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ABSTRACT We present a method that estimates the physically accurate reflectance of materials from
a single image and reproduces real world materials which can be used in well-known graphics engines
and tools. Recovering the BRDF (bidirectional reflectance distribution function) from a single image is an
ill-posed problem due to the insufficient irradiance and geometry information as well as the insufficient
samples on the BRDF parameters. The problem could be alleviated with a simplified representation of
the surface reflectance such as Phong reflection model. Recent works have appealed that convolutional
neural network successfully predicts parameters of empirical BRDF models for non-Lambertian surfaces.
However, parameters of the physically-based model confront the problem of having non-orthogonal space,
making it difficult to estimate physically meaningful results. In this paper, we propose a method to estimate
parameters of a physically-based BRDFmodel from a single image. We focus on the metallic property of the
physically-based model to enhance the estimation accuracy. Since metals and nonmetals have very different
characteristics, our method processes them separately. Our method also generates auxiliary maps using a
cGAN (conditional generative adversarial network) architecture to help in estimating more accurate BRDF
parameters. Based on the experimental results, the auxiliarymap is selected as an irradiance environmentmap
for the metallic and a specular map for the nonmetallic. These auxiliary maps help to clarify the contributions
of different actors, including light color, material color, specular component, and diffuse component, to the
surface color. Our method first estimates whether the material on the input image is metallic or nonmetallic.
Then, it estimates BRDF parameters using CNN (convolutional neural networks) architecture guided by
generated auxiliary maps. Our results show that our method is effective to estimate BRDF parameters both
on synthesized as well as real images.

INDEX TERMS Physically-based rendering, BRDF estimation, artificial intelligence, convolutional neural
networks, generative adversarial networks, supervised learning.

I. INTRODUCTION
Extracting material properties has been a classic computer
vision and graphics problem. The image synthesis is the result
of complex physics; shape, reflectance, and illumination need
to be known on the processes through the rendering pipeline.
The inverse rendering problem, i.e. inferring intrinsic prop-
erties from an image is very difficult to solve under most of
the assumption since the same visual result can be rendered
from the multiple combinations of properties. The estimation
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of reflectance from a single monocular color image with
uncontrolled illumination is an ill-posed problem even though
we have a prior information of the object’s shape.

Bidirectional Reflectance Distribution Function (BRDF)
is commonly used to encapsulate the material reflective
characteristic. Data-driven approaches have advantage for
capturing the detailed appearance of real world materials.
However, the acquisition and measurement of the BRDF
is a time-consuming and delicate process due to the high
dimension of the function which is at least 4 (BRDF) and up
to 8 (BSSRDF). Alternative approaches to avoid this problem
are simplified analytic BRDF models controlled by a set
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of parameters. The efficiency and expressiveness of these
models are the major merit when the commercial graphic
rendering applications reproduce a realistic scene. Despite
those merits, the process of adjusting the model parameters
by hand is confusing and error-prone task for the application
artists.

Deep learning enables the automatic learning the under-
lying features of both natural and synthetic images from
large training data. Recent works demonstrate the capability
of solving the non-linear optimization of classic graphics
problems such as parameter estimation of rendering equa-
tion and environment reproduction, and furthermore con-
volutional neural networks are particularly known for high
performance in the context of a single object. References [1]
and [2] estimate BRDF parameters of the material from
one or more images of specular objects in a specific class
including cars, chairs, and couches. Reference [3] proposed a
realtime approach for estimating the surface reflectance from
sequential RGBD images in 90ms. These prior works assume
the empirical BRDF models such as Phong and Blinn-Phong
models that have limited ability to represent the complex
appearance of the realistic material.

Our research aims at the handy adjustment of mate-
rial properties for physically-based rendering applications.
Empirical BRDF models have mostly straight-forward and
intuitive parameters so that 3D graphic artists can define
materials by adjusting them with little difficulty. However,
they have limited expressiveness that does not fully cap-
ture the physical reflection on the real material surface,
especially at grazing angles. In order to synthesize photo-
realistic results, state-of-the-art rendering applications sup-
port various physically-based models. Disney BRDF [4] is
a representative reflectance model that is developed in the
principled and art-directable philosophy, but nevertheless it
conducts sufficiently realistic results. Our goal is to construct
the estimation procedure for major parameters used in Disney
BRDF shading model.

