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Abstract: For several decades, disturbance observers (DOs) have been widely utilized to enhance
tracking performance by reducing external disturbances in different industrial applications. However,
although a DO is a verified control structure, a conventional DO does not guarantee stability.
This paper proposes a stability-guaranteed design method, while maintaining the DO structure.
The proposed design method uses a linear matrix inequality (LMI)-based H, control because the
LMI-based control guarantees the stability of closed loop systems. However, applying the DO design
to the LMI framework is not trivial because there are two control targets, whereas the standard LMI
stabilizes a single control target. In this study, the problem is first resolved by building a single
fictitious model because the two models are serial and can be considered as a single model from the
Q-filter point of view. Using the proposed design framework, all-stabilizing Q filters are calculated.
In addition, for the stability and robustness of the DO, two metrics are proposed to quantify the
stability and robustness and combined into a single unified index to satisfy both metrics. Based on
an application example, it is verified that the proposed method is effective, with a performance
improvement of 10.8%.

Keywords: disturbance observer (DO); He control; linear matrix inequalities (LMIs); optimal control;
Q filter; robustness; stability.

1. Introduction

Motion control systems are extensively used in different industrial applications such as hydraulic
pumps, linear actuators, and rotating electric motors. In a control system, tracking performance is
one of the main performance indicators because it implies the accuracy of the motion control system.
Tracking error is defined by the position error signal (PES), that is, the difference between a reference
command to be followed and the output of an actual plant, while tracking performance is measured
by the deviation in the error of the measured tracking error. However, external disturbances act
as unexpected commands and ultimately perturb the output of well-designed plants, resulting in a
high PES. Therefore, external disturbances should be minimized. To eliminate external disturbances,
a disturbance observer (DO) is widely utilized [1]. The DO is composed of disturbance estimation
and a Q-filter to stabilize the DO. Because the DO uses a plant inverse model to estimate introduced
disturbances, causality and instability problems are unavoidable. Furthermore, because the Q-filter can
be trimmed only by controlling the bandwidth, it does not guarantee the stability of the DO. Causality
and instability are fundamental challenges in a DO.

