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Abstract: This study determined acteoside and its content in Abeliophyllum distichum via HPLC/UV
and LC/ESI-MS to obtain insights into the potential use of this plant as an antioxidant agent. Moreover,
1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl (•OH), and O2

− radical scavenging activity assays
were performed to assess in vitro antioxidative activity. The DPPH, •OH, and O2

− radical scavenging
activities of A. distichum leaf EtOH extracts at a 250 µg/mL concentration were 88.32%, 94.48%,
and 14.36%, respectively, whereas those of stem extracts at the same concentration were 88.15%,
88.99%, and 15.36%, respectively. The contents of acteoside in A. distichum leaves and stems were
162.11 and 29.68 mg/g, respectively. Acteoside was identified as the main antioxidant compound in
A. distichum leaves, which resulted in DPPH, •OH, and O2

− radical scavenging activities of 82.84%,
89.46%, and 30.31%, respectively, at a 25 µg/mL concentration. These results indicate that A. distichum
leaves and stems containing the antioxidant acteoside can be used as natural ingredients for functional
and nutritional supplements.

Keywords: Abeliophyllum distichum; acteoside; DPPH; hydroxyl radical; HPLC/UV; O2
− radical

1. Introduction

Abeliophyllum distichum Nakai is an important plant resource and represents the only species
within the genus Abeliophyllum in the world [1]. A. distichum is an endemic plant in Korea and is
commonly referred to as white forsythia. Currently, this plant is protected and has been designated as
an endangered plant species in Buan-, Goesan-, and Yeongdong-gun, Korea [2,3], with Goesan-gun
being the main producer of this resource. Although it has been used as a landscape plant, A. distichum
has also been found to possess therapeutic value due to its anti-cancer [4], anti-diabetic (via aldose
reductase inhibition) [5], and anti-hypertensive properties [3]. A. distichum is known to contain some
glycosides in its leaves including acteoside, isoacteoside, rutin, and hirsutrin [6], responsible for its
anti-inflammatory [7], anti-nociceptive activities [8], and antioxidant activity [6,9,10], and it has also
been reported to improve sexual function [11]. Acteoside, a commonly identified phenylpropanoid
glycoside in plants [12], is a well-known antioxidant and was first isolated from Syringa vulgaris
flowers [13]. Moreover, the crude ash contents of A. distichum leaves and stems are 1.32% and 0.91%,
respectively, and its fructose and glucose contents have been reported as 32.13 and 56.17 mg/g for the
leaves, and 11.38 and 10.59 mg/g for the stems, respectively [14].
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Free radicals have been linked to the onset of many adverse health effects such as aging, diabetes,
cardiovascular, and neurodegenerative diseases [15]. Free radicals including O2

−, hydroxyl (•OH),
and singlet oxygen (1O2) are highly reactive in the body and produce reactive oxygen species (ROS)
and other free radicals [15]. ROS deteriorate crucial biomolecules for biological functions such as
lipids, proteins, DNA, and RNA, thereby leading to cell death and the loss of physiological functions
in the body [16]. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical is a stable free radical that
exhibits a characteristic violet color when reduced by antioxidant materials. Therefore, it is widely
used in measuring antioxidant activity [17]. The •OH radical is generated from hydrogen peroxide
(H2O2) and O2

− by Fenton reaction and is more strongly reactive with biological molecules than other
radicals, resulting in many diseases [18]. The O2

− is generated from molecular oxygen by reduction of
one electron in the mitochondrial electron transport chain, endoplasmic reticulum, NADPH oxidase,
cytochrome P450, and xanthine oxidase [19]. It is rapidly converted by superoxide dismutase into H2O2,
which becomes a highly reactive •OH radical in the presence of transition metals and peroxynitrite
with nitric oxide [20].

ROS, also known as oxygen free radicals by characteristics of unpaired valence electrons or unstable
bonds, are among the most important factors that lead to aging and other related diseases such as
neurodegenerative diseases [15]. In normal cases, ROS are produced via cellular respiration, metabolic
byproducts, enzymatic synthesis, and physical and chemical processes in the body, but they can be
removed by the body’s antioxidant system such as enzymatic defenses and antioxidant scavengers [21].
However, the incomplete reduction and overproduction of ROS during various physiological processes
may lead to oxidative damage of the cells [22]. Therefore, research on antioxidants that can protect
living organisms from ROS oxidation is being actively conducted, with a particular focus on naturally
occurring antioxidant agents. Among various naturally occurring antioxidants, phenolic compounds
are phytochemicals derived from various plants as a result of their secondary metabolism. In particular,
many studies demonstrated that phenolic compounds possess various pharmacological properties
including anti-aging, anti-neurodegenerative, and anti-cancer activities, by their antioxidant activity
counteracts the effects of ROS in the body [23].