In this paper, we propose a method based on generative
network guided convolutional neural network to automati-
cally estimate the physically-based BRDF parameters of an
isotropic single material in a spherical shape. We assume that
acquiring the spherical reflectance map [1] is available prior
to our estimation process. We exploit the property which met-
als and nonmetals (dielectrics) distinctively contain, making
two different training networks. Moreover, we enhance the
training of the parameter estimator by generating a spher-
ical auxiliary map of the irradiance environment or specu-
lar reflection, motivating the cyclical architecture of GAN
(generative adversarial networks).

Our contributions are as follows. (1) We propose a
deep learning method to estimate BRDF parameters of
physically-based shading model from a single image.
By using this method, we can synthesize realistic images with
physically-based materials captured from real-world objects.
(2) We design GAN architecture not only to predict the
irradiance map but also to help estimating BRDF parameters

simultaneously, by applying the cooperative structure of map
generator and BRDF estimator. The generated irradiance map
can be also used for reproducing the illumination environ-
ment of the input image.

II. RELATED WORK
A. PARAMETRIC BRDF ESTIMATION
Parametric BRDF estimation has been considered as a reason-
able compromise to obtain the visual property of an observed
material. Traditional data-driven approaches to acquire mate-
rial properties are conducted by expensive hardware and slow
scanning process in controlled environment. Ngan et al. [5]
compare the ability of various analytic BRDF models to
represent real measured samples, with the supplementary
results of parameter fitting. Ghosh et al. [6] design an optical
setup that allows for basis function illumination of BRDF
samples. Dupuy and Jakob [7] use a gonio-photometer to
simultaneously manage BRDF acquisition and storage for
isotropic and anisotrpic materials. As alternatives to compli-
cated acquisition setup, there has been a variety of approaches
to formulate the inverse rendering problem by optimizing
parameters through three intrinsic properties, i.e., lighting,
geometry, and reflectance. Lombardi and Nishino [8], [9]
jointly estimate the reflectance and illumination from a single
image of a well-known shape object. Romeiro et al. [10] infer
BRDF of the isotropic surface through exploiting natural illu-
mination instead of active lighting device. Nielsen et al. [11]
simplify the measurement procedure for isotropic BRDF
reconstruction by reducing the measurement samples based
on the regions of importance.

With the progress of the recent studies on deep learn-
ing techniques, their performance has been proved to sur-
pass conventional optimizations. Li et al. [12] learn spatially
varying surface reflectance of a planar material from a sin-
gle image using self-augmented CNN. Kim et al. [3] take
RGB-D images as input to estimate the surface reflectance
in real-time using two network architectures, HemiCNN
and Grouplet. Meka et al. [2] also suggest an end-to-end
approach for real-timematerial estimation from a single color
image. Georgoulis et al. [1] first estimate material intrinsics
using a learning-based sparse data interpolation technique,
and for the second step, reconstruct reflectance parameters
from the estimated material intrinsics. While the objective
of prior researches is estimating empirical BRDF models,
Vadaurre et al. [13] reconstruct physically-based BRDF from
two shots of the material. We present the approach that
predicts the parameters used in physically-based rendering
software from a single shot of the material.

B. ILLUMINATION ESTIMATION
Several studies have estimated illumination of outdoor envi-
ronment [14] and indoor environment [15] using CNN-based
methods. Image transformation techniques [16]–[18] inspire
the novel method for generating illumination images.
Georgoulis et al. [1] estimate an environment map from the
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color image of a known shape using U-NET architecture.
Boss and Lensch [19] adopt conditional adversarial net-
work that generates differentiable illuminations to be used
for predicting BRDF parameters. Our method concerns the
two-way process of GAN [16], both illumination estimation
and parameter estimation can be simultaneously performed
in a single network.

III. PHYSICALLY-BASED RENDERING PARAMETERS
In this sectionwe introduce parameters of the physically-based
model for synthesizing training image data. The Cook-
Torrance model became the common option in computer
graphics since it represents the distinction between metals
and nonmetals. The model takes into account both diffuse
component that is modeled as Lambertian reflection and the
specular component that is modeled as the combination of
Fresnel effect, microfacet normal distribution, and geometric
visibility. The full model is described as a weighted sum of
diffuse and specular components.

fr = kd (n · l)+ fs. (1)

The specular component assumes that the probability of
the microfacets aligned in the direction of halfway vector h
and the visibility of the facets from different view angles con-
tribute to the surface reflection. These factors are represented
through the functions D,F, and G:

fs(v, l) =
F(v)D(h)G(v, l)
4(n · v)(n · l)

. (2)

The normal distribution function D(h) is expressed by
GGX [20] which is suitable for modeling the realistic light
reflection, providing a subtle softer highlight than Beckmann
distribution.