To reduce the external disturbances, numerous studies based on DOs have been undertaken;
however, the majority of these studies have used DOs without considering stability. DOs have also
been applied to satellite and star tracking systems [2]. In these systems, micro-electro-mechanical
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system (MEMS) accelerometers were used to measure the disturbances; however, the drift caused by
the MEMS resulted in integral saturation. To remove this saturation, the study suggested a modified
DO whereby a feedforward control was used instead of the feedback control in a conventional DO.
However, the study had no stability analysis. For motor control systems, a practical design method
to improve the stability and robustness of reaction-torque-observer-based force control systems was
proposed [3]. In this study, to achieve robustness, high-frequency dynamics were attenuated by
controlling the gains of the feedback loop. However, the method used was not a stability-guaranteed
method; it only provided a guideline to address stability. To remove narrowband high-frequency
disturbances, a discrete time DO based on an infinite impulse response filter was suggested and applied
to a permanent-magnet synchronous motor [4]; however, stability was not guaranteed. Unlike a
conventional DO, a high-pass Q-filter was used to estimate the disturbance for electro-hydraulic
actuators [5]. The study analyzed only stability; it did not suggest a stability-guaranteed method.
Two high-order DOs (HODOs) were also developed to estimate disturbances accurately for a
pump-controlled hydraulic system [6]. The stability analysis was performed; however, the stability
was not proved. DOs were applied to transportation because they also have motor-based actuators.
A HODO was applied to mobile-wheeled inverted pendulum (MWIP) systems, and a HODO-based
sliding mode control method was proposed to stabilize the underactuated MWIP systems and to reduce
the chattering phenomenon [7]. In this study, robustness was evaluated by validating the bounded
error dynamics to the bounded disturbances, and stability was achieved by the appropriate selection of
the sliding surface coefficients. It was confirmed that DOs can be utilized to eliminate chatter problems
rather than discontinuous control in antilock braking systems [8]; however, they did not investigate
stability or robustness. In underactuated surface vehicles, a DO was used to address the actuator
dead zones and disturbances [9]. The paper suggested only implicit stability and did not demonstrate
robustness. To control the flight of an unmanned aerial vehicle, a DO was used to improve the tracking
performance [10]. In this study, chirp disturbances were effectively estimated using a DO. The paper
suggested a necessary condition for stability but did not guarantee this stability; robustness was not
addressed at all. Heo-based DOs were introduced because the He, design method is sufficiently flexible
to shape existing frequency responses with guaranteed stability [11,12]. A new complex coefficient
adaptive DO based on back electromotive force estimation was designed using the Hy, design and
was applied to the interior permanent-magnet synchronous motor drive [13]. This method was proven
to be stable using a Lyapunov’s direct method in the time domain. However, the proposed method
was designed in the frequency domain because the introduced disturbances typically have complex
frequency components, and to remove the composite disturbances the frequency domain design is
more useful. In this study, a Q-filter was used as the complementary sensitivity of the DO because
the real model was equivalent to the nominal model in the low-frequency range [14]. This study
proved guaranteed stability in the frequency domain under the assumption of P = P,, which is
different from this study. For accurate mechanical manipulation, friction [15,16] and uncertainty [17]
were considered as disturbances. A DO was applied to remove the equivalent disturbances, and the
stability in the above two studies was verified using the Lyapunov’s direct method in the time domain.
The Lyapunov’s direct method is intuitive and capable of verifying the stability of linear systems
and can be extended to nonlinear systems as well [18-21]. A stability-driven method for designing a
DO in the frequency domain has rarely been attempted. Recently, an explicit Lyapunov-based proof
for stability in the frequency domain has been suggested. Two switching DOs were used to obtain
stability [22]. However, throughout the research, the assumption of P = P,, was used, whereas the
proposed method does not employ such an assumption. With this assumption, Q and 1 — Q were
considered as sensitivity and complementary sensitivity functions, respectively, and the functions
were shaped by weighting functions W; and W5. Therefore, their design approach is different from the
proposed method. In one of the other methods, a DO controller was first designed, and then a Q-filter
was reconstructed indirectly in single-input single-output (SISO) [23] and multi-input multi-output
(MIMO) [24] systems. In these studies, a two-input and one-output DO was designed, which is indeed
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a stability-driven DO. From the designed DO, Q = —D; and P, ! = —Dy 1D, were reconstructed.
However, the resulting controller using a linear matrix inequality (LMI)-based He control is proper,
that is, strictly proper or bi-proper (see Definition 1). Therefore, if D; is strictly proper, then P, ! is
not realizable, and additional filters are required to solve the causality problem. In another work
on stability-driven DOs, an estimation-error-based DO in the state space was proposed [25]. In the
study, the estimation errors are considered as equivalent disturbances because in the steady state,
the estimation error is zero in the absence of disturbances. The method was realized in the state space
to maintain the advantages of state-space controllers.

Because DOs are effective structures for eliminating disturbances and achieving high tracking
performance, they have been used in numerous fields for several decades. However, thus far,
no method has been proposed to ensure stability in the frequency domain while maintaining the
structure of the existing DO. This study proposes a novel method to ensure continued stability of the
DO, while maintaining the structure of the existing DO. To stabilize the DO, an LMI-based Hs control
is used because the method can deliver control to always stabilize closed loop systems. However,
applying the DO design to the LMI-based H., control framework is not trivial because the DO has
two models, that is, a plant model and a nominal model, whereas a standard LMI-based He, control
stabilizes only one model regardless of its type, that is, an SISO or MIMO model. To apply the DO
design problem to an LMI framework, in this study, the plant and nominal models are considered as a
single fictitious model because the two are serial and can be a single model from the control point of
view in the DO. The proposed framework offers sufficient conditions for the DO stability, the resulting
solution (Q-filter) is optimal for the weight functions and target model, and it always stabilizes the DO
mathematically. However, although the Q-filter stabilizes the DO, for implementation, the DO should
be represented in the form of Q- P, /(1 — Q). Here, the fundamental problems of a DO—causality and
instability—arise due to P, !. A strictly proper P, makes a non-causal DO, and a non-minimum phase
P,, makes an unstable DO. In these cases, the DO cannot be realizable and/or is unstable. To solve the
instability problem, this study proposes an all-filter-based inversion technique, which is a modified
version of the previous study [26]. To resolve the causality problem, a new guideline for filter design
is suggested. In the filter design guide, a phase distortion of the filter is underlined, and complex
conjugated poles are recommended, which is definitely unique to this study. Secondly, metrics to
increase the stability margins and decrease the high-frequency dynamics for robustness are proposed
independently. Then, the two metrics are quantified independently and unified for considering both
the stability and robustness simultaneously, which is also proposed, for the first time, in this paper.
The contributions of this study are summarized as follows.