In this study, ethanolic (EtOH) extracts were investigated to determine their acteoside distribution
and quantify their content in A. distichum via high-performance liquid chromatography (HPLC)
coupled with ultraviolet-visible (UV) and electrospray ionization (ESI) ion trap mass spectrometry
(MS) detection. Bioactivity of the extracts and acteoside was evaluated by assessing the antioxidant
capacity of the A. distichum extracts.

2. Materials and Methods

2.1. Plant Materials and Isolation of Acteoside

A. distichum leaves and stems were obtained from Miseonnamu Products Co., Goesan, Korea.
A voucher specimen (No. LEE19-01) was deposited at the Department of Plant Science and Technology
Herbarium, Chung-Ang University, Korea. Dried leaves (300 g) of A. distichum were extracted with
EtOH for 3 h under reflux and were repeated 3 times. The EtOH extract (120 g) was concentrated,
suspended in distilled water, and sequentially partitioned with n-hexane (8 g), chloroform (11 g),
ethyl acetate (29 g), and n-butanol (75 g). A portion of the n-butanol fraction (20 g) was subjected to open
column chromatography. The column was eluted with a stepwise gradient of chloroform and methanol.
The sub-fractions were analyzed by TLC, and the dried residue was further purified with Sephadex
LH-20 column chromatography. Fractions of similar composition as determined by TLC were pooled
and acteoside (yield, 0.8%) (Figure 1) was obtained by methanol (MeOH) recrystallization. TLC was
carried out on pre-coated silica gel 60 F254 plates (Merck), developed with chloroform–methanol–water
(5.5:4.5:0.2). Open column chromatography was performed on a silica gel column (60–200 mesh,
Zeochem) and Sephadex LH-20 (Sigma Aldrich). The purity of acteoside was 98% as determined by
HPLC analysis.
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Figure 1. Chemical structure of acteoside.

2.2. Instruments, Chemicals and Reagents

DPPH and 2-deoxy-ribose were purchased from Sigma (St. Louis, MO, USA), FeSO4•7H2O-EDTA
was purchased from Daejung Chemicals and Metals Co. Ltd. (Siheung, Korea), and H2O2 was obtained
from Junsei (Tokyo, Japan). EDTA disodium salt dehydrate was obtained from Samchun Pure Chemical
Co. Ltd. (Pyeongtaek, Korea), thiobarbituric acid (TBA) was purchased from Acros Organics (Fair Lawn,
NJ, USA), and trichloroacetic acid (TCA) was purchased from Kanto Chemical Co. Inc (Tokyo, Japan).
To measure O2

− radical scavenging activity, Tris was purchased from LPS Solution (Daejeon, Korea),
and phenazine methosulfate (PMS), NADH disodium salt, and nitrotetrazolium blue chloride (NBT)
were purchased from Bio Basic Co. (Toronto, Canada). Chromatographic analysis was performed using
an HPLC system (Agilent 1260 Infinity II Quat Pump, Santa Clara, CA, USA), equipped with a pump,
auto-sampler, and diode array detector (DAD WR detector, Arcade, NY, USA). An Ultimate 3000RS
system (Thermo Fisher Scientific Inc., Waltham, MA, USA), equipped with an autosampler and PDA-UV
detector was used. Mass spectrometric analyses were performed using a Thermo Finnigan LTQ XL ion
trap mass spectrometer, with an electrospray ionization (ESI) interface. HPLC grade solvents such as
H2O, MeOH, and acetonitrile (ACN) were obtained from J. T. Baker (Phillipsburg, PA, USA). Acetic acid
(99.7%) was obtained from Samchun Pure Chemicals (Pyeongtaek, Korea).

