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Abstract—We present a generative model-based point cloud
generation method using deep adversarial local features. The
proposed generative adversarial network (GAN) can reduce com-
putational load and increase the accuracy in three-dimensional
(3D) acquisition, reconstruction, and rendering processes. To
train the proposed GAN, we first optimize the latent space
using an autoencoder to extract local features. The training
process provides an accurate estimation of local context from
the latent variables and robust point cloud generation. The main
contribution of this work is a novel deep learning-based 3D
point cloud generation, which significantly reduces computational
load to render augmented reality (AR) and mixed reality (MR)
contents. Additional contribution in the deep learning field is
twofold: i) The autoencoder in the proposed network avoids the
vanishing gradient problem using hierarchically linked features
in different layers, and ii) the complexity of the network is
significantly reduced by removing the transformation network
that estimates the affine transformation matrix of the point cloud.

Index Terms—Augmented reality (AR), Mixed reality (MR),
Point cloud, Generative Adversarial Network (GAN)

I. INTRODUCTION

RECENT advances in three-dimensional (3D) imaging
technology makes various applications possible such as

3D movies, augmented reality (AR), virtual reality (VR),
mixed reality (MR), and interactive games. Along with this
trend, point cloud-based 3D representation attracts growing
attention. A point cloud is a set of points in a 3D space
to describe or represent the surface of an object, and can
be directly obtained by a 3D scanner without additional
conversion processes.

In particular, a point cloud can be obtained as raw data
and can provide spatial information with higher resolution
than other methods. Since 3D scanners become popular, and
computing power rapidly increases, the point cloud is used in
various fields including: AR, VR, robotics, and autonomous
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driving. AR and MR particularly require an interaction be-
tween virtual and real objects, and the demand for 3D models
of various virtual objects is increasing for deeper immersion
and realism.

For several decades, 3D imaging technologies have matured
under the umbrella of high-end consumer markets and been
applied with great success, mainly in medical and industrial
applications. Thanks to advances in highly integrated semi-
conductor devices, new 3D technologies are now able to
meet the needs of consumer market [1]. For example, mobile
devices such as Sony Xperia XZ1 and Apple iPhone-X are
equipped with 3D scanning cameras [2], [3], and compression
technology is being developed to handle a large amount of
point cloud data to support 3D applications for an immersive
VR experience for consumers [4].

Typical consumer electronics products using 3D imaging
and sensing technologies include: game accessories with a
leap motion gesture controller, software-based AR applications
in mobile devices, drones and robots. In particular, since
interactions between a virtual and real objects are important,
the demand for 3D models of various virtual objects is
increasing for deeper immersion and realism. Implementation
of 3D models in computer graphics requires huge processing
power and time. To solve that problem, deep learning-based
point cloud generation and reconstruction become an active
research field in the sense of both accuracy and computational
efficiency.

To overcome the limitation of 3D reconstruction using
multiple 2D images, Cho et al. used a time-of-flight (TOF)
depth camera to generate a virtual human actor [5]. In this
context, Kim et al. generated 3D video using a TOF depth
sensor, and Tsai et al. proposed a real-time 2D-to-3D video
conversion system respectively in [6], [7].

On the other hand, rendering a full 3D model using
computer graphics requires tremendous processing power and
time. To solve these problems, deep learning-based point
cloud generation and reconstruction approaches are actively
being conducted. Early deep learning models cannot deal with
permutation-invariant and transformation-invariant features in
the point cloud, which is an unordered set of 3D points. To
overcome the limitations, Herrera et al. proposed a machine
learning approach to 2D-to-3D video conversion [8], and Qi et
al. proposed a deep learning-based 3D point cloud classifica-
tion and segmentation methods [9], [10]. Furthermore, related
studies are actively being conducted [11]–[15].