D(h) =
α2χ (n · h)

π ((n · h)2(α2 − 1)+ 1)2
, (3)

where α is square of roughness(σ ). The geometry func-
tion G describes the attenuation of the light caused by the
self-shadowing of the microfacets. This self-shadowing is
approximated through the Smith factor formulation [21]:

G(v, l) =
n · v

(n · v)(1− k)+ k
·

n · l
(n · l)(1− k)+ k

, (4)

where k = σ 2

2 . The Fresnel function F simulates the light
interaction with an angle of incidence, significantly related
to the representation of the surface class, i.e. metals or
nonmetals. The actual formula is complex and different for
conductive (metal) or dielectric (nonmetal) material, and the
Schlick’s approximation [21] is widely used thanks to the
inexpensive computational cost.

F(v) = F0 + (1− F0)(1− (v · h))5 (5)

F0 is the a proportion of the reflected light when a ray hits
surface perpendicularly.

A. ARTIST-FRIENDLY BRDF MODEL
Commercial rendering applications or engines commonly
adopt art-directable but not physically strict parameters of
the traditional microfacet models. Our model uses 5 param-
eters for determining the surface reflective appearance, i.e.,
three for albedo color(Ac), one for metallic(m), and one for
roughness(σ ). While albedo and roughness have a range of
0.05 ∼ 1.0, our metallic parameter is either 0(nonmetal)
or 1(metal). On the periodic table, elements are classified
as either metals or nonmetals by their distinctive properties
between these two elemental groups. Since most materials
around us in our daily life are either metallic or nonmetallic,
artist-friendly BRDF models used in modeling tools or game
engines use a 0-or-1 metallic variable, which we use in this
paper as well. We focus on the metallic properties that act a
key role of incident light being reflected on a surface or being
transmitted through.

1) METALLIC SURFACE PROPERTY
Metals normally have high reflectivity over the most visi-
ble range of the wavelength spectrum of the incident light
since the light wave do not penetrate the metallic surface.
Only a small fraction of light may be absorbed or refracted,
for instance, gold absorbs the blue and violet regions of
the spectrum, producing the yellow color when illuminated
with white light. This optical aspect can be represented by
albedo color (6) that determines the wavelength distribution
with respect to the angle of incidence according to Fresnel
reflectance.

F0,c = m · Ac + (1− m) · 0.04 (6)

kd,c = (1− m) · (1− Fc) · Ac, (7)

where subscript c denotes the color channel. We consider
the difference between reflected light and environmental
source is the salient feature to infer the intrinsic color of a
material.

2) NONMETALLIC SURFACE PROPERTY
Most dielectric (nonmetallic) materials show very differ-
ent reflectance depending on the angle of incidence. Wood,
plastic, rubber, etc. reflect just around 4% of the light at com-
mon incident angles and the reflectance gradually increases
up to 100% at the grazing angle. In addition, most dielectric
materials have similar reflectance curves. Those character-
istics are represented by approximating F0 as 0.04 in the
Fresnel reflection (6) for nonmetallic surfaces, where m = 0.

In contrast to metals, color representation is dependent on
the diffuse reflection. Transmitted light into the interior of
the surface experiences a decrease in velocity, leading to the
refraction that varies with thewavelength. Equation (7) shows
that the diffuse coefficient is proportional to the absorbed and
refracted energy, colored by albedo for each color channel.
Regarding the above, the full reflection is combination of
the diffuse color representation and the specular by Fres-
nel effect. We believe that the performance of inferring the
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intrinsic color would be improved by obtaining separated
diffuse or specular component for nonmetallic materials.

IV. BRDF ESTIMATION
There have been several researches to estimate BRDF param-
eters from a single image using convolutional neural net-
works [1], [2], [19]. The predicting performance of the BRDF
learning is limited due to the ambiguity of the inverse ren-
dering of parameters on naturally illuminated surfaces. The
surface color can be interpreted as a result of both the intrinsic
albedo of the material and the color of the light source.
Since we have only a single input image without the lighting
information, it is difficult to distinguish the color of the
intrinsicmaterial property from the colors of the light sources,
especially for metallic materials. The learning accuracy could
be improvedwith additional data to differentiate these factors.

