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Abstract: In existing methods, full-state feedback is required for the position tracking of single-rod
Electro Hydrostatic Actuators (EHAs). Measuring a full state is not always possible because of
cost and space limitations. Furthermore, measurement noise from pressure sensors may degrade
the control performance. We propose an observer-based nonlinear position control with nonlinear
coordinate transformation while only using position measurement to improve the position tracking of
single-rod EHAs. The proposed method comprises a position controller and an observer. We propose
a nonlinear coordinate transform for the controller design. The desired force is designed for the
position tracking and boundedness of the internal state. The position controller is designed to track
the desired state variables for the EHAs. Meanwhile, a nonlinear observer is proposed in order to
estimate a full state using only the position measurement. The stability of the closed-loop system
is investigated via an input-to-state stability property. The performance of the proposed method is
validated via both simulations and experiments.

Keywords: electro-hydrostatic actuator; position measurement; state estimation; position control

1. Introduction

Electro-Hydraulic Systems (EHSs) have been widely used in industrial systems because of
their high power density, stiffness, and flexibility as compared with their electrical counterparts [1].
Meanwhile, valve-controlled hydraulic systems, where systems use a pressure-compensated or
load-sensing pump to pressurize fluid for delivery to individual valve-controlled actuators, are widely
used in industries because of their simplicity. However, they pose several problems, such as
environmental pollution that is caused by working fluid leakage, maintenance load, heavy weight,
limited installation space, and low energetic efficiencies that are caused by throttling losses, even if
their designs are simple [2]. These problems can be overcome while using electro-hydrostatic actuators
(EHAs), where the electric motor is integrated, instead of a valve. The embedded motor directly
controls the pump in the EHAs. Hence, the EHA is also called a pump-controlled hydraulic actuator.
EHAs have several advantages when compared with valve-controlled hydraulic actuators, such as
smaller size, higher energy efficiency, and faster response because of their higher stiffness. Controlling
electro-hydraulic systems is difficult because the compressibility of hydraulic fluids and complex flow
properties result in higher nonlinearities in their dynamics.

Various control methods have been developed in order to improve the control performance of
the position/force of EHSs. Linear control theory has been used in hydraulics systems [1]. Moreover,
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variable structure control methods were proposed in [3,4] for the control of EHSs. A robust adaptive
and repetitive digital tracking control was proposed to reject disturbances [5]. The input–output
linearization-based control method was proposed in order to compensate for the global nonlinearities
of EHSs [6–8]. In addition, backstepping control methods were proposed using the dynamics properties
of electro-hydraulic systems [9–12]. A flatness-based nonlinear control method was recently developed
for position tracking [13]. Unfortunately, previous methods were designed for valve-controlled
hydraulic actuators; therefore, they are not applicable to EHAs. Only a few studies regarding the
control of pump-controlled hydraulic actuators have been reported. An adaptive backstepping scheme
with fuzzy neural networks was proposed for EHAs [14]. Furthermore, nonlinear control methods
based on singular perturbation theory have been recently proposed to achieve robustness in the
uncertainty of the effective bulk modulus for EHAs [15].

Although previous nonlinear control methods improved the position tracking of valve-controlled
or pump-controlled EHSs, they require a full-state feedback. Measuring a full state is not always
possible because of cost and space limitations. Furthermore, measurement noise from pressure sensors
and the derivative of the measured position to obtain the velocity may degrade the control performance.
An output feedback control method using a high-gain observer was recently proposed in order to
control the position using only the position feedback [16–18]. However, the method is not applicable
to a single-rod EHA because the system considered in [16–18] was a valve-controlled dual-rod EHS.
Because the electric motor in an EHA is integrated, the dynamics of EHAs differ from those of
valve-controlled EHSs. Furthermore, the areas of two chambers in a single-rod actuator differ to those
of a double-rod actuator. The dynamics of the pressures in the two chambers cannot be combined into
a single load pressure dynamics. Hence, the system dimension increases, and the internal dynamics
appear in the single-rod actuator hydraulic system dynamics [10]. The more complex dynamics in
single-rod hydraulic actuators render the controller more complicated as compared with those in
dual-rod hydraulic actuators. Consequently, previous methods are not applicable to single-rod EHAs
owing to the requirement of the full-state feedback and/or the model difference. To the best of our
knowledge, studies regarding position controller design using position feedback for single-rod EHAs
have not been reported.