In particular, graph-based networks using geometric in-
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Fig. 1. The framework of LatentGAN-based point cloud generation model
[18] . The LatentGAN first trains the AE to learn a latent vector, and then
trains the generative model in the trained latent space, which is easier than to
train a vanilla GAN. This framework provides superior reconstruction results
and better coverage of the data distribution.

formation have been very successful in classification and
segmentation of 3D point clouds [16], [17].

Deep learning frameworks that perform data generation typ-
ically include variational autoencoders (VAEs) or generative
adversarial networks (GANs) [19], [20]. The proposed model
can generate realistic point clouds with higher resolution for
real-world applications. The major reason for using a GAN
is the higher resolution than a VAEs by using a clearly
guessed density function even if it does not exactly match the
density of the actual data [21]. In other words, the point cloud
generation task using GANs are advantageous for the synthesis
and analysis of 3D data to construct AR/MR contents and 3D
information by providing a clear probability distribution of
the point cloud. Unfortunately, the training process of GAN
is very unstable [22]. To solve that problem, Achlioptas et
al. introduced LatentGAN, which trains GAN by building a
latent space that is stably learned by an autoencoder as shown
in Fig. 1 [18]. Achlioptas’ method uses the PointNet-based
autoencoder, which generates undesired artifacts because of
losing local features [9].

To avoid that problem, we adopted a linked dynamic graph
CNN (LDGCNN) in the encoder to capture the local features
as shown in Fig. 2 [16]. The LDGCNN uses an edge con-
volutional (EdgeConv) layer, which was originally proposed
by Wang et al. and links hierarchical features from different
layers [11], [16]. Major advantage of using EdgeConv is local
neighborhood information aggregation and its combination
with global shape information. In addition, it is possible to
reduce artifacts in the generated point cloud by capturing
semantically similar structures in the latent space despite being
far from the original input space.

The remainder of the paper is organized as follows: Sec-
tion II summarizes related works. Section III presents the
proposed LatentGAN using local features. Section IV shows
experimental results, and section V concludes the paper.

II. RELATED WORK

This section briefly summarizes general deep learning-based
approaches for point cloud classification and segmentation and
generative models for point cloud generation.

A. Deep Learning for Point Cloud Classification and Segmen-
tation

Qi et al. proposed PointNet for non-ordered 3D point
cloud classification and segmentation [9]. Point clouds have
two properties: permutation-invariance and transformation-
invariance. The PointNet directly processes points in the point
cloud in a permutation-invariant manner, applies multi-layer
perceptron (MLP) to independently extract a feature for each
point, and then uses the max pooling layer to capture the
global features. To address transformation-invariance, Point-
Net spatially aligns the input point cloud and features by
adding a transformation network that constructs the affine
transformation matrix.

Although the original PointNet works well for classification
and segmentation of point cloud, it does not consider the
relationship between points and their neighbors. Therefore,
it is difficult to hold the local structure of the data by
processing each point independently, which leads to incorrect
segmentation due to the loss of local features.

DGCNN uses an edge convolutional (EdgeConv) layer to
extract local geometric features from the relationship between
a point in the point cloud and its neighboring points by ap-
plying K-nearest neighbors (KNN) [11]. The EdgeConv layer
dynamically updates the graph for each layer. This convolution
operation not only finds neighbors in the Euclidean space
but also clusters similar shapes in the feature space. In other
words, semantic context can be understood and incorporated.

Both PointNet and DGCNN include a transformation mod-
ule to estimate the affine transformation matrix of the point
cloud. Since this module doubles the network size, the van-
ishing gradient problem is unavoidable. To solve this problem,
LDGCNN links hierarchical features from dynamic graphs
and replaces the transformation network with MLP [16]. This
method successfully avoids the vanishing gradient problem by
reducing the size of the network.