o  The method provides a design framework for Q-filter design to always stabilize the DO for
all types of models because the proposed method results from a Lyapunov-stability-driven
He control.

o  Toapply the DO design problem to the LMI-based control framework, both an identified and a
nominal model are considered as the target model to be controlled, which is different from the
design in conventional methods. Based on the idea that the Q-filter output should be equal to
the introduced external disturbance in the frequency of interest, a new design framework for an
LMI-based He control is proposed, which is a new design concept.

o The proposed method provides easy controllability for both performance and robustness by
simply adjusting the weight functions while maintaining stability.

e  This study underlines the phase distortion of the compensator to solve the causality problem,
and filters with complex conjugate poles are recommended.

e  Unified metrics quantifying both the stability margin and high-frequency dynamics are suggested
to realize a robustly stable DO.

The remainder of this paper is organized as follows. Section 2 contains the first result of the main
research. In this section, a conventional DO is discussed. From the concept of the operation, a new
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framework for systematic Q-filter design is suggested, and the optimal Q-filter that stabilizes the DO
is calculated. This study is the first attempt to obtain a stability-guaranteed method while maintaining
the DO structure. Furthermore, this method offers easy controllability over stability and robustness.
Section 3 discusses the second result. The transfer function of the DO is represented by a function of
an inverse model of the nominal plant, which incurs instability and causality problems. To resolve
the instability problem, an all-filter-based inverse model is proposed. To solve the causality problem,
unified metrics via Nyquist plots are designed and proposed. To quantify and penalize the stability
and robustness, a unified metric is suggested, which is introduced, for the first time, in this paper.
In Section 4, illustrative examples including time and frequency responses are presented. To verify the
precision tracking control, hard disk drives (HDDs) are used as a motion control system. Section 5
provides complete solutions according to the model types and limitations of the proposed method.
The conclusion and future work follow.

2. Stabilizing Q Filter Design

A system with a DO has two control loops, the outer and inner loop systems. The outer loop system
consists of a plant model and a controller that stabilizes the plant model. Because the controller of the outer
loop system is designed in the absence of external disturbances, the outer loop system does not contain
a DO, and the controlled plant output is the same as the estimate. In the presence of disturbances,
the output cannot be estimated; therefore, a DO is added to minimize the disturbances. This DO forms
an additional control loop system, that is, an inner loop system. Therefore, before designing a DO, an
outer loop system must be designed. This section focuses on the DO design, and the outer loop design
is described in Section 4.

2.1. Conventional DO

In the presence of external disturbances, the DO is designed to reduce the effect of the disturbances.
A DO reduces the effect of the disturbances by subtracting the introduced disturbances. Therefore,
the DO consists of a disturbance-monitoring filter and a stabilizing filter, that is, a Q-filter. In Figure 1,
a conventional DO structure is depicted, where u is the output of the state feedback controller C that
forms an outer loop control system.

d

Q.

0

Figure 1. Conventional disturbance observer (DO) structure (inner loop system).
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Here, P;; and P, are an identified and nominal models respectively. The input of the Q-filter is
written as

io=—u+P; ' Py (d+u) .

:—u—f—P,fl-P,«d-d—ﬁ—P;l-Pidﬂ. @

If Py and P, are ideally identical, i equals d because P, ! - P;; = 1. The DO must be a systematic

method to reduce the disturbance; however, the stabilization Q-filter is generally designed by the

trial and error method because the Q-filter is a typical low-pass filter with zero DC gain. Therefore,
the controlling factor is only a bandwidth or could be a skirt feature (transition band) of the filter.