In this paper, we propose an observer based nonlinear position control while using nonlinear
coordinate transformation to improve position tracking performance using only position measurement
for single-rod EHAs. The proposed method comprises a position controller and an observer.
Accordingly, we propose nonlinear coordinate transform for the controller design. The internal
dynamics exist because the EHA’s relative degree is three in a four-dimensional EHA model.
The desired force is designed for the position tracking and boundedness of the internal state.
Meanwhile, the position controller is designed to track the desired state variables for the EHA.
A nonlinear observer is proposed in order to estimate a full state using only the position measurement.
Consequently, the proposed method improves the position tracking performance using only position
measurement. The stability of the closed-loop system is investigated via an input-to-state (ISS)
stability property. The performance of the proposed method was validated via both simulations
and experiments.

2. Mathematical Model of Electro-Hydrostatic Actuator

This section introduces the EHA model to be controlled. Figure 1 shows the structure of the
single-rod EHA. The chamber volumes VA and VB can be expressed as

VA =VA0 + SAxp

VB =VB0 − SBxp
(1)

where xp is the piston position [m], VA0 and VB0 are the initial volumes of chambers A and B [m3],
respectively, including the pipeline, when xp =

xpmax
2 , xpmax is the maximum stroke of the cylinder [m],
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SA and SB are the pressure areas [m2]. The flow rate equations of both ports of the actuator can
be represented, as follows, when considering the fluid compressibility and continuity principle for
the actuator

QA =SA ẋp +
VA0 + SAxp

βe
ṖA

QB =SB ẋp +
VB0 − SBxp

βe
ṖB

(2)

where QA and QB denote the flow in the actuator [m3/s], βe is the effective bulk modulus of the
system [N/m2], and PA and PB are the pressure of both chambers [N/m2]. The change of the flow
direction and the flow rate adjustment through the port are handled by the electric motor directly
connected to the hydraulic pump. In addition, the pressure generated by the continuous supply of
flow in the actuator can produce a minute fluid leakage of the pump. Hence, the equations for the
fluid leakage of the pump are expressed as

qA =Dpωm − Cp(PA − PB)

qB =− qA
(3)

where qA and qB are the in-out flow rate of the pump [m3/s], Dp is the volumetric capacity of the pump
[m3/rad], ωm is the rotational speed of the electric motor [rad/s], and CP is the leakage coefficient of
the pump [m5/Ns]. The actuator force balance equation of the EHA systems is expressed as

mẋv + bxv + kxp = SAPA − SBPB (4)

where xv is the piston velocity [m/s]. m is the total mass of the piston and the load [kg], k is the load
spring constant [N/m], and b is the viscous damping coefficient [N/m/s]. We also assume that the
conduits that are connected between the actuator ports and the pump ports are very short. The flow
rates in (1) through (3) can then be represented as QA = qA and QB = qB. The dynamic equation of
the EHA systems can be represented as

ẋp =xv

ẋv =
1
m
[−kxp − bxv + SAPA − SBPB]

ṖA =
β

VA(xp)
[Dpωm − SAxv − CpPA + CpPB]

ṖB =
β

VB(xp)
[−Dpωm + SBxv + CpPA − CpPB]

(5)

where VA(xp) and VB(xp) are the volumes of chambers A and B [m3],respectively, and PL = PA − PB.
In EHA (5), xp is physically bounded as

−xplim ≤ xp ≤ xplim (6)

where xplim is a positive constant. The ranges of VA(xp) and VB(xp) are defined as

VA0 − SAxplim = VAmin ≤ VA(xp) ≤ VAmax = VA0 + SAxplim

VB0 − SBxplim = VBmin ≤ VB(xp) ≤ VBmax = VB0 + SBxplim .
(7)
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Figure 1. Structure of the single-rod electro-hydrostatic actuator.

3. Nonlinear Coordinate Transformation

Let us define a new state xT =
[

x1 x2 x3 x4

]T
and a nonlinear change of coordinates, as

x1 =xp

x2 =xv

x3 =VA(x1)PA + VB(x1)PB

x4 =SAPA − SBPB

(8)

where x4 is the force of the EHA. The relationships between the original and new states are

xp =x1

xv =x2

PA =
SBx3 + VB(x1)x4

VA(x1)SB + VB(x1)SA

PB =
SAx3 −VA(x1)x4

VA(x1)SB + VB(x1)SA
.