2.3. Preparation of Sample and Standard Solutions for HPLC

The crude EtOH extract (20 mg) of A. distichum leaves and stems were dissolved in 1 mL MeOH
and filtered using a syringe filter (0.45 µm). A stock solution of the standard compound was prepared
by dissolving 1 mg of acteoside in 1 mL MeOH. To construct an acteoside calibration curve, working
solutions were prepared by diluting the stock solution to the desired concentrations.

2.4. DPPH Radical Scavenging Activity

DPPH radical scavenging activity was measured as described by Hatano et al. [24]. The A. distichum
EtOH extract and acteoside were first dissolved in EtOH. The samples were then mixed into a 60-µM
DPPH solution in 96-well plates, then incubated in the dark at room temperature. After 30 min,
absorbance at 540 nm was measured with a microplate reader using l-ascorbic acid as a positive control.
DPPH radical scavenging activity was calculated as follows:

DPPH radical scavenging activity (%) = (Absc − Abss)/Absc × 100 (1)

Absc: Control absorbance, Abss: Sample absorbance.
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2.5. •OH Radical Scavenging Activity

•OH radical scavenging activity was measured via Fenton reaction [25]. The A. distichum
EtOH extract and acteoside were dissolved in phosphate-buffered saline, then mixed with 10 mM
FeSO4

•7H2O-EDTA, 10 mM 2-deoxyribose, and 10 mM H2O2. The mixtures were incubated at 37 ºC
in the dark for 4 h, after which 1% TBA and 2.8% TCA solutions were added, and the mixtures were
heated to 100 ºC for 20 min. After cooling, the absorbance was measured at 490 nm using a microplate
reader. l-ascorbic acid was used as a positive control. •OH radical scavenging activity was calculated
as follows:

•OH radical scavenging activity (%) = (Absc − Abss)/Absc × 100 (2)

Absc: Control absorbance, Abss: Sample absorbance.

2.6. O2
− Radical Scavenging Activity

O2
− radical scavenging activity was assessed according to Ewing and Janero et al. [26]. A. distichum

samples and acteoside diluted in H2O were mixed with 0.1 M Tris-HCl (pH 7.4), 100 PMS, 500 NBT,
and 500 µM NADH, and incubated at room temperature without light. After 10 min, the absorbance
was measured at 560 nm using a microplate reader. l-ascorbic acid was used as a positive control.
O2
− radical scavenging activity was calculated as follows:

O2
− radical scavenging activity (%) = (Absc − Abss)/Absc × 100 (3)

Absc: Control absorbance, Abss: Sample absorbance.

2.7. HPLC/UV and LC/ESI-MS Conditions

Quantitative analysis of acteoside was performed using a reverse-phase HPLC system with an
INNO C18 column (25 cm × 4.6 mm, 5 µm). The injection volume was 10 µL and was monitored at
330 nm. The column temperature was maintained at 25 ◦C and the flow rate was set at 0.7 mL/min.
A gradient elution system of the mobile phase was composed of 0.5% acetic acid in H2O (A) and
ACN (B). The elutions were conducted as follows: 90% A at 0 min, followed by 80% A from 0 to 10 min,
then 70% A from 10 to 15 min, 50% A from 15 to 20 min, and 0% A from 20 to 30 min, then maintained
for 35 min, increased to 90% A from 35 to 40 min, and maintained for 45 min. Regarding the LC/ESI-MS
analyses, a Cortecs UPLC T3 column (15 cm × 2.1 mm, 1.6 µm) was used for chromatographic
separations. The injection volume was 5 µL and the flow rate was set at 250 µL/min. The mobile phase
consisted of 0.1% formic acid in H2O (A) and ACN (B). The elutions were conducted as follows: 90% A
at 0 min, followed by 80% A from 0 to 10 min, then 70% A from 10 to 15 min, 50% A from 15 to 20 min,
0% A from 20 to 25 min and maintained for 26 min, then increased to 90% A between 26 and 26.5 min
and maintained for 30 min. Ionization of analytes was conducted using a negative mode of ESI.
The capillary temperature was maintained at 320 ◦C; the ion source voltage was set at 3.5 kV, and the
sheath gas was set at 42 arb. The capillary voltage was set at 10 V in negative mode. The average scan
time was 0.01 min while the average time to change polarity was 0.02 min. The collision energy was
generally chosen to maintain an approximately 35% abundance of the precursor ion.