2.2. Proposed Framework for Optimal Stabilizing Q Filter Design

In this subsection, a novel stabilizing Q filter design is proposed. In an ideal DO, d should be
equal to d in the frequency range of interest, which implies that the input of P4, up, , should be
minimized in the corresponding frequency range. Moreover, because the DO has inverse dynamics,
and high-frequency dynamics can be easily excited, it is desirable to weight the control effort of the
DO. In addition, from the Q-filter point of view, a plant to be controlled is P = P;; - P, 1 because Py
and P, ! successively exist.

For these reasons, an augmented and generalized system is proposed, as displayed in Figure 2.
Using the block diagram, an optimal Q filter based on H control is designed. For the weighting
function design, the following function is used:

(s/MY" + wp)"
(s +wjAL/n))n

W(s) = @

where M, A, wj and n are the upper bound, lower bound, bandwidth, and order of IW=1(s)]
respectively [27]. In the proposed framework, W, ! controls the ability of the disturbance rejection,
and W, ! controls the robustness. The detailed discussion is presented in Section 4.

> 27,(7)
w(t)

> z,(7)
u,(t
o) 0

Q filter
g
(AQ’BQ’CQ’DQ)

Figure 2. Framework for proposed DO design.
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2.3. Optimal Stabilizing Q Filter Design

To realize the framework as displayed in Figure 2, all transfer functions must be described using
state-space representation. Here, P = P;; - P, ! is proper because P = P,, and P, is proper. Thus, P is
realizable and can be written using state-space representation.

Xp(t) = Apxp(t) 4+ Bpup(t)
yp(k) = Cpxp(t) + Dpup(t)

P 3)

Here, W; for disturbance rejection performance and W, for controlling uncertainty are also
described using state-space representation, as shown in (4) and (5).

xy, (£) = Aw, xw, (t) + By, uw, (t)

W1 : (4)
yw, (k) = Cw, xwy () + Dy, (£)
W, : X, (1) = Ay xw, (£) + Bw, i, (£) )
yw, (k) = Cwxw, (£) + Dy, i, (£)
Using (3), the plant state equation can be represented by
Xp(t) = Apxp(t) + Bp(w(t) —ug(t)) ©)
With (4) and (5), the corresponding state equations are captured by
dy, () = Aw, Xw, () + Bw, (w(t) — ug(t)) )
= Awlel(t) + Bwlw(t) — BwluQ(f),
X, (t) = Aw,xw, () + B, (—ug(t)) ®)
= szxwz(f) — szuQ(t).
The output to be minimized are z1 () and z;(t) and are calculated by
z1(t) = Cw,xw, (t) + Dw, (w(t) —ug(t)) )
= CWIXWl(i‘) + lew(t) — leuQ(t)/
2(t) = Cw,xw, (t) + Dw, (—uq(t)) (10)
= CszWz(t) — DWZMQ(t)~
The input of the Q-filter is also written as
(0) = Cyy (1) + Dy(w(t) ~ ug(t)) + o 1) "

= Cpxp(t) + Dpw(t) + (1 — Dp)ug(t).
Using (6)—(11), the augmented systems can be written as

x(t) = Ax(t) + Biw(t) + Boug(t)
(i’) = Clx(t) + an(t) + Dlqu(t) (12)
(t) + D21w(t) + Dzqu(t),
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where x(t) = [xg(t) xho () X%Z(t)r,z(t) = {le(t) zzT(t)}Tand

A, 00 B, ~B,

A=|0 Aw, 0 |,Bi=|Bw|,Bo=|—Bw,|,
0 0 Ap, 0 —By,

0 Cy. 0 Dy Dy, |

C = i D= |"M|,Dp = 1,
1 [0 0 Cep, 11 [0 12 D,

G =[C, 0 0],Dn=[D,], D0 =[1-D,].
Using (12), the stabilizing Q-filter is calculated as follows.

o xg(t) = Agxq(t) + Baya(t) 13
MQ(k) = CQXQ(t) + DQyQ(t).

Theorem 1. Q-filter stabilizes P;; - P, 1

Proof of Theorem 1. Since Q is a Lyapunov-stability-based He, dynamic output feedback controller,
Q always stabilizes a fictitious plant, Pj; - P, 1128-30]. O

3. DO Realization

Even though an optimal Q-filter that stabilize the inner loop was designed in the previous
subsection, a complete DO must be designed considering P, ! as in Figure 1. To realize P, !, we could
encounter two problems, causality and instability. Causality is related to the difference between the
orders of the numerator and denominator. Let the transfer function T be given by N7 /D, where Nt
and Dy are a numerator and a denominator of T. Then, d = p(Dt) — p(N7) is referred to as relative
degree, where p(-) denotes the order of the corresponding polynomial. According to the relative
degree, T can be categorized as follows [27].