B. Generative model for Point Cloud Generation

Recently, generative models were used to generate point
cloud. Achlioptas et al. proposed LatentGAN, which is the
first work using GAN to generate point cloud. The LatentGAN
trains GAN with a compact latent representation through
a pre-trained autoencoder [18]. Zamorski et al. extended
the variational autoencoder (VAE) to adversarial autoencoder
(AAE) to generate a point cloud [23]. As mentioned earlier,
these two methods use PointNet-based encoders, which cannot
capture the local features to understand the shape of the data.
Sun et al. proposed pointGrow, which is an auto-regressive
model that generates a point cloud by modeling joint 3D
spatial distribution in a point-by-point manner [24]. PointGrow
is sensitive to missing parts and rotations since it generates
points in a prespecified order. Therefore, it becomes inaccurate
when point cloud is deformed without a proper restoration
or compensation. Yang et al. proposed PointFlow using VAE
with continuously normalizing flows [25]. PointFlow is a flow-
based method, and its distribution estimation performance is
relatively inferior to generative models such as GAN and VAE.
For that reason, it cannot be used for 3D rendering applications
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Fig. 2. The architecture of the proposed autoencoder. Both input and output of the autoencoder have N points. The EdgeConv layer extracts local edge
features from the aggregated features and their neighbors, which consist of features from the input to current layers [16]. Multi-layer perceptron (MLP) shares
parameters for all points and represents a symmetric function. Shortcut connections are used aggregated features to extract multi-scale features, and max
polling is used to get a global feature.

for AR/MR because it cannot control the shape, and, as a
result, generates only one point at a time.

Our method is inspired by DGCNN, LDGCNN and La-
tentGAN [11], [16], [18]. Existing LatentGAN can neither
learn local features nor share weights by applying PointNet to
encode latent variables. Furthermore, it is difficult to generate
a realistic shape since a data shape is ignored, which makes
learning difficult. To solve this problem, we propose a model
that generates a point cloud by replacing the autoencoder
with LDGCNN as proposed in [16]. The LDGCNN-based
autoencoder builds the optimized latent space using EdgeConv
which dynamically extracts local geometric structures.

III. PROPOSED METHOD

Based on the original LatentGAN [18], the proposed 3D
point cloud generation method considers the local structure
by replacing the autoencoder with LDGCNN [16]. LatentGAN
consists of an autoencoder and GAN modules. The former is
trained to build a stable latent space by providing a point cloud.
A new 3D model is then generated by learning the GAN in the
latent space obtained through the encoder. Before describing
the details of the proposed method, we will briefly introduce
EdgeConv.

Terminologies and notations used in this paper are summa-
rized in Table I.

A. EdgeConv

The proposed EdgeConv is a convolution operation inspired
by PointNet and graph convolution network (GCN) to extract
local geometric relationships between a point and its neighbors

TABLE I
NOTATIONS USED IN THIS PAPER

Notations Descriptions
Rd d-dimensional Euclidean space
a Scalar
a Vector
A Matrix or Point cloud
G Graph
V The set of nodes in a graph
E The set of edges in a graph
| · | Ordinal number
‖ · ‖2 L2-norm, Euclidean distance
x ∼ px x follows probability distribution px
Ex [ f (x) ] Expected value of f (x) in a distribution with x as a variable
KL(·||·) KL-divergence between the two distributions

in the point cloud. EdgeConv generates a local neighborhood
graph by considering K neighboring points in the point cloud
in the same manner that a convolutional neural network (CNN)
considers adjacent pixels in a uniform, Euclidean grid, such
as an image. The EdgeConv goes through each layer of the
network, and the graph is dynamically updated to learn global
shape properties.

A set of N 3D points in R3 is denotes as:

P = {pi = (xi, yi, zi) | i = 1, . . . , N } ⊂ R3. (1)

The graph G consists of a vertex set V and edge set E .
More specifically, V represents a set of points in the point
cloud as a vertex of the graph, and E is a set of edges
connecting the corresponding pair of vertices. To express the
local structure of the point cloud P, KNN is applied. For the
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Fig. 3. EdgeConv operation. The pi and {pi1, . . . , pi5} respectively repre-
sent the center point and its neighbors. The directed edges from neighbors to
center are denoted by {ei1, . . . , ei5}. The output of EdgeConv is calculated
by aggregating the edge features.