2.8. Calibration Curve

Calibration curves were constructed by plotting the concentrations of the standard solutions
with their respective peak areas. The linearity of the calibration curve was determined based on the
correlation coefficient (r2), after which the acteoside concentrations in the samples were calculated
from the calibration curve. The calibration functions were determined based on the peak area (Y),
concentration (X, mg/mL), and mean values (n = 5) ± standard deviation (SD).



Antioxidants 2020, 9, 1148 5 of 10

2.9. Statistical Analysis

All results were reported as the mean ± SD. Statistical significance (p < 0.05) was determined via
analysis of variance (ANOVA) followed by Duncan’s multiple test using the Statistical Package for the
Social Sciences (SPSS, Chicago, IL, USA) program.

3. Results and Discussion

The body has natural antioxidant systems such as antioxidant enzymes and antioxidant
scavengers [27]. Antioxidant enzymes such as superoxide dismutase, glutathione peroxidases,
and catalase have an antioxidant defense by detoxifying ROS [28]. In addition, antioxidant scavengers
from dietary origin include tocopherol, ascorbic acid, and polyphenols, which play an important
role in ROS detoxification [27]. Therefore, many researchers have focused on the development and
identification of natural antioxidant products. A number of studies have reported antioxidant activity
of natural products such as flavonoids by measuring their in vitro DPPH, •OH, and O2

− radical
scavenging activity [29,30]. In this study, we identified a flavonoid from A. distichum and also evaluated
the in vitro antioxidant activities of its extracts as well as its active compound, acteoside.

Table 1 summarizes the DPPH, •OH, and O2
− radical scavenging activity of the EtOH extracts from

A. distichum leaves and stems at various concentrations (5–250 µg/mL). A. distichum extract treatments
increased the DPPH radical scavenging activity in a dose-dependent manner. The leaves and stems
of A. distichum at a 50 µg/mL concentration exhibited 84.50% and 67.30% activities, respectively.
In addition, the IC50 values against DPPH of leaves and stems from A. distichum were 19.03 and
21.77 µg/mL, respectively, indicating that the leaves of A. distichum possessed higher DPPH radical
scavenging activity than its stems. Moreover, the •OH radical scavenging activity of A. distichum leaves
and stems exceeded 80% in all concentrations. Particularly, leaf extracts of A. distichum exceeding
50 µg/mL concentrations exhibited •OH radical scavenging activity higher than 90%, which was
higher than that of the stem extracts. Previous studies reported that leaf extracts exerted stronger
in vitro antioxidant activity than that of stem extracts [29,31]. The O2

− radical scavenging activity of
A. distichum leaves and stems was lower than that of the DPPH and •OH radicals. A. distichum leaves
and stem extracts exhibited O2

− radical scavenging activity at 100 and 50 µg/mL, respectively.

Table 1. DPPH, •OH, and O2
− radical scavenging activities of A. distichum leaf and stem EtOH extracts.

Treatment
(µg/mL)

DPPH (%) •OH (%) O2− (%)

Leaves Stems Leaves Stems Leaves Stems

5 15.40 ± 2.74 e 23.30 ± 2.26 f 83.84 ± 0.38 d 82.83 ± 0.31 d - -
10 35.86 ± 3.81 d 34.37 ± 3.51 e 87.47 ± 0.42 c 87.21± 0.32 c - -
25 75.29 ± 3.31 c 61.74 ± 1.25 d 89.79 ± 0.47 b 88.52 ± 0.46 b - -
50 84.50 ± 0.97 b 67.30 ± 1.03 c 90.12 ± 0.18 b 89.39 ± 0.49 a - 0.93 ± 3.83 c

100 81.71 ± 1.51 b 71.76 ± 1.38 b 90.13 ± 1.10 b 89.62 ± 1.34 a 9.89 ± 0.98 b 10.46 ± 2.02 b

250 88.32 ± 2.18 a 88.15 ± 3.56 a 94.48 ± 0.54 a 88.99 ± 0.26 a,b 14.36 ± 0.97 a 15.36 ± 1.99 a

The values represent the mean ± SD. Different letters (a–f) indicate significant differences (p < 0.05), as determined
by Duncan’s multiple range test.