Definition 1.

o Ifd >0, T is strictly proper and can be realizable.
o Ifd =0, T is bi-proper and can be realizable.
o Ifd <0, Tis improper and cannot be realizable because of causality.

If P, is a non-minimum phase plant with unstable zeros, then instability arises. Therefore,
to realize DO, the two problems, causality and instability, must be resolved. From Figure 1, DO can be
written as

—d Q-p;1
0 = —_— = 771
Cbo = 7l =207 (14)

To realize CY,,, P, ! must be calculated. However, P, could be a non-minimum phase or a strictly
proper function. In this case, C% , becomes unstable and unrealizable.
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3.1. Solution to Non-Minimum Phase Plants

To solve the instability problem, an alternative inverse model based on an all-pass filter is
used. In previous research [26], discrete time-domain all-pass filters were introduced. In this study,
continuous time-domain all-pass filters are developed. Let P, be given by

Py =——-, (15)

where B (s) and B;(s) are the numerators containing stable and unstable zeros, respectively. A(s) is a
polynomial of the denominator. Then, rather than P, 1 we can use

51 Als)
P = Bs(s)B(s)’ (16)
Furthermore, B(s) is obtained by
Bus(s)
5 = 1L (17)

where the roots of B(s) are mirrored images of the roots of Bys(s). Because the gain is unity, Bys(s) can
be substituted with B(s) to calculate the inverse model. Thus, the DO is rewritten as

Q  Als)
1—Q Bs(s)B(s)

3.2. Solution to Strictly Proper Plants

The resulting CL,, could be improper because P, and P, could be strictly proper. To solve this
causality problem, additional filters must be designed. In this report, a compensation-filter design
method is proposed that considers stability and robustness. The additional compensator is defined by

1
S/Tl'—i-ll

=

(19)

0
Ccomp
i=1

where d denotes the relative degree of P, and T; is a pole of the compensator to be designed.
Proposition 1. If T; is far from the origin in the left-half plane, the DO is more stable.

The additional Ceomp inevitably decreases the stability margins because of the time delay caused
by the phase distortion of the poles. Accordingly, if the pole is designed to be located far from origin,
then the DO is more stable.

Proposition 2. A second-order filter with two complex conjugate poles decreases the stability margins less than
a second-order filter with two real poles because the former has a faster phase transient, which means a smaller
phase loss near the gain crossover frequency of the open-loop transfer function.

Therefore, the use of a second-order filter with two complex conjugate poles is recommended for
DO stability, which is represented as

c! ! - i 20
comp_gs/’[l“f’l.].:1524_2@].1-]-54—’[].2/ ( )
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where p and g are integers satisfying d = 2 X p 4+ q. Then DO is calculated by

p 72

. Q AG) o1 j
€00 =720 B(s)B(s) }}s/ml 11152—1-25]"[]'54—'[].2' 1)

~

Moreover, high-frequency dynamics must be considered. If high-frequency dynamics exist over
the phase crossover frequency, the high frequency uncertainty could be excited regardless of the
stability margins.

3.3. General Solution with Considering Stability and Robustness

A typical Nyquist plot of the open-loop transfer function with high-frequency dynamics is
illustrated in Figure 3.

1 5 T T T T T T
----- stability margin bound
---------- high frequency dynamics bound
1k i
051 ; i
I’l
/

.

-0.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5

Figure 3. Nyquist plot with stability margin and high frequency dynamics.

