. In contrast, the SBGFRLS
model could properly segment first and the third images but
could not correctly segment the second one owing to intensity

inhomogeneity in the regions of interest. As shown in the
results, the contour could not precisely follow the boundaries
at the front part of the wings of the airplanes. The ORACM
model partially segmented the first image, where a small
portion within the black region could not be segmented.
In contrast, it could not correctly segment the airplanes in
the second image and could not fully detect the boundaries
of both regions in the third image. GLSEPF model is able to
segment all the objects from images with high computational
cost and number of iterations. While, LSACM perform very
poorly on all the images and unable to segment the objects.
In Image 2 the LSACM is totally unable to detect even one
plan among three. In Image 3 LSACM is only able to detect
the shapes however is unable to differentiate between two
objects. Mostly, ACM’s like SBGFRLS, GLSEPF, LIF and
LSACM uses the gradient information α of the given image
to control the speed and evolution of the current contour. This
is significantly computation cost for the models to segment
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FIGURE 8. The segmentation results on the ISIC2018 dataset [27], [28]: (a) the segmentation result of Local Image Fitting (LIF) model [22], (b) LSACM [4],
(c) GLSEPF [7], (d) Proposed model (ACLD), and (e) shows the Human annotated binary mask of the given images. The green outline shows the true
condition of the original cancer area, while the red outline shows the segmentation results of the ACM models, and blue outline shows the initial contour.

TABLE 3. Shows the quantitative results of Figure 8 using evaluation metrics, such as BF score and Hausdorff distance on ISIC2018 dataset of
state-of-the-art models and proposed ACLD model.

the given images. In contrast, the proposed ACLD could
correctly segment the regions of interest in all images, which
shows that the ACLD outperformed the state-of-the-art mod-
els qualitatively. It segmented a few tiny speckles of noise in
the black regions of interest in noisy image 1, which is ignor-
able. While, ACLD does not use the gradient information
α like ORACM that’s why ACLD take less computational
time and less iteration. Table 1 show a comparison among the
state-of-the-art active contours and proposed ACLD method
in terms of the execution time in seconds and the number of

iterations taken by models to reach the final results, as shown
in Figure 6. It shows that the proposed ACLD model out-
performed the state-of-the-art active contours, with minimum
execution times of 0.0018, 0.0012, 0.005 s and number of
iterations of 4, 3, and 8 for Image 1, Image 2, and Image 3,
respectively, from Figure 6.

D. EXPERIMENTAL RESULTS USING REAL IMAGES
This section describes the effectiveness of the proposed
ACLD ACM. To verify the validity of our model, we used
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FIGURE 9. Proposed model ACLD results with different positions of initialization of initial contour: (a) from first row to third, we initialize
contour on three different positions with different sizes, b) - f) iteration numbers 1 to 5, respectively.

the real images from the real-world Weizmann dataset (Seg-
mentation evaluation database) [26]. This dataset is consists
of different types of complex objects such as airplanes, and
buildings. Figure 7 shows qualitative segmentation results
and comparisons with the state-of-the-art methods using
different real images. From the first column to the eighth
column it shows, the original grayscale images with initial
active contour, segmentation results of the LIF energy model,
segmentation results of the SBGFRLS model, segmentation
results of the ORACM model, segmentation results of the
GLSEPF model, segmentation results of the LSACM model
and the proposed ACLD model, and human-annotated seg-
mentation of objects respectively. Some ACMmodels use the
gradient information α to estimate the directional movement
of the contour. This is significantly expensive cost in terms
of computational time. Therefore, ACM’s (LIF, SGBFRLS,
GLSEPF and LSACM) shows very large amount of compu-
tational time, which is unacceptable in online segmentation.
And also, Table 2 shows the iterations and time takes each
active contour model in Figure 7 to compare the quantitative
analysis of the different active contour models. Figure 7 and
Table 2 clearly show that our proposed ACLD model outper-
forms all the other state-of-the-art active contour models in
terms of execution time and number of iterations.

E. EXPERIMENTAL RESULTS USING MEDICAL IMAGES
For further experiments, we testes the proposed ACLDmodel
on ISIC 2018: Skin Lesion Analysis Towards Melanoma
Detection [27], [28] and also compared ACLD model with
other state-of-the-art models. Skin lesion is an extremely

difficult task because of the noise, the presence of hair in
the background and high quality images. Figure 8 shows
the selective qualitative results using the ISIC2018 cancer
dataset, the green contour is original mask, red contour is the
ACMmodels segmentation results, and blue shows the initial
contour. As Figure 8 shows, the LIF model performance is
really noisy and it gets stuck in local minima. The SPF of
LSACM and GLSEPF are unable to perform on big size
images as a result the performance of LSACM and GLSEPF
model are unacceptable on ISIC 2018 dataset. Contrastingly,
even with presence of hairs in Figure 8, Image 1, and Image 2,
the proposed ACLD model segments the cancer lesion area
effectively. Further, Table 3 offers the quantitative analy-
sis for the proposed ACLD model with LIF, LSACM, and
GLSEPF models using evaluation measures. The proposed
model yielded an average BF score of 96.7% and also shows
the minimum average Hausdorff distance of 55.

F. INITIAL CONTOUR AND NOISE INDEPENDENCE
The major problem with ACM is that they are sensitive to
noise and the position or shape of the initial contour. The
proposed ACLD model overcame this problem. Figure 9
showed the independence of the initial active contour and
robustness by offering experiments using various positions
of initial active contours with different sizes. It shows that the
proposed ACLDmodel could properly segment the regions of
interest in all cases of initial contours that verify its indepen-
dence from the initial position of contour and robustness. The
proposed method was also tested and qualitatively compared
using noisy Image 1, in which salt and pepper noise is added
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FIGURE 10. Update process of the proposed model.

Figure 6. Due to lack of gradient informational parameters
and functions, ACLD shows the robustness in segmenting
the object from the given image. Although the proposed
method also segmented some tiny speckles in the black region
of interest, it did not yield a perfect segmentation result.
However, it outperformed the compared state-of-the-art in
terms of execution time and number of iterations.

V. CONCLUSION
The state-of-the-art ACMs face challenges in segmenting
images under biased conditions or intensity inhomogeneity.
To target this problem, we developed a novel ACM called
ACLD for image segmentation. The energy functional of the
proposed ACLDmodel is devised using a SPF function that is
formulated using local image energies. For regularization and
to update the current contour, we used dilated convolutions
with the dilated factor of 2. The proposed ACLD model is
tested on diverse images, including synthetic, natural [26],
andmedical images from a skin challenge [27], [28]. The pro-
posed ACLD model outperformed the state-of-the-art mod-
els both qualitatively and quantitatively. Moreover, it also
yielded lower execution time and required less iteration than
the state-of-the-art models.
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