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ABSTRACT Human action recognition (HAR) technology is receiving considerable attention in the field of
human-computer interaction. We present a HAR system that works stably in real-world applications. In real-
world applications, the HAR system needs to identify detailed actions for specific purposes, and the action
data includes many variations. Accordingly, we conducted three experiments. First, we tested our recognition
system’s performance on the UTD-MHAD dataset. We compared our system’s accuracy with results from
previous research and confirmed that our system achieves a 91% average performance among recognition
systems. Furthermore, we hypothesized the use of aHAR system to detect burglary. In the second experiment,
we compared the existing benchmark data with our crime detection dataset.We recognized the test scenarios’
data by using the recognition system trained by each dataset. The recognition system trained by our dataset
achieved higher accuracy than the past benchmark dataset. The results show that the training data should
contain detailed actions for a real application. In the third experiment, we tried to find the motion data type
that stably recognizes action regardless of data variation. In a real application, the action data are changed by
people. Thus, we introduced variations in the action data using the cross-subject protocol and moving area
setting. We trained the recognition system using each position and angle data. In addition, we compared the
accuracy of each system. We found that the angle format results in better accuracy because the angle data
are beneficial for converting the action variation into a consistent pattern.

INDEX TERMS Human action recognition, skeleton, motion capture, ELM classifier, surveillance.

I. INTRODUCTION
There have been many studies on human action recogni-
tion (HAR), which is expected to play a major role in
human–computer interaction [1]. HAR research is appli-
cable to many fields where computers and people inter-
act. For instance, HAR is used in surveillance systems [2].
Such systems can identify people’s actions captured by sen-
sors. Biomedical diagnosis also uses recognition technology.
In [3], patients’ gaits were analyzed using HAR technology.
Although existing HAR systemsmainly usemachine learning
algorithms, in recent times, many researchers have attempted
to use deep learning-based algorithms [4].
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HAR technology requires human action data. In many
HAR studies, RGB data were captured by using vision-
based sensors [5]. Cameras was usually utilized as the vision
method, but depth information was missing from the data.
This concern was addressed by using Kinect sensors and
stereo cameras, which are capable of capturing depth data
[6]. Other researchers used Motion Capture systems. In such
systems, markers are attached to the user and the marker’s
position is continuously collected [7]. Inertial Measurement
Unit (IMU) sensors, which can extract a human’s orientation
data precisely, can also be used in sensing systems [8]. The
human action-sensing system of HAR technology has devel-
oped such that it can extract data more accurately.

The sensed data are then processed by the HAR system.
Many proposed HAR systems generate their own unique
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feature vectors from the raw data. The forms of raw data
are commonly classified into two categories. The first is the
skeleton data, containing the position of all joints. In vision
sensor cases, RGB-D data is used for tracking each joint
position [9]. The second is the angle data format, composed
of the rotation of each body segment. Angle data can be
extracted from skeleton data by using the vector dot product
[10]. These data are also obtained by using IMU sensors
[8]. Open benchmark datasets usually provide action data as
skeleton data or as recorded videos [11].

In this study, we used the angle data of the Motion-Sphere
as the recognition system’s input data. Motion-Sphere is a
technique for visualizing motion [12]. A person’s movements
are marked as a trajectory on the sphere. The uploaded
trajectory can be edited, and it is possible to author new
motions using Motion-Sphere. The trajectory can be inter-
preted at the θ and φ angles based on the spherical coor-
dinate system. We used those angle data as input data for
our recognition system. The inputted angle data are trans-
formed into feature vectors that contain spatial and tempo-
ral information. The final classifiers use those feature vec-
tors. We utilized an Extreme Learning Machine (ELM) as
the classifier. ELMs have been applied to HAR systems
[13]. They require much lower training time than other ML
algorithms because they use only one hidden layer. Thus,
we created several ELM classifiers and trained them using the
same training data. Our system gathered the predicted results
of all ELMs and recognized the inputted action data as a
class label.

We tried to find ways to create a stable recognition system
in real-world application situations. We mainly focused on
the training data and action data format. In applying the HAR,
we believed that the HAR system required subtle motions that
meet specific purposes in the training data. To test our hypoth-
esis, we created test scenarios’ data to allow surveillance sys-
tems to detect burglaries. We trained the recognition system
using the existing benchmark dataset and recognized the test
data. However, the recognition system failed to detect crime
scenarios because the existing benchmark was designed only
to evaluate the recognition system. Therefore, we created a
new dataset containing specific subtle unit actions for detect-
ing the burglary. In the experiment section, we compare the
prediction results of the systems trained using each training
data. After the training data experiment, we analyze the effect
of data type in real applications. We assume that variations in
the motion data will be introduced by a person. For example,
many variations will occur for the same movement in the
HAR systems used by various people.We designed our exper-
iments to test the above situation virtually. In the experiment,
we excluded the effects of sensing environments. Therefore,
to reduce the impact on the environment, we captured existing
benchmark data using our sensing environment. In addition,
we used an average level of the recognition system, which can
represent existing recognition systems. Through the above
setting, we could study the effect of data format on recog-
nition in various people’s data. Finally, we seek the develop-

ment direction of training data and motion data type for real
applications with the experiment results.