Here, w. and wigy are the gain and phase crossover frequencies of the open-loop transfer
function, L(jw), respectively. In addition, GM and PM are the gain and phase margins, respectively.
Therefore, for sufficient stability margin, |L(jwgp)| should be small, and /L(jw.) — 180 should be
large, which means r; of the circle tangent to L(jw) should be as large as possible. To reduce the
high-frequency dynamics over the phase crossover frequencies, r; of the circle tangent to L(jw) should
be as small as possible. The first circle is located at (—1,0); the second is located at (0,0). To combine
two metrics into one metric, a new parameter « is introduced, and the unified metric can be written as

M=ar +(1—a)r; !, (22)
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where « is a weight factor for controlling stability margin and high-frequency dynamics excitation,
and 0 < o < 1. Therefore, for maximum stability margin and minimum excitation of the high-frequency
dynamics, Ceomp must be designed to maximize M. Accordingly, the DO maximizing M can be
obtained as

*)2
(1)

s2+201T's + (T7)?

q P
Q A(s) B 1 .
=1

Ck . = . )

DO ™ 1-Q Bs(s)B(s) s/t +1 j
where * denotes the optimal values to maximize M. Equation (23) is a general solution for all types of
models; each solution based on a model type is presented in Section 5.

4. Application Example

This section presents the modeling, the outer loop design based on state feedback controller using
a nominal plant P, and the inner loop design based on the proposed method using the nominal plant
P, and an identified model P;;. In addition, the designed time and frequency responses are presented.

The proposed design method was applied to HDDs, as displayed in Figure 4, which are typical
motion control systems. The dynamics of the plant model were measured using a laser Doppler
vibrometer (LDV) and a dynamic signal analyzer (DSA). From the data, an identified model P;; with
high frequency dynamics was captured by
K; 1 w?

" Tm 2+ (Ba/Jm)s +Ks/Jm 2+ 20nwns + w2 (24)
= Py(s) - Pi(s),

Py(s)

where P, (s) and Py(s) are the nominal and resonance models, respectively, and are defined as

_ K 1
P = S E T BalJu)s ¥ Ko T @3)
wz
P(s) n (26)

T 2x 20 pwns + w3’

where K; is the torque constant, |, is the inertia, B; is the damping coefficient, and K; is the spring
coefficient, which determines the low-frequency poles. Here, w, and {, describe high-frequency
resonance characteristics. The values of the parameters are listed in Table 1.

Table 1. HDDs parameters.

Parameter Symbol Value Unit
torque constant Ki 0.053356 N -m/A
inertia T 30.34 x 1077 kg -m?
damping coefficient By 0.0013344 N-s/m
spring coefficient K 0.58691 N/m
resonance frequency [ 2715930 radian
damping ratio Cn 0.04 -

The frequency responses of P, and P;; are illustrated in Figure 4.
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50 r n
)
o
g of 1
S | e measured
— — =—nominal :
-50 | identified =~
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10" 102 103 10*
2 -200 -
S
[
(2]
©
< 400 F | measured
o — — =—nominal
identified
-600 S e e
10" 102 103 10*

Freq(Hz)

Figure 4. Frequency responses of measured, identified, and nominal models.

In this study, a state-estimator-based state-feedback controller was used to stabilize outer loop
systems [31]. For the outer loop design, a nominal model P, based controller is designed. For a given
plant P, represented by state space representation of

() = Anx(t) + Buu(t)

n (27)
Yn(t) = Cux(t) + Dpu(t),
an estimator-based state feedback controller was designed as follows.
%(t) = Aux(t) + Buu(t) + L(yn(t) — CuX(t))
C: = (Ap — ByK — LCy)%(t) + Lyn(t) (28)

u(t) = —Kx(t)

In (28), L and K are the estimator and controller gains, respectively. The designed open-loop
transfer function of the outer loop is depicted in Figure 5.

The designed cutoff frequency of the open-loop function of the outer loop is 960 Hz to obtain
reasonable stability margins, i.e., gain margin (GM) and phase margin (PM).

To design inner loop systems (DO), a stabilizing Q-filter should be designed. To design the
proposed Q-filter, weighting functions should be designed. Equation (2) was used for weighting
functions design; their frequency responses are displayed in Figure 6.



Mathematics 2020, 8, 1434 12 of 19

Mag (dB)

Freq (Hz)
-100
?
T -200
b
@ -300
=
o
-400
10! 102 10° 10*
Freq (Hz)

Figure 5. Open loop transfer function (P;; - C).