Acteoside was isolated from the n-butanol fraction of A. distichum. As depicted in the 1H-NMR
spectrum, typical patterns of 3,4-dihydroxyphenyl (6.17–7.47 ppm) and rhamnosyl (0.95 ppm) moieties
of acteoside were observed (NMR not shown). A total ionization chromatogram in the negative mode
revealed the presence of acteoside (m/z 624) at a retention time of 2.1 min in A. distichum leaves as a
major metabolite (Figure 2).
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Figure 2. LC/ESI-MS data of A. distichum (LC chromatogram (a) and ESI-MS data (b)).

As shown in Table 2, the in vitro antioxidant activity of acteoside derived from A. distichum
and l-ascorbic acid (1–25 µg/mL) were characterized by measuring their DPPH, •OH, and O2

−

radical scavenging activities. Acteoside significantly increased DPPH radical scavenging activity
in a dose-dependent manner. Particularly, an acteoside concentration of 25 µg/mL resulted in a
DPPH radical scavenging activity of 82.83%. The IC50 values for acteoside and l-ascorbic acid were
4.28 and 0.16 µg/mL, respectively, in DPPH radical scavenging activity. Moreover, the •OH radical
scavenging activities for acteoside and l-ascorbic acid at 2.5µg/mL were 89.46% and 89.95%, respectively.
Meanwhile, the IC50 values of acteoside and l-ascorbic acid were 0.22 and 0.48 µg/mL, respectively,
indicating that A. distichum-derived acteoside possessed a strong •OH radical scavenging activity.
Furthermore, acteoside from A. distichum also dose-dependently enhanced O2

− radical scavenging
activity. Moreover, acteoside and l-ascorbic acid at 25 µg/mL exhibited O2

− radical scavenging activities
of 30.31% and 17.68%, respectively, indicating a strong acteoside-mediated O2

− radical scavenging
activity. A previous study reported that the antioxidant properties of acteoside were likely due to its
hydroxyphenylethyl and caffeoyl moieties [32]. It was found to decrease oxidative stress by inhibiting
free radicals and lipid peroxidation [30,32]. Furthermore, acteoside attenuated oxidative stress-induced
neuronal apoptosis via inhibition of ROS levels and activation of the Nrf2 pathway [33,34]. In previous
studies [35,36], compounds such as phenolic glucosides having similar structures to that of acteoside
exhibited similar antioxidant activities.
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Table 2. DPPH, •OH, and O2
− radical scavenging activities of A. distichum-derived acteoside.

Treatment
(µg/mL)

DPPH (%) •OH (%) O2− (%)

Acteoside l-Ascorbic
Acid Acteoside l-Ascorbic

Acid Acteoside l-Ascorbic
Acid

1 15.60 ± 2.00 e 70.04 ± 3.40 c 62.40 ± 0.84 e 56.92 ± 1.31 e 3.60 ± 0.18 d 6.63 ± 1.82 c

2.5 33.12 ± 2.19 d 82.94 ± 3.60 b 80.41 ± 0.27 d 68.94 ± 0.95 d 9.44 ± 0.95 c 6.66± 2.24 c

5 59.90 ± 1.76 c 94.15 ± 2.73 a 86.08 ± 0.11 c 73.29 ± 1.67 c 9.89 ± 0.38 c 7.20 ± 1.76 c

10 76.25 ± 3.32 b 93.63 ± 2.14 a 87.52 ± 0.27 b 80.30 ± 1.05 b 15.71 ± 0.61 b 10.43 ± 2.80 b

25 82.84 ± 1.65 a 94.74 ± 3.60 a 89.46 ± 0.85 a 89.95 ± 0.47 a 30.31 ± 0.34 a 17.68 ± 3.62 a

The values represent the mean ± SD. Different letters (a–e) indicate significant differences (p < 0.05), as determined
by Duncan’s multiple range test. L-Ascorbic acid was used as a positive control.

Our study investigated the acteoside contents of A. distichum leaves and stems via HPLC-UV
analysis. Good separations were observed in the HPLC chromatogram with retention time detected at
19.26 min. The HPLC conditions and the results of acteoside quantification are illustrated in Figure 3.

Figure 3. HPLC chromatograms of acteoside (a) and the EtOH extracts from A. distichum leaves (b) and
stems (c) (330 nm).