After this introduction section, we briefly introduce the
overall HAR studies in Section 2, such as sensing environ-
ment, benchmark data, and recognition systems. In Section 3,
we explain our recognition system, test scenarios, and train-
ing data. Section 4 consists of three experiments. The first is
to evaluate the recognition system performance. After that,
we compare the existing benchmark data set with the data
set for detecting burglary crime in test scenarios. The third
experiment analyzes the optimal data formats between angu-
lar data and position data in real-world applications. In the
final section, we summarize the main contributions of the
paper and our future study.

II. RELATED WORK
A. SENSING SYSTEM AND BENCHMARK DATA SET
Early motion recognition researchers acquired humanmotion
data using video cameras. They tried to extract significant
features in the recorded video [14]. As the price of stereo cam-
eras decreased, researchers began to use depth information as
well. The depth data provided new features [15]. In particular,
skeleton data has increased substantially since the launch of
Kinect cameras [16]. There are other ways to collect action
data without a camera. In themotion capture (Mocap) system,
the optical markers were attached to the joints of a user [17].
The locations of the user’s joints are collected continuously.
This system’s advantages are obtaining precise position data
and few noise data. However, the Mocap system was not
widely distributed because of the high cost of equipment
consumption and complex configuration. Another sensing
system uses inertial measurement unit (IMU) sensors. This
sensor accepts human movement as orientation information
[18]. The IMU sensor has the advantage of sensing accurate
data, like motion capture equipment. At present, researchers
are attempting to design complex sensing environments that
use multimodality, because a complex system can collect
more accurate motion data [19]. We gather human motion
data using a multimodal sensing system [20]. The systemwas
composed of one Lidar sensor and ten IMU sensors.

Some researchers shared the motion data used in their
recognition systems [21]. HAR researchers adopted a specific
dataset that was commonly used to evaluate their system
recognition performance compared with other systems. The
widely used dataset became benchmark data [22]. This study
mainly focuses on the benchmark dataset that provides skele-
ton data rather than the benchmark data that uses images.

Some widely used benchmark data are the MSR aci-
ton3D [21], MSR-DailyActivity3D [22], UTD-MHAD [23],
and UTKinect [24]. They commonly used the Kinect cam-
era to extract skeleton data. The benchmark datasets gen-
erally comprise movements that occur during daily life
actions. Thus, some actions of the benchmark overlap with
other benchmark data, such as walking, jogging, squatting,
pushing, and pulling. The NTU benchmark was published
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recently [25]. This dataset has a large amount of motion
data with 120 classes, most of which relate to daily actions.
In contrast, a few benchmarks were designed for specific pur-
poses [26]- [27]. In one study, the benchmark data consisted
of 15 exercise actions aimed at patient self-management of
cardiovascular disease [26]. The other case is the Microsoft
Research Cambridge-12 (MSRC-12) [27]. This dataset was
composed of 12 actions for controlling Kinect’s game.
We developed our dataset to help a surveillance system
detect burglaries. It consists of 11 actions and has detailed
motions related to the detection of burglary. We captured the
dataset using our sensing system. Our motion data is accurate
because it is made of quaternion data. After analyzing the
motion data accurately, we will use a camera-based sens-
ing system for real-world applications. The camera-based
sensing system is used for practical usage because of its
convenience.

B. HUMAN ACTION RECOGNITION SYSTEM
Human action recognition research can be classified as per
data type. Based on skeleton data, we divided the studies into
two categories. The first involves a recognition system that
uses the position data stored in the skeleton. In that method,
data preprocessing, wherein the size of the skeleton model
and the initial rotation of the skeleton data are normalized,
is essential [28]. Previous studies extracted feature vectors
from location data after data preprocessing. Usually, they
attempted to extract temporal and spatial characteristics from
position data. A representative time feature is the velocity
value, which can be obtained by position variation of the
previous frame and the current frame [29]. Some studies
adopted relative position data. They calculated spatial differ-
ences between joints on a frame [30]. A HAR study used a
trajectory that included temporal and spatial characteristics
simultaneously [31]. Other researchers attempted to change
the data’s manifold [32]. They transferred the position data to
another space to recognize benchmark actions. In this case,
the unique feature vector was extracted from the skeleton
data.

The second method is to utilize angle data. The skeleton
data’s joint points are subtracted from each other, and the
point’s location data transformed into vectors. Angle data are
extracted by calculating the angle between each body vector.
The angle data are directly obtained when we capture the
subject’s action using IMU sensors. In this method, normal-
ization is not required. In [33], the 3D position data was trans-
formed to spherical coordinates. After transformation, the
angle data was used to extract joint angles similarities (JAS)
features. The sequence of the most informative joints (SMIJ)
features are obtained between the angle of the two joint
vectors in [34]. They gathered all the angles information and
selected themost valuable angle to identify the action. In [35],
angle data was used on the spherical coordinate. Angle data
was converted to modified spherical harmonics (MSH) val-
ues. In [10], the angle of the joint vector was also calculated.
Only six angles were extracted from the skeleton data. Angle

data type is less affected by the physical characteristics of
users [34].