Our method generates an additional input, an auxiliary
map, for guiding the interpretation of the input material
image using the conditional generative adversarial net-
work(cGAN) [16]. For metallic materials, we generate an
irradiance environment map for the auxiliary map. For non-
metallic materials, it would be more difficult to estimate
irradiance environment maps than metals because many of
incident lights are refracted inside of the material and scat-
tered out. Learning BRDF parameters could be also limited
by the ambiguity between the specular component and the
diffuse component of the radiance. For nonmetals, separation
of the diffuse reflection and the specular reflection could be
an effective clue to reproduce the plausible BRDF parame-
ters. Therefore, we propose to use a specular map, that shows
only specular components of the input image, as an auxiliary
map for nonmetals. In Section IV-B, we show the results of
the experiments to validate this proposition.

Ourmethod first estimates if thematerial in the input image
is metal or nonmetal. For metallic materials, it generates an
auxiliary map, which is an irradiance environment map for
metals, and estimates BRDF parameters by learning material
images as well as the generated auxiliary maps. For non-
metals, it follows the same process except that it uses a specu-
lar map as an auxiliary map. Fig. 1 shows the overall process
of our method. Our approach to generate auxiliary maps
resembles the network of Pix2Pix [16], which is designed
for a general purpose image-to-image translation and for
generating an image of a given condition. The generator and
the discriminator are trained to correspondingly deceive and
distinguish the generated image by minimizing the loss func-
tion between the generated image and the ground-truth image.
For estimating the BRDF parameters of the input material,
we intervene the cooperative model named estimator that
takes the generated auxiliary map along with the material
image as a concatenated input.

We assume that the material in each input image is spher-
ical and homogeneous as shown in Fig. 1. It is also pos-
sible to convert general shape material images to spherical
images. Georgoulis et al. [1] proposed a method to generate
a spherical reflectance map from a single-material object of

a known class such as cars. We start with the assumption
that we obtain either spherical shape objects or general shape
objects transformed into spherical shapes.

A. METALLIC CLASSIFIER
The first step of our method is to classify an input material
into two categories, metals and nonmetals. The entire subse-
quent process depends on this classification since our network
is trained for materials of each class separately. Fig. 2 shows
our metallic classifier architecture, MetalNet. It is similar to
VGG architecture [22] which starts from 3× 3 convolutional
layers followed by batch normalization, ReLU, and pooling
layers. After these steps, three fully-connected layers are
connected to the one-hot encoded output nodes that indicate
the metallic parameter.MetalNet uses a binary cross-entropy
loss function (8), where tj is the true metallic parameter for
the j-th sample and pj is its predicted metallic parameter. The
network is trained by Adam optimizer with 0.0001 learning
rate.

CE(t, p)=−
1
N

 N∑
j=1

[tj log(pj)+(1− tj) log(1− pj)]

 (8)

Our metallic classifier, MetalNet, presents 98% accuracy
with our dataset.

B. PARAMETER ESTIMATOR
In this paper, we estimate five BRDF parameters, that are
metallic, albedo colors (RGB), and roughness. The basic
approach to acquire the 5 parameters is VGG-like CNN tak-
ing the material image as input (CNN in Table 1). It consists
of series of 3 × 3 convolutional layers followed by batch
normalization and ReLU. Pooling layers are adopted in every
other convolutional layers reducing the size of features by
half. The network uses amean squared loss for regression of 5
parameters and Adam optimizer with 0.0001 learning rate.

As mentioned in Section IV, our method provides an
auxiliary map along with the input image to improve the
estimation. As the auxiliary map, we use an irradiance envi-
ronment map or a specular map. The irradiance environment
map is a circular image showing the hemi-spherical irradi-
ance environments providing a clue for the incident lights.
The second and third columns in Fig. 6 show the true and
generated environment maps respectively. The specular map
is the specular component of the input image providing a
clue for separating the specular components from the diffuse
components. The second and third columns in Fig. 7 show the
true and generated specular maps respectively.

In our method, the metallic parameter is estimated by
MetalNet as described in Section IV-A. Our BRDF param-
eter estimator, BRDF-Net, estimates the remaining 4 BRDF
parameters, that are albedo colors (RGB) and roughness.
Fig. 3 shows the BRDF-Net architecture which is similar to
the architecture of MetalNet in layer connection, activation,
and pooling. The major modification is a concatenated input
taking a material image and an auxiliary map.
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FIGURE 1. Overall process: Our method first determines whether the input material is metal or nonmetal, using a metallic classifier. The metallic
materials follow the upper network. First, it generates an auxiliary map, an irradiance environment map for metals, providing an additional input to the
parameter estimator. Then, it estimates input material’s BRDF parameters. The nonmetallic materials follow the lower network, which is same with the
upper network except that the auxiliary map is a specular map.