151
RV
10 1
— — —w
5L 2

Mag (dB)

-40 :
10" 102 108 104 10°

Freq (Hz)

Figure 6. Frequency responses of W, Land W, L

Here, W, ! determines the ability of the disturbance rejection. As the bandwidth of W, !
increases, disturbances in a wider frequency range can be reduced. As the depth of W, Lincreases,
the disturbances rejection performance increases. In Figure 6, the cutoff frequency of W, lis 1 KHz,
which implies that W, ! can reduce disturbances located in lower frequency of 1 KHz. The gain of
W, is —40 dB at 10 Hz, which implies that when an external disturbance (d) with 10 Hz frequency
component is introduced, the designed Q filter generates d that satisfies |[d — d| = 10(~40/20) = 0,01.
This means that d =~ d and d subtracts d from the total control effort. Therefore, the effects of d
are reduced on the basis of (1). The error |d — d| can be further minimized by reducing A of Wj.
However, an excessive control effort would be designed, and this is not recommended. W, ! represents
robustness because it can reduce the excitation of the high-frequency dynamics. In Figure 6, the cutoff
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frequency is approximately 500 Hz, which means that uncertainties located in above 500 Hz can be
reduced. In the design example, the gain of W, lis —40 dB at 100 KHz. Let ® be a transfer function
from w(t) to the input of W,, then we obtain |z, /w| = |® - W,| = -y, where 7 is positive and a constant
value to be minimized in the LMI framework. The equation can also be represented by |®| = |W, !|,
which means that the frequency response of @ is less than the scaled |W,~ 1| in all frequency range.
In general, v = 1. This also implies that the gain of ® (transfer function from w to the input of W)
is —40 dB at 100 KHz, resulting in the suppression of the high-frequency dynamics. In this study,
second-order weighting functions were designed, that is, n = 2. The other parameters are summarized
in Table 2.

Table 2. Parameters of W; and W;.

Symbol Wh W, Unit
M 0 —40 dB
A —40 0 dB
wg 1000 7000 Hz

With the above weighting functions, a stabilizing Q filter was designed. Equations (16) and (20)
were used to design the inverse model and compensator. In this work, P, is a minimum phase plant
with relative degree of 2. Thus, a second-order filter was used as a compensator, and M|,—o5 was used
as a single criterion to design Cj,, for a fair penalty on both stability and robustness. The designed
open-loop transfer functions are illustrated in Figure 7. The DO forming the inner loop increases the
loop gain of the total open-loop transfer function, which is controlled by the cutoff frequency of W, L
In addition, the high-frequency dynamics are controlled by cutoff frequency of W, L

30
————— with C
ool — — —withC
with C + C;DO

Mag (dB)

decreasing cutoff frequency of Wg

-30 L L L R S S S | L L L P l\‘ |
102 10° 10%
Freq (Hz)

Figure 7. Designed open loop transfer functions.

The designed sensitivity functions are compared in Figure 8. Because the sensitivity function
is defined by a transfer function from d to up, as displayed in Figure 1, this function indicates how
similar —d is to d. The proposed DO improved the performance of the disturbance rejection in the
frequency range from 500 Hz to 3 kHz.
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increasing cutoff frequency of W'11

Mag (dB)

10

15

-20 7 L L I S S S i | L L L S S S i |
102 10° 10*
Freq (Hz)

Figure 8. Compared sensitivity functions (up, /d).
To evaluate time responses of the sensitivity functions, the following disturbances were introduced.

d(t) = sin(2750¢) + 0.5sin(277500¢)

(29)
+0.3sin(2711000¢)

The time responses to the disturbances are displayed in Figure 9. With the proposed DO,
the disturbances are clearly reduced.

2.5 T T T T T

2+ -

Magnitude

with C + CDo

_2.5 1 1 1 1 1
0 0.005 0.01 0.015 0.02 0.025 0.03

Time(sec)

Figure 9. Time responses of sensitivity functions.

As the sensitivity function is improved, the torque transfer function is also improved as displayed
in Figure 10. The torque disturbance function is defined by a transfer function from the introduced
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disturbances to the plant output. With the designed DO, the torque transfer function was also improved
in the frequency range from 430 Hz to 3 kHz, whereas a small performance degradation could be
observed at less than 430 Hz.

30

25
increasing cutoff frequency of W'11

Te———

20

15

10

Mag (dB)
[&)]

-10

151 with C + Cp

_20 1 1
102 103 10*
Freq (Hz)

Figure 10. Torque transfer functions (y/d).