In many studies, location data and angle data are used as
input data. These studies examined how to extract signifi-
cant features from each data type. We can freely change the
position data to angle data if we have skeleton data. There
are advantages of each data format. In [36], both 3D normal
position and joint angle data were used. We experimented
with both data formats to find the optimal data type for actual
applications. In the experiment, we compared the recognition
results obtained by each data type. We analyzed the effect of
each data format by using the experimental results. Finally,
we derived the proper data format that stably identifies the
inputted action in real-world applications.

III. PROPOSED SYSTEM
In this section, we describe our action recognition system and
action data. Our recognition system can extract position and
angle data types from inputted raw data. We will compare
the accuracy of each data type via experiments. The action
data are the training data and test scenario data. We designed
the test scenarios to test our recognition system in actual
applications. We created two training datasets to classify the
test scenario’s action. Thus, we can check the effect of the
training data in the test scenario.

A. ACTION RECOGNITION PROCESS
Our recognition consists of three main stages. The first stage
is data preprocessing. The inputted raw data formats differ
depending on the experiment. The system converts the raw
data into the normalized unit motion vector (NUM vector)
in this stage. After getting NUM vectors, the system extracts
the Motion-Sphere’s angle from the NUM vector during fea-
ture extraction. The NUM vector is used as a feature of the
position in the recognition system. The NUM vector is the
position data type, and theMotion-Sphere’s angle is the angle
data type. The system concatenates the extracted features in a
feature vector form. The final stage is the classification part.
We adopted extreme learning machine (ELM) as our classi-
fier. The ELM can train and test the data quickly, as it has only
a single layer. Therefore, we constructed an ensemble method
of three ELM classifiers. The final classification result comes
from three ELM’s prediction values.

1) DATA PREPROCESSING
Data preprocessing methods differ depending on the inputted
raw data formats. We adopted two data formats as per the
experiment. The first experiment used skeleton data from
the UTD-MHAD benchmark dataset. The other experiments
used our training data and test scenario data obtained by our
sensing system. This sensing system acquired the user’s body
segment rotation data by using IMU sensors. The sensors
obtain the motion data as quaternion data.

In the case of quaternion data, we used the rotation of the
quaternion. We applied the quaternion’s rotation to the initial
unit vector. The unit vector is the same as the user’s initial
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FIGURE 1. Motion-Sphere and avatar’s action example, (a) Motion-sphere
frame points: the Crowbar-right action (green point:16frame, blue
point:38frame, pink point:62frame) (b) Motion-sphere’s trajectory (right
upper arm), the directions and the origin of θ and φ angles (c) Avatar’s
action: Crowbar-right, the first avatar shows 16frame, the next avatar
shows 38frame, and the final avatar shows 62frame.

pose. Then, the vector’s rotation is the same as the user’s
actual action. We obtained the NUM vector by rotating the
unit vector. We captured the user’s motion using 10 IMU sen-
sors. Therefore, 10 NUMvectors are extracted in this process.
The skeleton data is simpler than the previous quaternion
data. We calculate a joint vector by subtracting two points
of the upper and lower limb. After that, we apply the vector’s
normalization to the joint vector. We selected 20 joint points
from inputted skeleton model. We obtained 10 NUM vectors
from the joint points. Finally, the number of result vectors is
the same in the quaternion and the skeleton.

2) FEATURE EXTRACTION AND RECOGNITION
In the feature extraction, the system extracts angle features
from the NUM vector. The extracted angle features are
the Motion-Sphere’s angles. As mentioned earlier, Motion-
Sphere is a technique that visualizes human movements.
We can draw Motion-Spheres based on the number of joints
in the action data. In our case, we use 10 IMU sensors,
so we express the user’s behavior in 10 Motion-Spheres. Fig-
ure 1 visualizes the Crowbar-right motion. Their visualization
methods are different. The first row shows theMotion-Sphere
of the right upper arm; the second row is the action by virtual
avatar in Figure 1 (c).
The Motion-Sphere expresses the avatar’s action as frame

points (a) and trajectory (b). The yellow point represents
each frame point, and the red line denotes the joint’s moving
path in Figure 1 (b). The avatar’s movement is 16frame,
38frame, and 62frame in Figure 1 (c). We can see the avatar’s
movement as green point (16frame), blue point (38frame),
and pink point (62frame). Thus, an observer can understand
the action data’s movement by using the Motion-Sphere.

The Motion-Sphere’s angle data consist of θ and φ angle
data. The θ and φ angles are shown in Figure 1 (b). The
θ angle represents vertical movements. We set the bottom
of the sphere as θ angle’s 0◦, as in Figure 1 (b). The φ

angle expresses horizontal movement in Figure 1 (b). The
phi’s origin point is the user’s front side at the standing pose.
We obtain two angle values by the NUMvector.We transform
the frame point to θ and φ angle values by using the vector
dot product. The angle between a starting NUM vector and a
current NUM vector is the current angle value. Through these
methods, we convert the 10 NUM vectors into the Motion-
Sphere’s angles.