(9)

The dynamics of x3 and x4 are

ẋ3 =V̇A(x1)PA + V̇B(x1)PB + VA(x1)ṖA + VB(x1)ṖB

=− β[SA − SB]x2 + x2x4

ẋ4 =SA ṖA − SB ṖB

=
βSA

VA(x1)
[Dpωm − SAxv − CpPA + CpPB]

− βSB
VB(x1)

[−Dpωm + SBxv + CpPA − CpPB]

=−
β[S2

AVB(x1)− S2
BVA(x1)]

VA(x1)VB(x1)
x2 +

βCp[SA − SB]

VA(x1)VB(x1)
x3

−
βCp[VA(x1) + VB(x1)]

VA(x1)VB(x1)
x4 +

βDp[VA0SB + VB0SA]

VA(x1)VB(x1)
ωm.

(10)
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Control u is defined as u = ωm. We then obtain the new dynamics of the EHA, as

ẋ1 =x2

ẋ2 =
1
m
[−kx1 − bx2 + x4]

ẋ3 =− β[SA − SB]x2 + x2x4

ẋ4 =−
β[S2

AVB(x1)− S2
BVA(x1)]

VA(x1)VB(x1)
x2 +

βCp[SA − SB]

VA(x1)VB(x1)
x3

−
βCp[VA(x1) + VB(x1)]

VA(x1)VB(x1)
x4 +

βDp[VA0SB + VB0SA]

VA(x1)VB(x1)
u

(11)

Equation (11) can be represented as

ẋ1 =x2

ẋ2 =
1
m
[−kx1 − bx2 + x4]

ẋ3 =− β[SA − SB]x2 + x2x4

ẋ4 =− f2(x1)x2 + f3(x1)x3 − f4(x1)x4 + g(x1)u

(12)

where

f2(x1) =
β[S2

AVB(x1)− S2
BVA(x1)]

VA(x1)VB(x1)

f3(x1) =
βCp[SA − SB]

VA(x1)VB(x1)

f4(x1) =
βCp[VA(x1) + VB(x1)]

VA(x1)VB(x1)

g(x1) =
βDp[VA0SB + VB0SA]

VA(x1)VB(x1)

(13)

Remark 1. The relative degree of the new EHA model (12) is three. A one-dimensional internal dynamics, x3,
exists because the new EHA model (12) has it a dimension of four. The stability of the internal dynamics must
be verified.

We now define x1d as the desired position. From (12), x2d and x4d are derived as

x2d =ẋ1d

x4d =mẋ2d + bx2d + kx1d︸ ︷︷ ︸
x4a

+ (−k3sgn(x2d)x3)︸ ︷︷ ︸
x4b

(14)

where k3 is a positive constant. In x4d , x4a is the part of the desired force for the position tracking,
whereas x4b is the part that guarantees the boundedness of x3.

4. Position Controller

In this section, the design of position controller for tracking the desired state variables for the
EHA model (12) is presented.

4.1. Controller Design

The tracking errors are defined as
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e0 =
∫ t

0
(x1d − x1)dτ

e1 =x1d − x1

e2 =x2d − x2

e4 =x4d − x4.

(15)

Remark 2. The integrator of the position tracking error is defined in order to eliminate the steady-state error
due to constant disturbances.

The error dynamics are derived as

ė0 =e1

ė1 =e2

ė2 =
1
m
[−ke1 − be2 + e4]

ė4 =ẋ4d − (− f2(x1)x2 + f3(x1)x3 − f4(x1)x4 + g(x1)u).

(16)

The controller u is designed as

u =
1

g(x1)
[ f2(x1)x2 − f3(x1)x3 + f4(x1)x4]

+
1

g(x1)
[ẋ4d + k0e0 + k1e1 + k2e2 + k4e4]

(17)

where k0, k1, k2, and k4 are control gains. The error dynamics (16) then become

ė0 =e1

ė1 =e2

ė2 =
1
m
[−ke1 − be2 + e4]

ė4 =− k0e0 − k1e1 − k2e2 − k4e4.

(18)

If the control gains k0, k1, k2, and k4 are selected, such that

Ae =


0 1 0 0
0 0 1 0
0 − k

m − b
m

1
m

−k0 −k1 −k2 −k4

 (19)

is Hurwitz, then e =
[
e0 e1 e2 e4

]T
exponentially converges to zero.