FIGURE 2. MetalNet: Architecture of CNN binary classification network.
The bottom numbers denote feature channels and the middle numbers
represent spatial resolutions of feature maps. Each convolution layer
uses 3× 3 filters until it is transformed into 4× 4× 1024 feature maps
and is flattened to the subsequent fully-connected layers.

Following layers interpret the relation between the reflec-
tion on the material surface and the irradiance environ-
ment (specular reflection for nonmetals) and transform them
into feature maps using the ReLU activation function. They
continue to two fully-connected layers before they finally
predict 4 BRDF parameters (albedo RGB and roughness)
using the sigmoid activation function. BRDF-Net uses a mean
squared loss function, LL2 as described in (9) and Adam
optimizer with 0.0001 learning rate.

LL2(Ey) = E(‖yp − Ey(x, ym)‖2), (9)

where x, ym, and yp denote input images, true auxiliary maps,
and true parameter vectors, respectively. We let Ey be the
estimator trained with the true auxiliary map ym.
We have conducted experiments to determine the appro-

priate selection of the auxiliary map. In these experiments,
we use three networks: a conventional CNN, BRDF-Net with
irradiance environment maps, and BRDF-Net with specular
maps. We use three datasets: metals, nonmetals, and mixed

data that contain metals as well as nonmetals in even dis-
tribution. All the images in the datasets are provided with
corresponding ground-truth environment and specular maps.
We have experimented with possible combinations of net-
works and datasets. Table 1 shows the results. We have
found that all the results by providing auxiliary maps along
with the input images show smaller errors than the results
by the conventional CNN. Metallic materials are best esti-
mated by BRDF-Net with irradiance environmental maps.
The best estimator for nonmetallic materials is BRDF-Net
with specular maps. This results also support our hypoth-
esis in Section IV. Therefore, this is the most promising
combination for the BRDF parameter estimation. These two
networks are followed by the metallic classifier described
in Section IV-A.

C. MAP GENERATOR
Our estimator requires not only an input material image but
also an additional environment or specular map to precisely
predict intrinsic BRDF parameters. Instead of getting the
ground-truth maps, we estimate auxiliary maps from the
input material image and use it as an input of BRDF-Net. Our
map generator, MapGen, adopts Pix2Pix approach widely
known as cGAN which contains generative model compet-
itively contest with discriminative model. The spatial fea-
ture resolution of the encoder is gradually reduced by half
from 128 to 1, applying 4 × 4 convolutions followed by
Leaky-ReLU with stride 2 for downsampling. The first 4
downsampling steps double the number of feature channels
and the last 3 layers only reduce the number of feature
channels. After a bottleneck layer, the process is reversed.
To preserve the low-level information shared between input
and output, the network requires skip connections generally
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FIGURE 3. BRDF-Net: Architecture of the BRDF parameter estimation.
Two 128× 128x3 input images are concatenated into 6 channels and
subsequently build similar layers as in Fig. 2 except that the last layer
consists of 4 nodes with sigmoid activation.

TABLE 1. Estimation quality comparisons between the basic CNN and our
BRDF-Net with different types of input and auxiliary maps: Input data can
be mixed (both metals and nonmetals), metal, or nonmetal. The auxiliary
map can be env (irradiance environment maps) or spec (specular maps).
The basic CNN is only tested with mixed input without auxiliary maps,
and our BRDF-Net is tested with every combination. For both training and
testing, we used the ground-truth auxiliary maps. Since metals have no
diffuse component, we did not experiment metals with specular maps.
p-loss (parameter loss) is the difference between ground-truth BRDF
parameters and predicted parameters, and r-loss (render loss) is the
difference between ground-truth material images and images rendered
with predicted parameters.

used in U-NET [17]. Each skip connection concatenates all
feature channels at layer i with those at layer n− i.

The objective of the map generator can be expressed as

LGAN (G,D) = CE(1,D(x, ym))+ CE(0,D(x,G(x, z))),

(10)

where discriminator D tries to accept the true map ym on the
observed condition of input image x whereas generator G
tries to deceive D into thinking the map G(x, z) generated
from a random noise vector z is a true map. In addition,
L1 loss imposes the generated map not only deceive the
discriminator but also imitate the true map in an L1 domain.