MLP operation, the edges eij are calculated by the distance
between the center point pi and its k neighboring points pij to
construct a directed graph G. The graph layer and its related
variables are represented as:

G = (V, E),
V = {p1, . . . ,pN} ⊂ RC ,
E = {e1, . . . , eN} ⊂ V × V,where ei = (ei1, . . . , eik),
eij = pij − pi,

(2)
where C represents the dimension of input points of the layer.
Although each point in the point cloud is a 3D vector, its
dimension changes through each layer.

The advantage of applying KNN is that we can construct
a local graph in both Euclidean and feature spaces. After
constructing the local graph, local features can be extracted
through the EdgeConv layer. The input of EdgeConv is a local
graph of a center point pi and the output is a local feature li:

li = max
j:(i,j)∈E

h(pi, eij)

= max {h(pi, ei1), . . . , h(pi, eiK)} ,
(3)

where h : R3 × R3 → RC′
is a feature extraction function in

the form of an MLP, and C ′ represents the number of channels
for output hidden feature vector, h(pi, eij). The hidden feature
vector has the center point pi and an edge vector eij , which
combines the global shape structure captured at the coordinates
of the center point pi and local neighborhood information
captured in the form of edges eij . Each vertex set represents
a center point. Edge set is a subset of V ×V , whose elements
represent the relationships between the center point and its K
neighbors. The max-pooling operation is a symmetric function
that can extract the most principal feature among all edge,
regardless of the order of neighbors.

B. Autoencoder

The autoencoder is based on the framework of LDGCNN
that is optimized for DGCNN [11], [16]. LDGCNN removes
the transformation network in DGCNN, and extracts transfor-
mation invariant features using MLP. In addition, hierarchical
features of different dynamic graphs are combined to calcu-
late useful edge vectors and to avoid the vanishing gradient
problem.

The autoencoder loss function compresses data into a lower-
dimensional latent space Z ⊆ Rd. Therefore, we train the
encoder E : P → Z and decoder D : Z → P to minimize

reconstruction errors between original pi and its reconstruction
p̂i.

The loss for reconstruction of the autoencoder uses Chamfer
distance (CD) and Earth Mover’s distance (EMD). These two
metrics can compare unordered point sets. EMD transforms
a distribution to another one. Given two subsets of the same
size P,Q ⊆ R3, their EMD is defined as:

EMD(P,Q) = min
φ:P→Q

∑
p∈P

‖p− φ (p)‖2, (4)

where φ (p) is a bijection, which maps a point p ∈ P to its
closest point q ∈ Q. Since estimation of EMD using a deep
neural network is computationally expensive, we use a CD
as the loss of the autoencoder. The CD measures the squared
distance between a point in one set and its nearest neighbor
in the other set:

CD (P,Q) =
∑
p∈P

min
q∈Q
‖p− q‖22 +

∑
q∈Q

min
p∈P
‖p− q‖22. (5)

C. LatentGAN

GANs generate realistic data by competing with generator
G, which generates data with the same distribution as real
data, and discriminator D, which distinguishes real data from
generated data. This is a minmax problem of G and D [20]:

min
G

max
D

V (D,G) = Ex∼pr [logD (x)]

+ Ex̃∼pg [log (1−D (x̃))] ,
(6)

where pr is a distribution of real data x, and pg is model
distribution implicitly defined by x̃ = G(z), z ∼ p(z). The
input to the generator, z, is sampled from noise distribution p,
such as Gaussian distribution. D learns that D(x) = 1 for real
data x and D(G(z)) = 0 for generated data G(z). In other
words, D learns to distinguish between real and generated
data while G generates data that is similar to the real data,
and learns that D(G(z)) = 1.