4.2. Stability Analysis of Internal Dynamics

The dynamics of x3 in the new EHA model (12) are internal dynamics as

ẋ3 = −β[SA − SB]x2 + x2x4. (20)

We will now prove the stability of the internal dynamics. x1, x2, and x4 will track x1d , x2d , and x4d ,
respectively, while using the controller (17). Thus, the zero dynamics are

ẋ3 = −β[SA − SB]x2d + x2d x4d . (21)



Mathematics 2020, 8, 1273 7 of 16

Theorem 1. Consider the zero dynamics (21). x3 is globally ultimately bounded in the zero dynamics (21).

Proof. Let us define the Lyapunov candidate function Vx3 as

Vx3 =
1
2

x2
3. (22)

We have V̇x3 as

V̇x3 =x3 ẋ3

=x3(−β[SA − SB]x2d + x2d x4d)

=x3x2d(−β[SA − SB] + mẋ2d + bx2d + kx1d)

− k3x2d sgn(x2d)x2
3

=− k3x3x2d

(
sgn(x2d)x3 −

d
k3

)
(23)

where d = −β[SA − SB] + mẋ2d + bx2d + kx1d . If x1d is the desired position trajectory for point to point
motion, such that x1d(∞) = c, where c is constant, and then x2d(∞) = 0. Hense V̇x3(∞) = 0, such that
x3 converges to x3c where x3c is constant. If x1d is the desired position trajectory for a repetitive
motion, the x3 of the zero dynamics converges to Br = {x ∈ R||x| ≤ dmax

k3
} where dmax = supt |d(t)|.

Consequently, x3 is globally ultimately bounded in the zero dynamics (21).

5. Nonlinear Observer Design and Closed-Loop Stability Analysis

In this section, we design the observer in order to estimate the full state. Subsequently,
the closed-loop stability is proven using the ISS property.

5.1. Nonlinear Observer Design

The estimated state variable vector x̂ is defined as

x̂ =
[

x̂p x̂v P̂A P̂B

]T
. (24)

The dynamics of x̂ are designed as

˙̂xp =x̂v + l1[xp − x̂p]

˙̂xv =
1
m
[−kx̂p − bx̂v + SA P̂A − SB P̂B]

˙̂PA =
β

VA(xp)
[Dpωm − SA x̂v − Cp P̂A + Cp P̂B]

˙̂PB =
β

VB(xp)
[−Dpωm + SB x̂v + Cp P̂A − Cp P̂B].

(25)

The state estimation error x̃ is defined as

x̃ =


x̃p

x̃v

P̃A
P̃B

 =


xp − x̂p

xv − x̂v

PA − P̂A
PB − P̂B

 . (26)
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The dynamics of x̃ are

˙̃xp =− l1 x̃p + x̃v

˙̃xv =
1
m
[−kx̃p − bx̃v + SA P̃A − SB P̃B]

˙̃PA =
β

VA(xp)
[−SA x̃v − Cp P̃A + Cp P̃B]

˙̃PB =
β

VB(xp)
[SB x̃v + Cp P̃A − Cp P̃B]

(27)

In the EHA, because xp is measurable, the estimation error dynamics (27) can be rewritten as


˙̃xp
˙̃xv
˙̃PA
˙̃PB

 =


−l1 1 0 0

0 − b
m

SA
m − SB

m

0 − βSA
VA(xp)

− βCp
VA(xp)

βCp
VA(xp)

0 βSB
VB(xp)

βCp
VB(xp)

− βCp
VB(xp)

.


︸ ︷︷ ︸

Ao(xp)


x̃p

x̃v

P̃A
P̃B

 . (28)

Theorem 2. Consider the estimation error dynamics (27). If l1 is positive and an affine Lyapunov matrix,
P(θA, θB) exists to satisfy the conditions, such that

P � 0, θA ∈ ΣA, θB ∈ ΣB

AT
o P + PAo ≺ 0, θA ∈ ΣA, θB ∈ ΣB

(29)

then x̃ exponentially converges to zero.

Proof. The problem that analyzes the eigenvalues of (28) for all xp ∈ [−xplim , xplim ] is
equivalent to the robust stability analysis of a linear system with uncertain real parameters [19].
Because xp ∈ [−xplim , xplim ],

1
VA(xp)

, and 1
VB(xp)

are in the sets ΣA and ΣB, respectively.

