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Abstract: Modular multilevel converters (MMCs), with their inherent features and advantages over
other conventional converters, have gained popularity and remain an ongoing topic of research.
Many scholars have solved issues related to the operation, control, protection, and reliability of
MMCs using simulation software and small hardware prototypes. We propose a novel approach
for an MMC controller design with real-time systems. By utilizing a key benefit of LabVIEW
Multisim co-simulation, an MMC control algorithm that can be deployed on a field-programmable
gate array (FPGA) was developed in LabVIEW. The complete circuit was designed in Multisim,
and a co-simulation was performed to drive an MMC model. The benefit of this topology is that
control algorithms can be designed in a LabVIEW FPGA and tested with the Multisim co-simulation
circuit to obtain simulation results. Once the controller works and provides satisfactory results,
the same algorithm can be deployed in any NI (National Instruments) FPGA-based controller, like a
compact remote input/output (RIO), to control real-time MMCs designed in an NI PCI eXtensions
for Instrumentation (PXI) system. This method saves time and provides flexibility for effectively
designing control algorithms and implementing them in an FPGA for real-time model implementation.

Keywords: modular multilevel converter; MMC co-simulation; hardware-in-loop; HVDC;
real-time controller

1. Introduction

With increasing global warming, renewable energy sources are being used to generate power.
Offshore wind turbines, because of the more linear wind velocity profile, are an example of a renewable
energy source; however, they are located far away from load centers [1]. In transmitting power to
load centers, high-voltage direct current (HVDC) transmission lines are preferred over high-voltage
alternating current (HVAC) lines because they require fewer conductors and have less power losses,
no skin effect, a reduced right of way, and good stability [2,3].

Modular multilevel converters (MMCs) are ideal converter topologies used for interfacing between
HVDC and HVAC transmission systems. Compared with conventional converters, MMCs are more
advantageous because they have modularity, scalability in terms of voltage and current, redundancy,
good reliability, independent control of active and reactive power, low switching frequency, low total
harmonic distortion (THD) in the output waveforms, and no filter requirement [4]. The first MMC
HVDC was commissioned in December 2013 on Nan’ao Island, and another MMC HVDC system was
installed on the Zhoushan Islands, China [5].
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Many researchers are studying design control schemes for MMCs. For instance, the authors
in [6] developed a simplified capacitor voltage balancing technique that does not require sorting
to select submodules. In [7], the circulating currents of MMCs were controlled using an adaptive
proportional integral (API) controller to reduce secondary harmonic components, and its performance
was measured and compared with a proportional resonant (PR) controller for transient response,
stability, optimal performance, and reference tracking in MATLAB. The authors in [8] proposed an
energy-balancing control strategy to keep an MMC operating normally under submodule (SM) fault
conditions in which PSCAD was used to simulate the system, and a small prototype was used to
validate the results. A novel control strategy for MMCs based on differential flatness theory was
proposed in [9]. Their results highlight the capability of the proposed controller in steady and dynamic
conditions while maintaining MMC currents and voltages by controlling active and reactive power.
Several researchers have developed small prototypes to verify their control algorithms. The algorithms
are developed early in the simulation process and need to be written for the controller chosen to run
the prototype, which takes time and effort and is costly [10–21]. As an emerging technology, there
are few tools for MMC controller design and no established standards to guide engineering practices
for MMC control and operation. Thus, there is a need for a platform where control algorithms are
designed once and can be utilized for simulation and real-time implementation, ultimately saving time
during the development and testing of the system.

This study presents a development platform using a LabVIEW Multisim co-simulation (Figure 1)
that can develop control algorithms in a graphical-language-based LabVIEW platform for MMC
simulation and allows the same program to be used for the control of the real-time MMC
system implemented in a National Instruments (NI) PCI eXtensions for Instrumentation (PXI)
system. In LabVIEW Multisim co-simulation, the control algorithm is designed with a LabVIEW
field-programmable gate array (FPGA), and the circuit is developed in Multisim. Using the control
algorithm, the circuit can be operated with the controls designed in LabVIEW. Therefore, the proposed
real-time controller design test bench for HVDC MMCs saves time, money, and effort required for the
development and testing of the system.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 2 of 17 