LatentGAN acts on the bottleneck code of a pretrained
autoencoder. After learning the GAN, the generated code is
converted to a point cloud using the decoder of the autoen-
coder. Achlioptas et al. showed that learning a latent code with
reduced dimensions generates a better point cloud generation
than learning a raw point cloud [18].

In actual experiments, WGAN-GP was used for more stable
learning [26]. The loss function is defined as:

L = Ex̃∼pg [D (x̃)]− Ex∼pr [D (x)]

+ λEx̂∼px̂

[
(‖∇x̂D (x̂)‖2 − 1)

2
]
,

(7)

where D is a set of 1-Lipschitz function, pr is a distribution
of real data x, pg is a model distribution implicitly defined as
x̃ = G(z), z ∼ p(z), and px̂ is distribution of random sample
x̂. A penalty was imposed on the gradient norm for a random
sample x̂ ∼ px̂ to give a constraint.
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Finally, the proposed method extracts the bottleneck code of
the autoencoder from the input point cloud, performs genera-
tion using GAN as the bottleneck code, and then generates a
point cloud through the process of reconstructing to a decoder.

IV. EXPERIMENTAL RESULTS

In this section, experimental results of the proposed genera-
tive model are described. Subsection IV-A introduces metrics
to evaluate the performance of point cloud generation. Evalua-
tion criteria provided by Achlioptas et al. are used to evaluate
fidelity and diversification between samples including Jensen-
Shannon Divergence, Coverage, and Minimum Matching Dis-
tance [18].

A. Metrics

Let P be the set of reference point clouds and Q be the
generated point clouds with |P| = |Q|.
• Jensen-Shannon Divergence (JSD): a measure of the

distance between two probability distributions Pr and Pg ,
defined as:

JSD (Pr‖Pg) =
KL (Pr‖M) +KL (Pg‖M)

2
, (8)

where M = 1
2 (Pr + Pg). Pr and Pg are approximated

by discretizing the space into 283 regular voxels and
assigning each point to one of them. The JSD between
marginal distributions is defined in the Euclidean 3D
space by assuming that point cloud data are axis-aligned
and a canonical voxel grid is in the ambient space.
One can measure the similarity between locations of two
point clouds, and grid-resolution affects the granularity of
measurements. The JSD is a symmetric enhanced version
of the Kullback-Leibler Divergence using the average
of differeces between the mean distribution. For that
reason, the JSD is more approprate to make a balanced
tessellation of voxels.

• Coverage (COV): measure of generative capabilities in
terms of richness of generated samples from the model.
For two point cloud sets P and Q, the coverage is defined
as a fraction of point clouds in Q that are, in the given
metric, the nearest neighbor to some point cloud in P.

COV(Pr, Pg) =
|{argminP∈PrD (P,Q |Q ∈ Pg )}|

|Pr|
,

(9)

where D(·, ·) can be either CD or EMD.

• Minimum Matching Distance (MMD): Since COV
only considers the nearest point clouds into account and
does not depend on the distance between the matchings,
additional metric was introduced. For point cloud sets
P and Q, MMD is a measure of the fidelity of P with
respect to Q. For each point cloud in the reference set,
the distance to its nearest neighbor in the generated set
is computed and averaged:

MMD(Pr, Pg) =
1

|Pr|
∑

P∈Pr

min
Q∈Pg

D (P,Q), (10)

where D(·, ·) can be either CD or EMD.
In addition, 1-nearest neighbor accuracy (1-NNA) measures

the similarity between different shape distributions. However,
we did not mention 1-NNA since JSD, COV, and MME
sufficiently cover the objective performance.

B. Implementation details

For the experiment, we used ShapeNet dataset including
airplane, car and chair [27]. Since the proposed work is
focused on the reconstruction of consumer products, such
as furniture and automobiles, ShapeNet’s taxonomy is the
most suitable. In addition, ShapeNet keeps updated large-scale
dataset of 3D shapes with rich annotation and can cover most
of other datasets. We trained models with point clouds from a
single object class and worked with train, validation, and test
sets of ratio [85%, 5%, 10%].