1
VA(xp)

= θA ∈ ΣA = [θAmin , θAmax ]

1
VB(xp)

= θB ∈ ΣB = [θBmin , θBmax ].
(30)

where θAmin = 1
VAmax

, θAmax = 1
VAmin

, θBmin = 1
VBmax

, and θBmax = 1
VBmin

. The mean values of VA(xp) and

VB(xp) with the given sets ΣA and ΣB, respectively, are presented as

θ̄A =
θAmin + θAmax

2

θ̄B =
θBmin + θBmax

2
.

(31)

Ao(θA, θB) can be rewritten as

Ao(θA, θB) = A0 + θASA + θBSB. (32)

With the general EHA parameters and positive l1, A0 is always Hurwitz. Hence, a symmetric
matrix P0 exists, such that AT

0 P0 + P0 A0 � 0. The results in [19] showed that with Hurwitz A0, if an
affine Lyapunov matrix, P(θA, θB) exists to satisfy condition (29), then Ao(θA, θB) is Hurwitz. For given
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compact sets ΣA and ΣB, we can then determine the existence of by solving LMI with the MATLAB
robust control toolbox. Consequently, x̃ exponentially converges to zero.

Remark 3. The convergence rate is determined by l1 and the EHA parameters. The output injection parameter
l1 will not fully affect the convergence rates of the origin in the estimation error dynamics as the output injection
parameter is used in only x̃p. However, the convergence rates determined by the EHA parameters in the
observer are sufficiently fast when compared with the slow EHA system. Furthermore, with the EHA parameters,
P(θA, θB) exists to satisfy the conditions. Consequently, only a positive l1 is required to guarantee the stability.

5.2. Stability Analysis of Closed-loop System

We define the estimation of xT as x̂T =
[

x̂1 x̂2 x̂3 x̂4

]
, where

x̂1 =x̂p

x̂2 =x̂v

x̂3 =VA(x1)P̂A + VB(x1)P̂B

x̂4 =SA P̂A − SB P̂B.

(33)

The estimation error of xT is defined as x̃T =
[

x̃1 x̃2 x̃3 x̃4

]T
, where

x̃1 =x̃p

x̃2 =x̃v

x̃3 =VA(x1)P̃A + VB(x1)P̃B

x̃4 =SA P̃A − SB P̃B.

(34)

From (34), x̃T = T(x1)x̃, where

T(x1) =


1 0 0 0
0 1 0 0
0 0 VA(x1) VB(x1)

0 0 SA −SB.

 .

In the control input (17), the estimated state variables x̂2, P̂A, and P̂B are used, except for x1.
Hence, the error dynamics (18) become

ė0 =e1

ė1 =e2

ė2 =
1
m
[−ke1 − be2 + e4]

ė4 =− k0e0 − k1e1 − k2e2 − k4e4

+ f2(x1)x̃2 − f3(x1)x̃3 + f4(x1)x̃4 + k2 x̃2 + k4 x̃4.

(35)

From (35) and (27), the closed-loop system is obtained as

ė =Aee + Be(x1)T(x1)x̃
˙̃x =Ao(x1)x̃

(36)
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where

Be(x1) =


0 0 0 0
0 0 0 0
0 0 0 0
0 f2(x1) + k2 − f (x1) f4(x1) + k4.

 .

In (36), Be(x1) and T(x1) are bounded. Hence, e is ISS stable because Ae is Hurwitz [20].
From Theorem 2, it was proven that x̃ exponentially converges to zero. Finally, e converges to zero.

Figure 2 shows the block diagram of the controller structure. x2d and x4d are generated using x1d

in (14). The observer (25) estimates x using x1 and u. The current input is then obtained by the control
law (8), (17).

Electro-

hydrostatic 

actuator (5)
d

x
1

u
x
1

Controller 

(8) (17)

Observer

(25)

x̂

Desired state 

variables 

(14)

d d

x x
2 4

Figure 2. lock diagram of the controller structure.

Remark 4. In (17), the derivative of x4d is used. The derivative of sgnx2d function is infinite in zero
(x2d). As the sgn(x) function can be replaced with tanh(rx), where r is a sufficiently large positive
constant [21,22], x4d = mẋ2d + bx2d + kx1d − k3sgn(x2d)x3 can be used instead of x4d = mẋ2d + bx2d +

kx1d − k3tanh(rx2d)x3 for the digital implementation of the control law (17).