Many researchers are studying design control schemes for MMCs. For instance, the authors in 
[6] developed a simplified capacitor voltage balancing technique that does not require sorting to 
select submodules. In [7], the circulating currents of MMCs were controlled using an adaptive 
proportional integral (API) controller to reduce secondary harmonic components, and its 
performance was measured and compared with a proportional resonant (PR) controller for transient 
response, stability, optimal performance, and reference tracking in MATLAB. The authors in [8] 
proposed an energy-balancing control strategy to keep an MMC operating normally under 
submodule (SM) fault conditions in which PSCAD was used to simulate the system, and a small 
prototype was used to validate the results. A novel control strategy for MMCs based on differential 
flatness theory was proposed in [9]. Their results highlight the capability of the proposed controller 
in steady and dynamic conditions while maintaining MMC currents and voltages by controlling 
active and reactive power. Several researchers have developed small prototypes to verify their control 
algorithms. The algorithms are developed early in the simulation process and need to be written for 
the controller chosen to run the prototype, which takes time and effort and is costly [10–21]. As an 
emerging technology, there are few tools for MMC controller design and no established standards to 
guide engineering practices for MMC control and operation. Thus, there is a need for a platform 
where control algorithms are designed once and can be utilized for simulation and real-time 
implementation, ultimately saving time during the development and testing of the system. 

This study presents a development platform using a LabVIEW Multisim co-simulation (Figure 
1) that can develop control algorithms in a graphical-language-based LabVIEW platform for MMC 
simulation and allows the same program to be used for the control of the real-time MMC system 
implemented in a National Instruments (NI) PCI eXtensions for Instrumentation (PXI) system. In 
LabVIEW Multisim co-simulation, the control algorithm is designed with a LabVIEW field-
programmable gate array (FPGA), and the circuit is developed in Multisim. Using the control 
algorithm, the circuit can be operated with the controls designed in LabVIEW. Therefore, the 
proposed real-time controller design test bench for HVDC MMCs saves time, money, and effort 
required for the development and testing of the system. 

 

Figure 1. LabVIEW Multisim co-simulation block diagram.  

2. Comparison with Conventional Methods 

Andrus et al. [22] studied a test bed design for HVDC systems to design fault management with 
a scaled-down MMC with a full bridge, but their system cannot be extended further due to hardware 
limitations. The work presented in [23] demonstrates a real-time simulation of an MMC-based MVDC 
traction system in which an FPGA-based system is used for real-time simulation. Additionally, a 
second offline simulation, PSCAD/EMTDC, was used for simulation and real-time verification of the 

Figure 1. LabVIEW Multisim co-simulation block diagram.

2. Comparison with Conventional Methods

Andrus et al. [22] studied a test bed design for HVDC systems to design fault management with a
scaled-down MMC with a full bridge, but their system cannot be extended further due to hardware
limitations. The work presented in [23] demonstrates a real-time simulation of an MMC-based MVDC
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traction system in which an FPGA-based system is used for real-time simulation. Additionally, a second
offline simulation, PSCAD/EMTDC, was used for simulation and real-time verification of the results.
The authors of [24] presented a 5 MW test bed hardware setup where the simulation results were
verified from the test bed; however, the hardware was put at risk. In [25], a small prototype was
developed with 10 SMs in each arm, and control algorithms were developed for a system with NI
controllers. However, the system was limited to only 10 SMs, so the simulation results were obtained
with different software. Several other studies [26–28] presented test beds for HVDC systems, but their
systems either limited or lacked simulation verification without changing the control algorithm.