Therefore, random disturbances were applied to fairly compare the performances. In Figure 11,
the measured power spectral density and accumulated PES were compared.

power spectral density of torque disturbance responses
T T T T T

0.2 1
— — —psd with C
0.18 psd with C + CDo 409
= = =accumulated PES with C
0.16 - accumulated PES with C + C;)o 108

0.12

Data Track (%)
o
accumulated PES

0.08

0.06

0.04

Lilubi L e TPV S o i 0
0 2000 4000 6000 8000 10000 12000
Frequency (Hz)

Figure 11. Power spectral densities and accumulated position error signal (PES).

With the proposed DO, the accumulated PES was improved by 10.8%.
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5. Discussion

This section presents considerations and limitations of the proposed method. In addition, to relax
the limitation of computation time, the required minimal controllers are summarized.

5.1. Complete Solutions According to Model Types

Equation (23) provides a complete solution of all types of models. However, to minimize the order
of the controllers, minimally required controllers are summarized in Table 3. In the table, the minimally
required controller is presented to realize the DO; the optional filter could be used to reduce the
high-frequency dynamics.

Table 3. Complete solutions based on model types.

Model Type Minimally Required Controller Optional Filter
YpP Yy Req P
stable or unstable, . 2
.. QP q 1 .10? j
minimum phase, =0 Iz 57271 Hj:1 52+2§j}'ris+-r.2
and bi-proper /
stable or unstable, 0.p-1 2
.. Py q 1 P j
minimum phase, =0 izt 5777 'Hj:1 52+2g,]r,-s+12 B
and strictly proper !
stable or unstable, o A(s) r
.. s q 1 P j
non-n.ummum phase, -0 " B.(5)B(s) Hizl s/Ti+1 'szl SZ+2§]']T]‘S+T.2
and bi-proper ]
stable or unstable, o () 2
.. s q 1 P j
non-minimum phase, 0 B()BE) g P i Y Sz+2§/;js+§2

and strictly proper

Because the model discussed in Section 4 is stable, minimum phase, and strictly proper,
the resulting solution was the second row of the solution table.

5.2. Limitations and Considerations

Let O(-) be the order of the corresponding transfer function. The order of the designed Q-filter is
written as O(Q) = O(W;) + O(W,) + O(P;), and the minimal order of the DO is calculated by

O(DO) = 0(Q) +O(Px)
:O(W1)+O(W2)+O(Pr)+Q(Pn) (30)
= O(Wy) + O(W;) + O(Pyy).

Accordingly, even though the proposed method stabilizes the DO, the resulting DO is a high-order
controller. Compared conventional DOs, the order of the proposed controller is high. That is, in the
proposed method, DO stability is achieved at the cost of complexity. In addition, the high-order
controller delivers phase delays of the control efforts or incurs instability in the worst case scenario
(when the required computational time is greater than the sampling time). Therefore, high-performance
processors are required, or an effective computation method such as word length optimization in the
digital implementation is necessary in the low-cost processor. If there is a margin on computation time,
the optional filter as indicated in Table 3 can be used.

6. Conclusions and Future Work

This paper proposed a stability-guaranteed DO without destroying the existing DO structure.
The authors preferred to maintain the DO structure because it has already been verified. To obtain
the all-stabilizing filter, the LMI design was adopted. The two models were combined into a single
model to be controlled to resolve the problems of adopting the DO design in the LMI frameworks.
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To solve the realization problem of the DO, two metrics were designed, and a single measurement was
derived to quantify the two values simultaneously. The proposed method delivers complete solutions
to all types of models. Application examples verified that the proposed method is valid, and the
performance was indeed improved.

The proposed method offers guaranteed stability of a DO while maintaining a conventional DO
structure. This is because the DO has a verified structure to effectively reduce external disturbances.
Therefore, the proposed method requires a plant inverse model and a compensator to solve the
causality problem, as in conventional DOs. Although the inverse model and the compensator are
considered as a part of the Q-filter, the calculation can be a burden to control engineers. In the near
future, the authors would prefer to remove the calculation while maintaining guaranteed stability.
Thus, in future research, we expect that the conventional DO structure cannot be maintained.
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