The final feature vector forms differ according to the
data type. The angle feature vector consists of the Motion-
Sphere’s angle and relative angle. The relative angle is calcu-
lated by two NUM vectors. The angle expresses the spatial
characteristics of the action. The position feature vector is
composed of the NUM vectors. The feature already includes
spatial characteristics. The additional spatial feature is unnec-
essary in position data type. We will compare these two fea-
ture vectors in the third experiment. Through the comparison,
we will find a suitable data type in real-world application.

We classified the feature vectors using an ELM algorithm.
Our system’s feature vector is simple and contains essential
information identifying inputted action. In these kinds of fea-
tures, a complex recognition system is excessive. The ELM
algorithm’s configuration is light, but it can clearly distin-
guish the differences between our feature vectors. The ELM
algorithm can train the feature vectors rapidly. Thus, we used
three ELM structures. All the ELM training conditions are
the same. The final class label is decided by the average of
the three ELM prediction values. The recognition test results
show that the accuracy of the structure using multiple ELMs
was higher than that of a single ELM.

B. NEW DATA SET AND TEST SCENARIOS
We designed our new test scenarios to test the recognition
system in real-world application. The scenarios consist of
three detailed unit actions for detecting burglarious actions.
Table 1 summarizes our test scenario’s configurations. We set
two-door shapes depending on the opening direction. The
first column shows the door’s shape. The scenario’s actions
are changed depending on the door’s shape. In the outward
door, the door opening action is the pull action, and the crime
action is the Crowbar-right. In the other door, the actions’
directions are the opposite (the Pull action is changed to
the Push action, and Crowbar-right is switched to Crowbar-
left) Crowbars are still widely used in crimes [37]. Hence,
we used crowbar actions in crucial movements to determine
the occurrence of a crime. Both crowbar actions are shown in
Figure 2.
We paired the crime and non-crime scenarios. All paired

sets are composed of similar motions. In Table 1, the first
and second rows are paired, and the remaining rows are also
paired. At the first scenario pair, the Pull door lock action is
similar to the Crowbar-right action. The difference between
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TABLE 1. Test scenarios including unit actions for the surveillance system.

FIGURE 2. Crowbar action variation by various subjects, A: Crowbar-right,
B: Crowbar-left, (a): Subject1, (b): Subject2, (c): Subject3.

the two motions is the direction of pulling. We show both
pulling actions in the virtual avatar’s action in Figure 3 (a) and
(c). The Pull door lock action is pulled from the door lock to
the user, and the Crowbar-right action is the movement from
the left side to the right side. The recognition system should
distinguish two actions to identify the crime. In the case of
the other pair, the crucial actions are the Lever door lock and
Crowbar-left. Both actions’ starting points are similar, but
the pulling directions are different. After the starting point,
the user’s hand goes down at the Lever door lock. When the
user takes the Crowbar-left action, the user’s hand moving
direction is toward the body from the handle.

After creating the test data, we recognized the scenario data
using our recognition system. To train the recognition system,
wemade an existing benchmark reference (EBR) dataset. The
EBR dataset is composed of the actions extracted by three
existing benchmark datasets. We selected the action to rec-
ognize the test scenario data among the UTD-MAHD, MSR
aciton3D, and UTKinect datasets. The selected action and
used benchmark dataset are presented in Table 2. We trained
the recognition system using the EBR dataset and used the
system to classify the scenarios’ data. The trained system
misclassified the subtle unit action. The classification results
are covered in detail in the experiment section.

We assumed that the misclassification comes frommissing
information of the detailed action. Thus, we created a new
dataset for detecting burglary crime (DBC) in test scenarios.
The newly generated DBC dataset can be found in the last
column of Table 2. At first, we retained the motions that were
useful to detect the test scenario’s action among the EBR
dataset. We added more detailed actions to detect burglary
cases. We included new crowbar actions in Table 2. The new
dataset consists of 11 actions. We compare the datasets in
Table 2. For the Pull action, there are four detailed actions in
the DBC dataset. We placed all the Pull actions in the same

FIGURE 3. Pull actions of the DBC data set, (a) Pull door lock,
(b) Crowbar-right, (c) Crowbar-left, (d) Pull and enter.

row, and we classified subtle pull actions as a column in the
DBC dataset. All pull action variations are shown in Figure 3.
Similarly, there is one push action in the EBR dataset. The
detailed actions are ‘Body push and enter’ and ‘Hand push
and enter’. We also placed the same category action in the
same row and classified them into columns. Those actions
are shown in Figure 4. In Table 2, the Key and Lever door
lock actions occupy two rows in the DBC dataset column.
The EBR movements belonging to the two rows of the DBC
movement are similar to the DBC action. The Key action’s
shape is similar to the Draw circle actions’ shape. The overall
shape looks like drawing a circle, but their radii are different.
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TABLE 2. Rreference dataset combining existing benchmark data (EBR data) and the new dataset for detecting burglary crime with detailed actions (DBC
data).

FIGURE 4. Push actions of the DBC data set, (a) Hand push and enter,
(b) Body push and enter.

In the Lever door lock action, their moving trajectories are
similar. We changed the EBR’s general action to subtle action
for a specific application. We also tested the recognition
system trained by the DBC set. The system could detect the
burglary case accurately in the test scenarios.We compare the
recognition accuracy of each the DBC and the EBR dataset
in the experiment section.