3. Operating Principles and Mathematical Modelling of the Proposed Controller Design Test
Bench for the HVDC MMC

The single-phase topology of the MMC is shown in Figure 2a, which is composed of one phase/arm.
The phase is further divided into an upper arm and a lower arm connected together by inductors.
Each arm has N connected submodules (SMs) (SM1, SM2, etc.) in series, and each SM consists of two
switches and a capacitor connected across them. By applying Kirchhoff’s voltage law (KVL) in the
upper and lower loops, as shown in Figure 2a, we obtain
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Then we apply Kirchhoff’s current law (KCL) to obtain the output current:

i = iL + iU (3)

The equivalent circuit of the MMC is shown in Figure 2b. Using Equations (1) and (2), the output
voltage is

V =
1
2
(VL −VU) +

L
2

di
dt

(4)

It is clear from Equation (3) that the equivalent inner voltage of the phase can be expressed as

VE =
1
2
(VL −VU) (5)

Generally, the VE can be shown as

Vre f
E =

mVdc
2

cos(ωt) (6)

where m is the modulation index with 0 < m < 1 and ω is the angular frequency. N submodules are
used in the circuit with conventional NLM methods, so Equation (7) is satisfied on the DC side.

Vdc = VL + VU (7)

Reference voltages for the upper and lower arms can be expressed as

Vre f
U =

Vdc
2

[1−m cos(ωt)] (8)

Vre f
L =

Vdc
2

[1 + m cos(ωt)] (9)

The circulating currents flowing due to the voltage difference in each arm can be found by
Equations (10)–(12). These currents distort the leg current, produce additional heat in the switches,
increase the rated current of power devices, and cause loss in the MMC. They must be controlled and
reduced to avoid losses and reduce system cost.

iU = icirc +
i
2

(10)

iL = icirc −
i
2

(11)

icirc =
iU + iL

2
(12)

Equations (1) and (2) provide an understanding of the operation of the MMC. The SM voltages
should be equal to 1

2 Vdc with the total DC link voltage Vdc. Consider a basic three-level MMC with
two SMs in the upper arm and two in the lower arm. When one SM is inserted in each arm, using
Equations (1) and (2), we will get zero.

Similarly, when all the SMs in the lower arm are inserted and the SMs in the upper arm are
bypassed, we will get an output voltage of 1

2 Vdc. When all the SMs in the upper arm are inserted,
and the SMs in the lower arm are bypassed, we will obtain − 1

2 Vdc. In case of an even number of
levels, a zero output voltage cannot be obtained. The switching pattern of the SMs is shown in Table 1,
and the waveform is displayed in Figure 3a.
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Table 1. Switching pattern of the submodules (SMs) for a 3-level MMC.

1-Phase SM Number
Output Voltage Levels

0 1
2 Vdc 0 −

1
2 Vdc 0 1

2 Vdc 0

Upper Arm SM1 X × X X X × X
SM2 × × × X × × ×

Lower Arm
SM1 X X X × X X X
SM2 × X × × × X ×
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We can conclude from the switching pattern that when all the SMs in the lower arm are inserted
and the SMs in the upper arm are bypassed, we will observe a positive peak voltage. Similarly, when
all the SMs in the upper arm are inserted and the SMs in the lower arm are bypassed, we will observe
negative peaks in the output waveform. Using this concept, we can develop a switching pattern for
any number of levels.
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4. Proposed LabVIEW Multisim Co-Simulation Platform

LabVIEW is a graphical programming language that enables us to program the FPGA without
using VHDL or Verilog. A nearest level control (NLC) algorithm was developed in LabVIEW to control
the MMC operation and was compatible for deployment in real-time NI controllers (i.e., compact
reconfigurable input/output (cRIO)). NLC is advantageous because the algorithm does not require
complex changes when output waveform levels are increased for power quality analysis. Equations (13)
and (14) are used to implement the NLC algorithm, where, Vd is the capacitor voltage, Vdc is the total
DC link voltage, and NU and NL determine the total number of SMs to be inserted at any instant in the
upper and lower arm, respectively.