LL1(G) = E[‖ym − G(x, z)‖1] (11)

The previous research [18] suggests mixing those two objec-
tives with the empirically determined weight λ1 of 100.

LG = argmin
G

max
D
{LGAN (G,D)+ λ1LL1(G)} (12)

FIGURE 4. MapGen follows the architecture of a modified U-Net which
consists of an encoder and a decoder. The arrows show the concatenating
positions for skip connections between the encoder and the
corresponding decoder.

We also use Adam optimizer and follow the suggested learn-
ing rate of 0.0002 and momentum term β1 of 0.5 for the
training stability.

D. TRIARCHY GAN
The performance of BRDF-Net is enhanced by the additional
input generated byMapGen. The goal ofMapGen is to mimic
the irradiance environment map of the input image so that
it looks plausible. However, since the material image might
be drastically changed by a subtle change of the irradiance
environment, a less accurate map generator could distract the
parameter estimator. Therefore, we propose a triarchy GAN
architecture, triGAN, that cooperatively estimates auxiliary
maps and BRDF parameters. In our architecture, the goal
of the map generation is helping to estimate more accurate
BRDF parameters in addition to generating more accurate
maps.While the network is learning, it improves the auxiliary
map as well as the BRDF parameters repeatedly.

In our triGAN architecture, MapGen first generates the
auxiliarymap from the input material image. ThenBRDF-Net
takes the generated auxiliary map as an input in addition
to the material image, and estimates BRDF parameters. The
BRDF-Net loss (p-loss) in (13) is added to the MapGen total
loss function (14) to improve the map generation. In this way,
the map generator MapGen and the estimator BRDF-Net are
trained cooperatively so that the generator creates an appro-
priate auxiliary map to aid the estimator in predicting better
BRDF parameters and estimator loss helps the generator to
create more helpful auxiliary map. Fig. 5 shows this process.
The objective function of BRDF-Net follows (13), which

uses a generated auxiliary map instead of a true auxiliary map
used in (9).

LL2(EG) = E[‖yp − E(x,G(x, z))‖2] (13)

MapGen loss function additionally adopts the L2-loss of the
BRDF-Net with weight value λ2 = 1000 to adjust the scale.

Ltri(G) = LGAN (G,D)+ λ1LL1(G)+ λ2LL2(EG). (14)
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FIGURE 5. Triarchy conditional GAN. MapGen generates an auxiliary map
providing it to BRDF-Net as an additional input. BRDF-Net estimates
BRDF parameters from the input image and a generated auxiliary map.
The loss function of MapGen includes the BRDF parameter loss to
generate a map that is helpful for the parameter estimation.

TABLE 2. Image difference between ground-truth auxiliary maps and
generated maps. MapGen is a map generator using cGAN architecture.
triGAN also generates auxiliary maps while estimating BRDF parameters.
The networks with a subscript env generate irradiance environment maps
and those with a subscript spec generate specular maps. The networks
are tested with three types of input data: mixed including both metals
and nonmetals, metals, and nonmetals. We use RMSE and SSIM metrics
for comparing images.

The extrinsic quality of auxiliary map is not meaning-
fully improved by the modified objective, but the estima-
tor trained on the generated auxiliary maps produces better
BRDF parameters shown in Table 3.

V. DATASETS
We require a large number of paired spherical material images
and auxiliary maps (irradiance environment maps and specu-
lar maps). Since it is almost impossible to acquire real photos
in highly elaborate installations and even pairs, we synthe-
size rendered images for the training and testing process
with 100 HDR irradiance environment maps. HDR environ-
ment maps contain 360◦ panoramic irradiance information in
various indoor conditions. The total amount of our synthe-
sized dataset is 40k, where 20k are metals and the other 20k
are nonmetals. Eachmaterial image has a corresponding envi-
ronment map and a specular map. The material images are
rendered by uniformly sampled parameters of albedo(R, G,
B each) and roughness in range from 0.05 to 0.95, following
Disney BRDF approach described in Section III-A. For met-
als or nonmetals, the metallic parameter is determined in 1.0
or 0.0 respectively. Test database has 3.2k synthesized images
and 10 real images of homogeneous spherical material pho-
tographed indoors. The HDR irradiance environment maps

TABLE 3. The results of BRDF parameter estimation. We have tested with
combinations of different networks and input data. The tested networks
are BRDF-Net and triGAN. The networks with a subscript env use
irradiance environment maps as auxiliary maps and those with a
subscript spec use specular maps. We use three types of input data:
mixed (metal+nonmetal), metal, and nonmetal. The results are MAE
between ground-truth parameters and estimated parameters.