IV. EXPERIMENT RESULT
We simulated the application of the HAR system to ana-
lyze our main concerns. We mainly focused on two aspects.
The first is the training data of the recognition system. In a
supervised learning system, the system’s performance varies
depending on the training data. We studied the requirements
of training data for practical applications. The second is the
action data type of the recognition system inside. We can
express the movement of a human using position and angle
data types. We can extract features from the position and
angle data types within the recognition system. We analyzed
the advantages and disadvantages of each data type in our
test scenarios where the HAR system is used to recognize
subtle actions. We designed three experiments to analyze the
aforementioned two aspects.

Before examining the main points, we objectively eval-
uated the level of our recognition system through the first
experiment, which used existing UTD-MHAD data.We com-
pared our system’s accuracy with other studies. Based on the
results, we can check whether our system can achieve the
average performance of the HAR system.

The first point, the training data, was experimented with
in the second experiment, in which the recognition system
trained using existing benchmark data was utilized for the
real-world application. As described in Section 3, we cre-
ated a scenario test data that suits the practical application.
We adopted the test data to check the trained recognition
system. The existing benchmark was used to evaluate the
performance of the recognition systems; therefore, it lacks
the specific actions required in each application area. We cat-
egorized the cases that may occur in this situation, and we
summarized the recognition results of the recognition system.

The third experiment was conducted to test the data type
of the recognition system. We compared the accuracy of
position as well as angle data. In the surveillance system, the
system identifies the action of untrained people. Furthermore,
people can perform the same action using slightly different
movements. Even in this case, the recognition system should
operate stably. We attempted to analyze the accuracy based
on various data formats in a complex situation.

A. UTD-MHAD DATASET
We tested our recognition system using the University of
Texas at Dallas Multimodal Human Action Dataset (UTD-
MHAD) data. UTD-MHAD data comprises 27 motions.
We used a cross-subject protocol in this experiment [23].
Thus, odd numbers of subjects data were used as training
data, while even numbers were used as test data. We extracted
our features from the skeleton data of UTD-MHAD. The
features were the Motion-Sphere’s angle data, the temporal
variation of the angle, and the relative angle. We obtained
the Motion-Sphere’s angle features mainly from the right
arm because the UTD-MHAD data have many right-arm
actions.We extracted spatial features by using relative angles,
consisting of the pelvis, right leg, and left arm movements.
We searched the number of the hidden layer by an experi-

9650 VOLUME 10, 2022



J. Ryu et al.: Angular Features-Based HAR System for Real Application With Subtle Unit Actions

TABLE 3. Accuracy comparison with previous research on UTD-MHAD.

mental method. We could obtain the highest accuracy when
we used 4,500 layers in our algorithm.

We wanted to conduct experiments using a recognition
system representative of existing systems. The existing recog-
nition systems can recognize the inputted action with high or
low accuracy. We compare the accuracy of our system and
other systems in Table 3. Our system achieved a moderate
level of performance in the comparison. After confirming the
comparison result, we experimented on the training data and
data type.

As the recognition performance of recognition systems is
improving steadily, we will use a recognition system with
higher accuracy in the future study. The SEMN method
achieved the best accuracy in our comparison, as presented in
Table 3. SEMN used the skeleton motion networks based on
the CNN. The JDM method also adopted CNN but achieved
less accurate results than our method. SEMN was published
more recently than JDM. We verified that, at first, deep
learning achieved lower performance than machine learn-
ing. However, these days, deep learning-based approaches
achieve higher accuracy than machine learning-based ones.
Thus, we plan to utilize a deep learning-based algorithm in
future research.

We learned the features used in each system while inves-
tigating the accuracy of the existing studies. The features
between various studies are different. Even with the same
recognition system, the used features differ depending on the
benchmark dataset. In deep learning cases, hyperparameters
were changed by the dataset. However, actions are changed
by people and the environment in a real application. Thus,
we should steadily adjust the current HAR system’s features
and hyperparameters to cope with action variation. To do so,
we need to collect enough training data to handle all possible
action variations. The data collection method is difficult to
implement realistically. In this situation, we hypothesize that
if we have a definition of the action, we can cope with all
possible variations. The definition should consistently keep
the action’s features even if the human performer and environ-
ment are changed. We tried to find the definition of the action
in this work. In the third experiment, we examined which data
type is optimal for defining actions.

B. TRAINING DATA COMPARISON RESULTS
In this experiment, our main purpose is to study the training
dataset for a real-world application. As mentioned earlier,
we assumed that the benchmark data is unsuitable as training

FIGURE 5. Action data sensing system, left: sensing environment, right:
IMU sensor and IMU sensor’s index.

data in the application system, because the current benchmark
was intended for the recognition system’s performance eval-
uation. We confirmed our hypothesis through an experiment.
As mentioned earier, we developed a reference benchmark
(i.e., EBR dataset) by using a combination of the published
benchmark data. The motion selection criteria are the actions
identifying our test scenarios. The EBR dataset is composed
of 11 actions given in Table 2. The number of actions is the
same as the generated DBC dataset. Most of the motions are
similar to our DBC dataset, but the DBC dataset contains
more detailed actions.