Hyperparameters of the network used for the experiment
in the proposed method are as follows: The autoencoder uses
2048 × 3 point clouds with neighbors K = 20 as input. The
encoder is a LDGCNN-based network with four EdgeConv
layers to extract geometric features [16]. The EdgeConv layer
uses shared fully-connected layers (64, 64, 128, 256) and each
layers includes ReLU and batch normalization. The decoder
transforms the latent vector to the output of 2048 × 3 point
cloud by using three fully-connected layers (256, 256, 2048)
with ReLU except for the last layer. We used Adam with initial
learning rate of 0.001 to optimize the autoencoder, and the
batch size of 50 [28].

The network structures of the generator and discriminator
is the same to that of LatentGAN [18]. We used WGAN-GP
with gradient penalty regularizer λ = 10 [26]. The generator
consists of two fully connected layers (128, 128) with ReLU,
and the discriminator consists of two fully-connected layers
(256, 512) with sigmoid activation. We used Adam with initial
learning rate of 0.0001, β1 = 0.5, and batch of size 100 [28].
The latent vector was drawn by a spherical Gaussian of 128
dimensions with zero mean and 0.2 units of standard deviation.

C. Reconstruction capabilities

For the experiment, we evaluated the reconstruction capa-
bilities of the proposed autoencoders using test data. Table II
shows the MMD-CD and MMD-EMD between the recon-
structed point clouds and their corresponding ground-truth in
the test set of the chair category. The autoencoders trained
with the CD loss on training data of the chair category. Fig.
4 shows the ground truth, reconstruction results of PointNet-
based autoencoder and LDGCNN-based autoencoder, respec-
tively [9], [16]. As shown in the result, the ground truth has
non-uniform point cloud while PointNet-based autoencoder
reconstructs point cloud better than the ground truth. However
there still exist holes and discontinuous areas. On the other
hand, the proposed method reconstructs better edges and more
continuous planar regions than the ground truth and PointNet.
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Fig. 4. Examples of reconstructed point clouds by autoencoder. From top to
bottom: airplane, car, and chair. From left to right: ground truth, PointNet-
based autoencoder [18], and our LDGCNN-based autoencder.

Because LDGCNN maintains the shape of the point cloud
well through local geometrical features and can understand the
context of the semantically similar structures, it can uniformly
reconstruct the sparse input. As shown in Table III, the model
size of our LDGCNN-based autoencoder is smaller than that
of PointNet-based autoencoder.

TABLE II
RECONSTRUCTION CAPABILITIES OF THE MODELS

Category Method MMD-CD MMD-EMD

Airplane AE [18] 0.8 5.8
Ours 0.4 4.2

Car AE [18] 0.9 6.5
Ours 0.6 5.1

Chair AE [18] 1.3 7.2
Ours 0.7 5.3

MMD-CD scores are multiplied by 103; MMD-EMD scores are multiplied by
102. The lower the better.

TABLE III
COMPARISON OF THE NUMBER OF PARAMETERS BETWEEN DIFFERENT

AUTOENCODER NETWORKS

Method #Parameters (M)

AE [18] 1.77
Ours 0.55

Fig. 5. Examples of point clouds generated by our model. From top to bottom:
airplane, car, and chair. The processing time of airplane, car, and chair data
are 29.89ms for 4045 point sets, 50.72ms for 7497 point sets, and 45.73ms
for 6778 point sets, respectively.