FIGURE 6. Results of the BRDF parameter estimation on metals. From left
to right: input image, ground-truth environment map, generated
environment map, and synthesized image with the estimated parameters.
Each material is selected to show various characteristics of materials as
well as irradiance environments. From the top row, the difference
between input and synthesized images of each material reports 36.51,
35.26, 31.66, and 28.22, in PSNR metric.

for the real photos are captured byDSLR camera compositing
multiple exposure images. In addition, the test dataset is
synthesized on different irradiance environments from the
train dataset.

VI. RESULTS
A. EVALUATION OF ENVIRONMENT AND
SPECULAR MAP GENERATION
We evaluate the difference between a ground-truth auxiliary
map on the test dataset and a corresponding generated map
by MapGen. We compare images using RMSE and SSIM
metrics with the maximum value = 1.0. Table 2 shows the
qualitative comparisons with color space similarity(RMSE)
as well as structural similarity(SSIM). Input images catego-
rized as mixed are composed of both metals and nonmetals in
same ratio.
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TABLE 4. The evaluation of the images rendered by estimated BRDF
parameters. The experimented networks are BRDF-Net and triGAN and
the subscript env and spec mean environment maps and specular maps
respectively. These networks are also tested on mixed(metal+nonmetal),
metal, and nonmetal separately. We measured RMSE and PSNR between
the ground-truth material images and the images rendered by estimated
BRDF parameters.

FIGURE 7. Results of the BRDF parameter estimation on nonmetals. From
left to right: input image, ground-truth specular map, generated specular
map, and synthesized image with the estimated parameters. From the top
row, the difference between input and synthesized images of each
material reports 33.09, 34.21, 31.77, and 31.79, in PSNR metric.

The generator trained on the mixed dataset predicts 5
parameters including metallic, unemploying the metallic
classifier result. Notice that the generated results of catego-
rized material dataset present smaller errors than the results
of mixed material dataset. We first experimented a map gen-
eration with MapGen which uses a loss function in (12).
Auxiliary maps are also generated in our triGAN architecture
to guide a BRDF estimation, which uses a loss function
(14) including BRDF parameter loss term. Each network
is trained separately on irradiance environment maps and
specular maps.

The map generator presents improved results on cate-
gorized material dataset. However, the quality difference
between the results of MapGen and triGAN is insignificant
on both RMSE and SSIMmetrics. Nonetheless, the generated

FIGURE 8. Metallic classification performance with respect to the
material roughness. The blue bar represents accuracy of metallic
classification and the stacked orange bar shows the binary cross-entropy
loss of the predicted class. Each bar covers the range between the
material roughness denoted in x-axis.

FIGURE 9. Comparison to the results by Georgoulis et al. The images in
each column show the input images used for the testing (Input), the
ground-truth images in a different environment (GT), their result images
(Georgoulis), and our results (Ours). The second and the third columns
use the same irradiance environment map, whereas the other columns
use difference environment maps. Our results show similar or better
estimation especially for metallic materials shown in the third and the
fourth rows.

maps in triGAN can help the BRDF estimation better than the
maps in BRDF-Net as described in the next section.

B. EVALUATION ON SYNTHESIZED DATASET
In this section, we evaluate our BRDF estimation method
using the categorized test data. We calculated mean absolute
error (MAE) between the ground-truth BRDF parameters
and their estimated parameters for each mixed, metal, and
nonmetal test set. We also tested two networks BRDF-Net
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FIGURE 10. Results on real materials: The left two columns present real photos of nonmetal objects in
spherical shape and rendered images by our BRDF estimation. The right two columns show results with real
metallic objects.

and triGANwith environment maps as well as specular maps.
Table 3 shows the results.

As derived in Section IV, our approach using environment
maps for metals and specular maps for nonmetals shows
the best results both for BRDF-Net and triGAN. Unlike the
BRDF-Net tested with true environment and specular maps
as shown in Table 1, the BRDF-Net tested with the auxiliary
maps generated by MapGen presents less accurate perfor-
mance as shown in Table 3. Whereas BRDF-Net learns the
features of true auxiliary maps, which we cannot get, triGAN
learns the features of generated maps which can be obtained
in our method. In triGAN, the estimator is trained for intrinsic
features of generated maps, presenting better results in both
parameter and image spaces.