In the experiment, we directly captured the EBR and DBC
datasets using our sensing system. The sensing system’s con-
figuration and IMU sensor indexes are shown in Figure 5. The
system consisted of 10 IMU sensors and one Light Detection
and Ranging (LiDAR) sensor. In the sensing system, the
LiDAR sensor continuously tracks the pelvis point position
of the user’s body. The Lidar sensor is approximately 2 to
2.5 meters away from the subject. In addition, the IMU
sensors obtain the motion data of the subject using quaternion
data, which were then used as the input data of the recognition
system. In EBR data acquisition, we kept the shapes of the
existing benchmark data, only changing the data type and
sensing environment. Through this procedure, we could set
a consistent environment for the training data acquisition.
A subject repeated each action eight times to create training
data. The same subject captured four test scenarios’ data
twice. Using this experimental setup, we could test the effect
of the training data on the recognition results without human
variation.

The accuracy was 100% when we used the recognition
system trained upon the DBC dataset. For the DBC dataset,
there was no error because the subject and actions in the
test data were the same. However, many errors occurred in
experiments using the EBR dataset. The accuracy was 50% in
the EBR dataset. The wrong cases can be confirmed through
Table 4. In Table 4, we compare the predicted results from
both datasets.

We can summarize the results of Table 4 into three cat-
egories. The first is the test scenario action included in the
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TABLE 4. Comparison of the recognition system prediction results on test scenarios according to training data.

EBR dataset. For instance, the Knock action is the first action
of scenarios 2 and 4 in Table 1. The system classified the
action accurately because the EBR dataset had the Knock
action. The second is that the EBR dataset contained actions
similar to the scenario action. In this case, the trained system
could detect the scenario action but failed to distinguish
the subtle difference. For example, the second movement of
scenario 1 is the Pull door lock. The predicted result is the
Pull action. The motion’s general meaning is correct. Thus,
when calculating the system’s accuracy, this kind of answer
was classified as the correct answer. The following example
is about complex actions consisting of two motions. Action
3 of scenarios 3 and 4 is the Hand push and enter and the Body
push and enter, respectively. Both movements are similar, but
the pushing methods are different. The recognition system
only detected one motion at a time. In scenario 3, the Hand
push action was detected as the Push. However, the system
distinguished the Body push as the Walk when the hand
movements disappeared. Therefore, the recognition system
recognized the inputted action without detailed description in
the second case. We also classified this answer as the correct
answer because the system did not train the combination of
the action.

The last case is the test scenario action absent in the EBR
dataset. When the test action is vacant in the training data, the
recognition system classifies the inputted action as the most
similar action. The crowbar actions are absent in the EBR
dataset. The second movement of scenario 2 is the Crowbar-
right action, but the system recognized it as Swipe right.
In the other example, the system predicted the middle action
of scenario 4 as the Pull motion, whereas the ground truth is
Crowbar-left. Both crowbar action trajectories are similar to
each pull and swipe right. However, the meaning of the action
is different. The crowbar actions relate to crime, but pull and
swipe right actions are daily motions.

Through this experiment, we could assume that existing
benchmark data is used in the actual application system.
The results of the experiment can be summarized as three
cases. The trained system detects the scenario behavior with
100% accuracy when the action exists in the training data.
In the second case, the motions exist in the training data,
but the action lacks sufficient detail. Although the system
can identify the action, it fails to classify the subtle motion
class because of a lack of information. In the final case, the
scenario action is absent in the training data. In this case, the
recognition system tries to find a similar motion to inputted

action. Thus, it predicts the test scenario’s action as a similar
motion in the training data even if the movements’ meanings
are different. In short, the second and third cases were both
caused by a lack of information.

Previously, the benchmark data consisted of daily actions
because it was used for testing the system. We considered
the HAR system to use in real applications. We tested the
recognition system trained using the existing benchmark data.
The misclassified cases occurred owing to the absence of a
specific action being represented among the training data.
Thus, the training data need to include examples of the action
for real-world applications. When a HAR system is used in a
specific domain, we need to create a new dataset containing
detailed, relevant actions.

C. DATA TYPE COMPARISON RESULTS
In this experiment, we wanted to find the optimal data type
for defining the characteristics of the action. We compared
the accuracy of angle data type and position data type in the
burglary detecting case. Through this comparison, we ana-
lyzed each data type’s accuracy in the specific application.
In addition, we discussed a data type that is useful to define
the action features with analysis results.

We set the experiment scenarios as a burglary intrusion in
the surveillance system. The test scenario is the same as the
one used in the previous training data comparison experiment.
The system’s training data was the DBC dataset. The experi-
ment was conducted with two protocols. The first is the one-
person protocol. In this protocol, we obtained the test scenario
and training data from a single person. We designed this
protocol to confirm our recognition system’s performance,
which distinguishes the subtlemotion of the test scenario. The
second is the cross-subject protocol. In this setup, we used
the training data from the one-person protocol but obtained
the test scenarios’ data from other subjects. We captured the
test scenario data twice for each person and created a virtual
simulation situation where the system recognizes the action
of a new person.