D. Generative capabilities

Table IV compares the generation results of our method
with existing generative models including: RawGAN and
LatentGAN [18]. All pre-trained autoencoders use CD for the
reconstruction loss. Although the proposed algorithm has poor
performance when compared to LatentGAN in the airplane
case, it performs the best in the sense of objective measures
using LDGCNN-based autoencoder with the smaller model
size. Fig. 5 shows some models of the new point cloud gener-
ated using our autoencoder. The well-trained latent represen-
tations generate good-looking samples based on embeddings
created by performing interpolation or simple linear algebra.
Given that the complex wing structure of an airplane has
been somewhat realistically constructed, it can be seen that
extracting regional geometric features is effective in learning
the distribution of data.

V. CONCLUSION

In this paper, we adopted an autoencoder using local
geometric information that builds optimized latent space to
generate a new 3D point clouds. The use of local geometric
information enables semantically similar structures to be cap-
tured in the feature space of deep layers, helping to create a
more robust point cloud than conventional methods when the
noise is present or a part of data are lost.

Also, through interpolation, one of the most important
features of latent space produces a smooth transition between
two distinct types of same-class objects using only simple
addition and subtraction operations. Our model is attractive in
that it can change the characteristics of various objects such
as the shape and legs of the chair at once.
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TABLE IV
EVALUATING GENERATIVE CAPABILITIES

Category Method JSD (↓) MMD (↓) COV (%, ↑)
CD MMD CD MMD

Airplane

RawGAN [18] 7.44 0.261 5.47 42.72 18.02
LatentGAN (CD) [18] 4.62 0.239 4.27 43.21 21.23
LatentGAN (MMD) [18] 3.61 0.269 3.29 47.90 50.62
PointFlow [25] 4.92 0.217 3.24 46.91 48.40
Ours (CD) 4.41 0.229 4.42 43.13 21.09

Car

RawGAN [18] 12.8 1.27 8.74 15.06 9.38
LatentGAN (CD) [18] 4.43 1.55 6.25 38.64 18.47
LatentGAN (MMD) [18] 2.21 1.48 5.43 39.20 39.77
PointFlow [25] 0.87 0.91 5.22 44.03 46.59
Ours (CD) 3.53 1.32 6.04 39.46 19.25

Chair

RawGAN [18] 11.5 2.57 12.8 33.99 9.97
LatentGAN (CD) [18] 4.59 2.46 8.91 41.39 25.68
LatentGAN (MMD) [18] 2.27 2.61 7.85 40.79 47.69
PointFlow [25] 1.74 2.42 7.87 46.83 46.98
Ours (CD) 2.09 2.42 8.35 43.53 24.37

MMD-CD scores are multiplied by 103; MMD-EMD scores and JSD are multiplied by 102. ↑: the higher the better, ↓: the lower the better. The best
scores are highlighted in bold red, and second scores are highlighted in bold blue.

Fig. 6. Examples of a generated point cloud applied to an AR applications.

The LDGCNN-based autoencoder has a longer runtime
than PointNet-based autoencoder because the each EdgeConv
layer uses a non-parallel KNN to find neighbors. In addition,
since the latent representation is described as a floating-
point number, compression efficiency is limited. Further work
includes the replacement of the network, which extracts local
geometric information but is lighter than LDGCNN, and the
integration of autoencoder and LatentGAN modules. Since an
autoencoder has a data compression capability, the amount of
data for the latent representation can be greatly reduced [29].

Generating a 3D point cloud through deep learning suggests

that we can easily have a realistic 3D model without having
any expertise in computer graphics. However, generation of a
realistic 3D content requires a large amount of training data.
Since there are few 3D training datasets, the proposed method
can easily generate 3D datasets instead real acquisition using
a 3D sensor.

In addition, the generated 3D point cloud can be used in
various applications. Fig. 6 shows an example of the 3D model
to render various 3D objects in AR application for interior
design and driving simulation, to name a few. For an example,
a consumer can choose a piece of furniture that matches their
surroundings through the simulation by generating 3D models,
which helps the consumer’s decision to purchase the product.
For another example, a gamer can apply the proposed method
to the interactive game by creating various 3D objects using
point clouds [30].
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