The equation of the standard curve linear calibration was Y = 34,674X − 50,661, where Y represents
a given peak area and X is the corresponding acteoside concentration. The analytical method used
showed good linearity with a correlation coefficient (r2) greater than 0.999 (Table 3). The amount of
acteoside present in each sample was calculated from the calibration curve. Figure 3 illustrates the
chromatographic separation of acteoside and the EtOH extract of A. distichum and the results of the
quantitative analyses are summarized in Table 3.

Table 3. Calibration curve and content of acteoside.

Compound tR
a Calibration Equation b Correlation Factor, r2 c

Content (mg/g Extract)

Leaves Stems

Acteoside 19.26 Y = 34,674X − 50,661 0.999 162.11 ± 0.63 29.68 ± 0.60
a tR = retention time.b Y = peak area, X = concentration of standard (mg/mL).c r2 = correlation coefficient for three
data points in the calibration curve.
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Our results revealed that the content of phenolic glycosides in A. distichum extracts varied
depending on the anatomical structure analyzed. Specifically, the leaf acteoside content (162.11 mg/g)
was higher than that in the stems (Table 3). There are similar reports about acteoside content of
A. distichum from H2O extract (171.3 mg/g), 50% prethanol A extract (240.1 mg/g), 70% prethanol A
extract (269.4 mg/g), and 100% prethanol A extract (326.1 mg/g) [37]. Moreover, the total phenolic
compounds and flavonoid contents of A. distichum were 50.64 and 96.47 mg/g in leaves and 13.53
and 18.53 mg/g in stems, respectively [14]. Phenolic glycosides, which belong to a group of natural
substances with variable phenolic structure, are found in fruits, bark roots, grains, vegetables, and wine.
A. distichum contains various active glycosides, such as acteoside, eutigoside B, isoacteoside, rutin,
hirsutism, and cornoside [5]. In a previous study, a phenolic glycoside identified as acteoside was
found as the main compound present in A. distichum leaves [3]. The said compound is reported to
possess various biological activities [38]. Our study utilized different assays to measure the antioxidant
activities of different parts of A. distichum. The design of the study further assessed whether antioxidant
activities could vary depending on the plant part containing the active compound.

The previous studies reported the antioxidant activity of A. distichum. The callus and flowers of
A. distichum showed antioxidant activity by radical scavenging activities [39]. In addition, A. distichum
protected DNA from oxidative stress in the oxidative damage-induced skin fibroblast cells [40].
Furthermore, acteoside isolated from A. distichum alleviated oxidative stress-induced cellular damage
by decreasing the levels of phosphorylated p53 and γ-H2AX in skin fibroblast cells [41]. A. distichum
leaves and stems were found to be particularly valuable due to their high content of acteoside, which has
therapeutic qualities. Therefore, A. distichum could be potentially used as a novel health supplement or
in natural medicinal products and antioxidant beverages.

4. Conclusions

The antioxidant activity of A. distichum EtOH extract and its bioactive compound acteoside were
evaluated. Screening of plants containing antioxidants is very important to widen the knowledge
of possible sources that can counteract the effects of ROS. This will help prevent the occurrence of
ROS-induced diseases such as aging, cancer, and other related diseases. The DPPH, •OH, and O2

−

radical scavenging activities of A. distichum leaf EtOH extracts at a 250 µg/mL concentration were
88.32%, 94.48%, and 14.36%, respectively, whereas those of stem extracts at the same concentration were
88.15%, 88.99%, and 15.36%, respectively. The contents of acteoside in A. distichum leaves and stems
were 162.11 and 29.68 mg/g, respectively. Acteoside was identified as the main antioxidant compound
in A. distichum leaves, which resulted in DPPH, •OH, and O2

− radical scavenging activities of 82.84%,
89.46%, and 30.31%, respectively, at a 25 µg/mL concentration. The results in our study demonstrated
that A. distichum extract has a potent antioxidant activity which can be attributed to its high acteoside
content. Moreover, our analyses have shown that the content of phenolic glycosides varies depending
on the plant part analyzed. This study established the antioxidant qualities of the leaves and stems of
A. distichium as an endemic plant to Korea that could be used a basis for developing therapeutic and
nutritional products. Therefore, A. distichum showed possible use as an effective natural antioxidant
for the prevention and treatment of oxidative stress-related diseases such as aging, cardiovascular,
and neurodegenerative diseases.
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