Four subjects participated in the third experiment. The
participants were men in their 20s and 30s, having similar
physiques. Data from one person was used as learning and
test scenario data, while data from the other three people
was used only as test scenario data. In the test scenario
data acquisition, we set the range of each subject’s motion
differently. Figure 2 illustrates each subject’s moving range
in the Crowbar actions. The first path (a) inside Figure 2 is

9652 VOLUME 10, 2022



J. Ryu et al.: Angular Features-Based HAR System for Real Application With Subtle Unit Actions

TABLE 5. Test scenarios recognition results depending on data type.

TABLE 6. Number of errors in each data type. Each action has six
instances.

the range of the first subject’s action. The subject executed
all the actions within a small range if possible. The second
path (b) represented a general motion. The moving area of
the second subject was similar to the training data. The last
person performed all the movements expansively. Through
the above setting, we could compare both data types’ recog-
nition accuracy when faced with human action variation.

The environment of the sensing system is the same as in
the second experiment. Quaternion data obtained by IMU
sensors are used as input data of the recognition system.
In the system, the inputted data were converted to angle and
position data. We applied various feature extraction methods
to each data type. The position’s feature consists of the NUM
vectors, and the angle’s features are composed of the Motion-
Sphere’s angles. We used the ELM classifier for both data
types. The ELM classifier’s settings vary based on each data
format. We searched the adequate hidden layer number using
the empirical method.

Table 5 presents the recognition accuracy derived by each
data type. In a one-person protocol, both data types obtain
100% accuracy. This result shows that our recognition system
can distinguish detailed actions of the test dataset using either
data type. In the cross-subject experiments, each data type’s
recognition accuracy decreases. The accuracy of the angle
data declines 17%, while that of position data decreases by
41%. We examined the recognition of each unit motion to
analyze the cause of the accuracy difference in each data type.

In Table 6, we summarized the number of misclassifica-
tions in the unit actions of each scenario. As can be seen in
Table 6, there are more recognition errors in position data
type. We can check each scenario recognition rate through
Table 6. In scenario 2, the recognition rate of the two data
types are clearly different. The accuracy of the angle data is
100%, while that of position data is approximately 55%. The
second unit actions in each scenario are the main motions
identifying crime and non-crime. For the second unit motions,
the angle data’s accuracy is 75%, while position data’s accu-
racy is 50%. The angle data achieved high accuracy in the
overall as well as the critical unit actions.

FIGURE 6. Crowbar-right action comparison by the motion-sphere.

We selected the motions that differed substantially in
recognition rates in Table 6. The selected actions were the
second unit action of scenario 2 and the first unit action of
scenario 4. Both unit motions were accurately recognized
in angle data, but the accuracy was low in position data.
We adopted two data visualization methods. The first is the
Motion-Sphere, which visualizes the position data as a trajec-
tory. We compared two trajectories using the Motion-Sphere.
The training data are in black color and the subject’s data in
red color. The second visualization method comprises graphs
that show angle and position data. We show the Motion-
Sphere’s angles and the position value of the cartesian coor-
dinates. We compared the angle’s graph with the position’s
graph.

The second unit action of scenario 2 is Crowbar-right.
We express this action using theMotion-Sphere. TheMotion-
Sphere represents the motion of the right upper arm in Fig-
ure 6. We visualize the Crowbar-right action by a virtual
skeleton avatar in Figure 3. The training data serves as refer-
ence data when we compare the Motion-Spheres in Figure 6.
Through the Motion-Sphere, we can confirm that motion
pattern varies among subjects. From the left side of the figure,
we place the Motion-Spheres of subjects 1 to 3 in order.
Thus, the left Motion-Sphere represents the first subject’s
action. The first subject tried to move as little as possible.
The moving area of the trajectory is the smallest. The second
subject attempted to act similarly to training data, but the
reference and the second subject’s trajectories are different.
The last subject performed the motion beyond the training
data. The Motion-Sphere can express the exact movement of
each subject. We can confirm that our experimental setup was
successfully applied to action data.

We compared each data graph to find a useful data type for
defining the action’s pattern. Figure 7 contains four angular
graphs and four position graphs, each consisting of training
data and subjects. In the upper row, the left is the training
data. The right is the first subject’s action data. In the lower
row, we placed the second and third subject’s data in order.
First, we analyze the angular graph. The amplitudes of the
angular graph are different between subjects, because the sub-
jects’ moving areas are different. However, we can observe a
consistent pattern in the Crowbar-right action. The Crowbar-
right action consists of raising the right arm and pulling left
to right. Through the θ angle, we can observe the raising
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FIGURE 7. Crowbar-right action comparison by angle(left) and position(right) graph.

arm action. The θ angle maintains a certain value and then
falls. The arm pulling action passes the origin of φ angle
when the arm moves from left to right. We took the absolute
value of the φ angle. Thus, there are two peak points in
the case of φ angle. Patterns at each angle are consistent in
all subjects. After analyzing the angular graph, we examine
the position graph, in which it is hard to find consistent
action patterns. Specifically, the variations of the y value are
different in all subjects’ data. Each x and y value looks similar
in all experimenters’ data. However, the detailed patterns are
significantly different because of the action scale variation.