NU = round0.5
Vdc
2Vd

(1 + m cos(ωt)) (13)

NL = round0.5
Vdc
2Vd

(1−m cos(ωt)) (14)

4.1. Open-Loop Results of MMC Co-Simulation

The open-loop NLC-based algorithm developed in LabVIEW for co-simulation is shown in
Figure 4.
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The inserted number of SMs can be calculated by Equations (13) and (14). The round function
round0.5 (x) will round the real number x to the nearest whole number according to the decimal fraction
of x. If the decimal fraction of x is greater than 0.5, x is rounded up to the next whole number, or else it
is rounded down to the next whole number. To understand the switching states, two cases [t1 to t2,
t2 to t3] are analyzed and shown in Figure 3b. In the first case [t1 to t2], assuming Vstep

L = MVd, then the
reference values of the arm voltages and equivalent inner voltage of the phase at t = t1 can be shown as
Equations (15) and (16), respectively. Vre f

L = (M + 0.5)Vd

Vre f
U = [(N −M− 1) + 0.5]Vd

(15)

Vre f
E = (M− 0.5N + 0.5)Vd (16)

In the first scenario, the step waves of the arm voltages and equivalent inner voltage are
expressed as  Vstep

L = MVd

Vstep
U = (N −M)Vd

(17)

Vstep
E = (M− 0.5N)Vd (18)
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In the second scenario, from t2 to t3, the reference values of the arm voltages and equivalent inner
voltage are expressed as  Vre f

L = [(M− 1) + 0.5]Vd

Vre f
U = [(N −M) + 0.5]Vd

(19)

Vre f
E = (M− 0.5N − 0.5)Vd (20)

The step waves of the arm voltages and equivalent inner voltage are shown as Vstep
L = (M− 1)Vd

Vstep
U = (N −M + 1)Vd

(21)

Vstep
E = (M− 0.5N − 1)Vd (22)

Comparing Equations (18) and (22), it can be observed that the step height in Vstep
E is Vd. Since the

positive and negative DC voltage limits are ±0.5Vdc, the maximum level in the equivalent inner voltage
is equal to Vdc/Vd +1.

The solver methods recommended for co-simulation are R-K 23 and 45 ODE solvers since they
can auto-adjust the rate of the loop according to the complexity of the circuit. The MMC model was
designed in the NI Multisim software, and a half-bridge SM topology was considered for co-simulation.
The sub-circuit for each arm was made as shown in Figure 5. An open simple RL load is considered
for co-simulation.
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Figure 5. Sub-circuit of each arm in National Instruments (NI) Multisim.

Each arm is an MMC that is connected by inductors to reduce the current change when all the
SMs in the arm are bypassed and to limit the fault current. In Multisim, on-page connectors are used
to distribute the signals coming from LabVIEW since only 24 inputs/outputs are allowed in LabVIEW
Multisim co-simulation; however, they can be increased using decoders. The MMC circuit designed in
Multisim is shown in Figure 6.

The open-loop MMC co-simulation was completed using an NLC control algorithm to obtain
the results, and a simple RL load was considered. Capacitor voltage balancing was not considered.
The output voltage waveform and current are shown in Figure 7.
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4.2. Closed-Loop NLC Algorithm Design in LabVIEW

Modulation signals must be controlled and varied accordingly to control active and reactive power
in a closed-loop MMC as depicted in Figure 8. The modulation signals are sinusoids and cannot be
controlled instantaneously; therefore, two frames of reference are used: a stationary frame of reference
or the alpha–beta frame, and a rotating frame of reference or the DQ frame. In LabVIEW, the DQ frame
is used to achieve zero steady state errors with a pi controller.
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an SM is inserted or bypassed according to the direction of the arm current and value of the capacitor
voltage. When the arm current is positive, capacitors are sorted from lowest to highest voltage,
and capacitors with low voltages are inserted so they can be charged. In contrast, when the arm current
is negative, capacitors are sorted from highest to lowest voltage, and the capacitors with high voltages
are inserted so they can be discharged. In this experiment, the capacitor voltages were considered
constant, and no voltage balancing algorithm was applied.

The output voltage and current were measured from the Multisim model node in LabVIEW as
shown in Figure 9; Figure 10, respectively. In a closed-loop system, the output of the MMC is tied with
the voltage source equivalent to grid. These measured parameters are fed back to the controller for
active and reactive power control. The DQ reference frame was used to achieve zero steady state error.
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The active and reactive power controls were enabled at 0.1 s, and the observed response is shown
in Figures 11 and 12, respectively. The circulating current flowing in each phase of the MMC was found
using Equation (12) and is shown in Figure 13, and it flows due to the potential difference between the
upper and lower arm caused by the difference in SM capacitor voltage. Its magnitude must be reduced
to zero in order to avoid losses in the MMC. Increasing the arm inductance decreases the circulating
current but does not eliminate it. Its negative sequence component rotates at twice the line frequency.
Different types of faults (i.e., line-to-line fault and three-phase fault) are also analyzed and shown in
Figures 14 and 15, respectively. The converter parameters are shown in Table 2.
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Table 2. System parameters and values.