6. Simulations

The simulations were conducted in MATLAB/Simulink in order to evaluate the performance of
the proposed method. The parameters of the EHA and the control gains listed in Table 1 were used.
The load force disturbance was set to 300 Nm. Figures 3 and 4 show the simulation results with the
trajectory reference. Figure 3 shows the estimation performance of the proposed method, where the
blue and dashed red lines denote the actual and estimated state variables, respectively. The estimated
state variables tracked the actual state variables well. A small peak appeared owing to the difference
in the initial values of the estimated and actual velocities in the estimation of xv. Figure 4 shows
the position tracking and the control input of the proposed method. The blue and dashed red lines
presented in Figure 4a denote the desired and actual positions, respectively. The position tracking error
that is shown in Figure 4b is less than 0.1%. The small peak in the position tracking error appeared
owing to the small peak in the estimation of xv.

Figure 5 shows the position tracking and the control input of the proposed method with the
sinusoidal reference. In this simulation, a step load force disturbance of 300 Nm was injected at
5 s. The blue and dashed red lines presented in Figure 5a denote the desired and actual positions,
respectively. At 5 s, a small peak in the position tracking error appeared owing to the step load force
disturbance of 300 Nm, but this peak was suppressed by the proposed method. The position tracking
error shown in Figure 4b was less than 0.3%. At 5 s, the small peak in the control input suppressed the
step load force disturbance.
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Table 1. Parameters.

Parameter Value Parameter Value

k 4000 b 100
m 80 SA 7.94226× 10−5

SB 5.43251× 10−5 Dp 8.43521× 10−8

Cp 2× 10−13 βe 1.8× 109

k0 9.8× 1012 k1 3.7620× 1010

k2 5.6× 107 k3 0.01
k4 3800 l1 100
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Figure 3. Estimation results of the proposed state observer in simulations with the trajectory reference.
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Figure 5. Position tracking performance of the proposed method in simulations with the sinusoidal reference.

7. Experiments

The experiments were executed to evaluate the performance of the proposed method. In the
experiments, the proposed method was compared with the proportional-integral (PI) with a
feedforward controller used in industrial applications, as follows:

u = 106(xd
1 − x1) + 1000

∫ t

0
(xd

1 − x1)dτ + 200ẋd
1 . (37)

The gains of the PI controller with velocity feedforward were well tuned for tracking the desired
position. The same parameters and the load force disturbance were used in both the simulations
and experiments. Figure 6 presents the experimental setup. The EHA with the AC servo motor
designed by KCC Co., Ltd. was used. The effective stroke of the piston range was ±0.025 m. Only a
potentiometer was used as the sensor to measure the position. For the experiments, the control
algorithms (i.e., the proposed method and the PI controller with velocity feedforward) that were coded
in C by an S-function were used in realtime operating systems. The derivatives in the control law
formulation were calculated using the Tustin method. A sampling rate of 1 kHz and 16-bit A/D and
16-bit D/A converters were also used. Figures 7 and 8 present the position tracking performances of
both methods. In the PI controller with the velocity feedforward, the peaks of the position tracking
errors appeared due to the static friction whenever the direction of motion was changed. Furthermore,
relatively significant lag also appeared. On the contrary, the peaking in the transient responses was
suppressed by the proposed method. In the proposed method, the position tracking error rapidly
converged to zero when compared with the PI controller with the velocity feedforward. Meanwhile,
the influence of friction was insignificant in the proposed method. The use of the proposed method
resulted in decreasing the phase lag. The position tracking error of the proposed method was 40% less
than that of the PI with velocity feedforward. Hence, the position tracking performances in both the
transient and steady-state responses were improved by the proposed method.
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Figure 6. Experimental setup of the EHS system.
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Figure 7. Position tracking performance of the PI and feedforward controller in experiments.
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Figure 8. Position tracking performance of the proposed method in experiments.

8. Conclusions

The observer based nonlinear position control with nonlinear coordinate transformation using
only position measurement was proposed in order to improve the position tracking performance
in single-rod EHAs. The proposed method consisted of a position controller and an observer.
The nonlinear coordinate transform was presented to design the simple position controller. The position
controller was designed to track the desired state variables, while the observer was proposed to
estimate the full state using only the position feedback. The performance of the proposed method
was validated via simulations and experiments. It was shown that the proposed method reduced the
position tracking errors in both the transient and steady-state responses. Consequently, the proposed
method can improve the the position tracking performance using only the position measurement in
both the transient and steady-state responses.
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