The second example motion is the first unit action of
scenario 4. This motion is the Knock action, which consists
of three taps on the door. The tapping pattern is the main
characteristic of the Knock action. Figure 8 shows each
subject’s action using the Motion-Sphere. We marked the
tapping action area by using a colored region on the trajectory.
The pink area represents the tapping action of the training
data, and the blue region shows that of the subject’s data.
Thus, the pink area is fixed, while the blue region varies
depending on the subject. All subjects maintained their action
characteristic consistently. The first subject’s area is smaller
than the training data’s area. The second subject’s area is
similar to the training data’s region, but there is a small drift
difference. The last subject’s action is more expansive than
the training data’s action.

We also display the subject’s action data as angular and
position graphs in Figure 9. Through the graphs, we can con-
firm the pattern of the Knock action. In the angle’s graph, all
graphs have three peak regions in the θ angle. The amplitude
of the peak region is proportional to the moving area. Thus,
the third subject’s data has the largest amplitude in Figure 9.
Theφ angle determines the direction of theKnock action. The
training and subject 2 data are slightly different in Figure 8.
We can check the drift difference using the φ angle graph. The
φ angle differs by approximately 5◦ between the training and
subject 2. Although the detailed shapes differ between angle

FIGURE 8. Knock action comparison by the motion-sphere.

graphs, we can derive the common characteristic of theKnock
action. From the perspective of θ all subjects’ θ graphs have
three peak regions. The φ angle variation is much less than
θ angle variation. The φ angle decides the direction of the
tapping action. In the position’s graph, we can see similar
patterns of z values in all subjects. The y value’s variations
look similar, but their peak values are different in all y graphs.
The x value’s pattern varies among all x graphs. The φ angle
and x value patterns differ in all graphs, but the φ angle’s
scale is significantly less than the θ angle’s. The system can
concentrate on the main tapping action by θ angle’s variation.
Thus, the recognition system recognized the Knock action
accurately in the angle data type.

We analyzed two movements that differ noticeably in
recognition accuracy. Each action was converted into position
data and angle data. In addition, we expressed each data by
using two visualization methods. The difference in motion
characteristics of each subject was easy to distinguish using
Motion-Sphere. Next, we showed each angle and position
data type’s graphs. It was difficult to grasp the consistent
characteristics of the same action in the position graph. The
position data was considerably affected by human variation.
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FIGURE 9. Knock action comparison by angle(left) and position(right) graph.

For the Crowbar-right action, the position graphs are different
in all subjects. For the Knock action, there is a similar pattern
in the z graphs. However, the recognition accuracy is low
because the other values work as noisy data. In the angle
data, we could observe constant features of the same action
by checking the overall graph’s shape. For the Crowbar-right
action, the θ angle increased, maintained a constant value,
and then fell. The φ angle had two peak variations when θ

remained constant. For the Knock action, the φ angle changed
with small variations. The θ had three peak regions. Thus,
the angle data has the advantage of identifying the uniform
patterns within the same action. We can obtain consistent
patterns from a new person’s angle data. Even if the system
lacks the user’s information, the system identifies the action
consistently. Therefore, adopting angle data as the input data
format increased the accuracy.

In this experiment, we tried to analyze the contribution
of data types. The HAR system should stably recognize
untrained person actions. We virtually simulated such a sit-
uation within a unique experiment setting. We confirmed the
advantages of the angular data from the experimental results.
It is easy to define action’s characteristics using angular data.
The accuracy of the angle data type is higher than that of
position data. We wanted to test the general HAR system in
a real-world application. Therefore, we used the recognition
system that achieved average performance. Althoughwe used
accurate motion data in this experiment, in actual situations it
will be more difficult to extract precise motion data. We plan
to use authentic data extracted by an actual HAR system.
We believe that the HAR system can recognize the poor
quality of an action’s data if we find the action’s consistent
definition. We observed that, even if the person changes, the
system recognizes the action stably with a consistent pattern
of angle data.

V. CONCLUSION
Our research’s main aim was the development of a stable
HAR system for real-world applications. We mainly concen-

trated on the training data and the action data type. First,
we examined the effects of training data on recognition.
We compared the EBR dataset with our DBC dataset. The
results showed that the training dataset should contain more
detailed actions depending on the specific application. Sec-
ond, we analyzed data type in terms of stability as motion
variation data. We designed a virtual situation that tested an
untrained person’s data by using the cross-subject protocol.
Based on test results, the angle data helped collect general
movement patterns. Thus, the recognition system based on
the angle data achieved higher accuracy in the cross-subject
protocol. To summarize, our paper’s main contributions are
analyzing the effect of the training data and data types in
real-world applications. When we use the HAR system, the
training data should include subtle actions, and the action data
need to express the general patterns of the action. To exclude
the effect of the sensing environment, we used accurate action
data. We will use lower-quality action data extracted using a
camera-based sensing environment in the future study. In that
case, the accuracy of the angle data will decrease. We will
enhance our recognizer’s performance by a data augmenta-
tion method. The augmented motion data can increase the
robustness of the recognition system by containing numerous
motion variations.
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