We synthesized spherical material images with the
estimated BRDF parameters using the physically-based
rendering method described in Section III. We compare the
synthesized results to the ground-truth material images using
RMSE and PSNR (Peak Signal-to-noise Ratio). The struc-
tural similarity (SSIM) is practically identical for the entire
dataset and results since they assume the same spherical shape
and illumination. Table 4 shows our method also produces
finer synthesized images than previous CNNs. Our final sys-
tem first determines metalness of the input image, then it runs
triGANenv for metals and triGANspec for nonmetals. Based on
the accuracy of MetalNet, 0.98, the total RMSE error of our
system is 0.02937, which shows a preferable result than the
error of triGAN for the mixed inputs.

C. QUANTITATIVE ANALYSIS WITH RESPECT
TO MATERIAL ROUGHNESS
We notice that the quality of estimation is highly related
on the material roughness. Extremely rough surface presents
practically perfect diffuse, leading to be mistaken classifying
its metallic even by human perception. The performance of
the metallic classifier consequently affect the performance of
the generator and estimator. Fig. 8 depicts both accuracy and
binary cross entropy loss of MetalNet with respect to mate-
rial roughness. Accuracy experiences marginal decrease as
roughness becomes larger, whereas the loss shows moderate
increase. The relatively large losses of rough materials draw
question that whether we could obtain the similar accuracy
even on real dataset. Since metallic classification is crucial
to the performance of the consecutive generation and estima-
tion, this question remains for the future work.

D. COMPARISON TO THE PREVIOUS WORK
We compared our method to the learning based approach by
Georgoulis et al. [1]. We tested our method with their real
dataset and Fig. 9 shows the results. The first column shows
the input images used for the testing, and the second column
shows the ground-truth images in different environments. The
third column shows their result images and the fourth column
shows our results generated from the input in the first column.
The images in the second and the third columns use the same
irradiance environment map. The images in the first column
are taken in an environment different from the second and
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the third columns. Since we do not have the environment
maps used in these images, we use different environment
maps for generating our results in the fourth column. Our
results show similar or better estimation even though they
are rendered in different environments. The last two rows
show the results of metallic materials. Since the colors of
metals are more affected by the environment, the BRDF esti-
mation might also be affected by the environment. In the third
row, The approach by Georgoulis et al. estimates the bluish
material, which might be affected by the bluish environment
of the input image. Our approach estimates more accurate
color and reflections by estimating the environment map as
well.

E. RESULTS ON REAL WORLD MATERIALS
Our final test is conducted for the real world materials. Due
to our limitation of input material shape, we collected 10
spherical-shaped materials, 5 are metals and the others are
nonmetals, in diverse surface roughness. Fig. 10 depicts the
ground-truth input material images and synthesized images
rendered by the estimated BRDF parameters. All materials
are photographed in a same outdoor environment. We also
captured the irradiance environment where the input photo
is taken, and used it for rendering the results. However, the
captured environment cannot be exactly same because of the
temporal difference, the photographer and the tripod shown
in the images, etc. For example, the photographer and the
tripod appear only in the input and the clouds appear only
in the rendered image. Since it is very difficult to create
the strictly identical shape for rendering, we show the visual
comparisons instead of quantitative evaluations here.

VII. CONCLUSION
In this paper, we have presented the two-way approach to
estimate the realistic radiance properties of metallic and non-
metallic materials using the cooperative architecture of CNN
and GAN. We have shown that a single material image of
known shape is applicable for simultaneously generating an
irradiance environment map and estimating material proper-
ties. We have also shown that the performance of estimation
is improved by the assistance of generated features from
GAN. The two different networks working in one dataset with
exchange of their gradients can be explained that they have
deeper layers in total, whereas they avoid gradient vanish-
ing. To prove our hypothesis that the reflective behavior of
metals and nonmetals determines the optimization approach
for other parametric properties such as albedo colors and
roughness, we have synthesized large scale rendered dataset
with various indoor environments and separated into the
two groups. We applied a different pipeline of training net-
works for each group and compared the estimation quality.
We confirmed that metals with environment maps and non-
metals with specular maps are appropriate combination for
our pipeline. Our method shows meaningful improvement
of estimation quality on the synthesized test dataset, and

plausible synthesized results from the BRDF estimation of
real world materials.

There are many studies that need to be improved in the
future. We would like to capture the BRDF parameters
from heterogeneous general-shape materials in uncontrolled
photos. Our approach also has limitations for the BRDF
properties such as anisopropic, tint, sheen, clear-coat,
and spatially-varying properties. We would also like to
study these properties for more realistic representations of
materials.
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