Item No. System Parameters Values

1 Rated power 10 MVA
2 Vac grid voltage 4.16 kV
3 Vdc 8 kV
4 Switching frequency 300 Hz
5 Rated frequency 50 Hz
6 SM_cap (submodule capacitance) 5000 µF
7 L_arm (arm inductance) 5 mH
8 L_val (line inductance) 3 mH
9 R_line (line resistance) 0.003 Ω

5. Real-Time Control Algorithm Implementation and Testing in NI Compact RIO and PXIe

The compact RIO (cRIO) combines an RT operating system with an embedded floating-point
processor. It has a remarkable FPGA performance and hot-swappable analogue and digital input/output
modules with hardware flexibility. Each module in cRIO is directly connected to the FPGA, imparting
minimum jitter and high-speed input/output signal processing. The FPGA is physically linked to the
RT processor via a PCI bus as shown in Figure 16, which represents the internal architecture of the
cRIO with an open retrieve to basic hardware resources. The FPGA and RT processor are programmed
in LabVIEW, which is a graphical-language-based programming platform. LabVIEW has integrated
data-fetching mechanisms to circulate data from the FPGA to the input/output modules and from the
FPGA to the RT processor for real-time analysis, data logging, post-processing, and communication
with the host computer.
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The control algorithm designed in LabVIEW was first compiled through the NI cloud servers and
then downloaded in the NI cRIO FPGA to see the actual behavior of the controller. The algorithm was
tested at different levels of the MMC, as shown in Figure 18. The system setup is shown in Figure 17,
and the results obtained from the cRIO are shown in Figure 18; Figure 19. Once the controller showed
the desired behavior, the signals generated from the cRIO were used to operate a real-time MMC circuit
implemented in an NI FPGA-based PXIe system. The results obtained from the PXIe system are shown
in Figure 20; Figure 21 and can be compared with the initially obtained results from the co-simulation.
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6. State-of-the-Art Hardware-in-Loop Setup

The hardware-in-loop (HIL) architecture helps the user to build a model in MATLAB/PLECS/

PSIM/Multisim and burn it into PXI through an eHS solver provided by OPAL RT, which is an
FPGA-based floating-point solver that helps the user to burn an electrical circuit on the FPGA
automatically with a step size of 250 nanoseconds and without having to code in VHDL or calculating
system equations. In our case, the minimum time step at which a model is loaded in PXI is
480 nanoseconds. The overall scheme of the RT system discussed above is shown in Figure 22. Initially,
the co-simulation was performed using LabVIEW and Multisim on a desktop PC. After obtaining the
results, the same developed algorithm on LabVIEW was burned on an FPGA-based real-time controller
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cRIO as shown in Figure 22. After getting satisfactory results from the controller, the real simulation
was performed using an actual controller and PXIe system.
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However, the total number of switches that can be used in one model is limited to 72 in PXIe.
Additionally, there is a total of 64 analogue outputs that can be used as an input feedback to the
controller cRIO from PXI.

7. Conclusions

Owing to an increased interest in HVDC MMCs, a platform where control algorithms are developed
for simulations and deployed after the verification of the simulation results without changing the
designed code is needed. In this study, a LabVIEW Multisim co-simulation platform was presented for
designing a control algorithm that could be used to run the MMC circuit designed in Multisim and
provide the simulation results. Now, once the simulation results are verified, the same algorithm can
be loaded to NI controllers, such as the NI cRIO or myRIO, and the real-time controller can be used to
control the real-time MMC burned in PXIe, which is a real-time digital simulator. Therefore, the use
of this platform allows for obtaining simulation results and does not require changes to the code for
real-time applications.
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