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a b s t r a c t

Value-based reinforcement learning (RL) algorithms have been widely applied in traffic signal studies.
There are, however, several problems in jointly controlling traffic lights for a large transportation
network. First, the discrete action space exponentially explodes as the number of intersections to
be jointly controlled increases. With its model structure, the original deep Q-network (DQN) could
not accommodate a large action space. The problem was resolved by revising the output structure
of a DQN holding the framework of a single-agent RL algorithm Second, when mapping traffic states
into an action value, it is difficult to consider spatio-temporal correlations over a large transportation
network. A deep graph Q-network (DGQN) was devised to efficiently accommodate spatio-temporal
dependencies on a large scale. Finally, training the proposed DGQN with a large number of joint actions
requires much time to converge. An asynchronous update methodology with multiple actor learners
was devised for a DGQN to quickly reach an optimal policy. By combining these three remedies, a
DGQN succeeded in jointly controlling the traffic lights in a large transportation network in Seoul.
This approach outperformed other ‘‘state-of-the-art’’ RL algorithms as well as an actual fixed-signal
operation. The proposed DGQN decreased the average delay of the current fixed operation to 55.7%,
whereas those of reference models DQN-OGCN and DQN-FC were 72.5 and 92.0%, respectively.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Many researchers have rigorously studied the application of
alue-based reinforcement learning (RL) to traffic light control.
hen network-wide traffic signals are jointly controlled, a multi-

gent RL model prevails because of the increasing size of state and
ction spaces. In a multi-agent RL setting for jointly controlling
raffic lights, agents cooperate to achieve a common goal such as
he minimization of total delay. This algorithm, however, cannot
uarantee a global optimum without full coordination with other
gents’ actions. More concretely, it cannot break ties between
gents in such a cooperative environment [1]. For example, when
ointly controlling two consecutive intersections, at a moment the
hase combination allowing the north–south through traffic for
oth intersections may have the same action-value as the phase
ombination allowing the north–south left-turn traffic for both
ntersections. If there is no coordination between upstream and
ownstream controllers, the downstream controller may choose
he through-phase expecting the upstream controller to select
he same phase, although the upstream controller could actually
elect the left-turn phase expecting the downstream controller
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to do the same. This leads to a non-optimal pair of signal phases.
The lack of coordination thus prevents a multi-agent RL algorithm
from reaching a global optimum. A single-agent DQN could solve
this problem, but the model has a difficulty in accommodating a
large action space.

Our previous study revised the output structure of the original
deep Q-network (DQN) to accommodate a large action space
within the framework of a single-agent model [2]. Whereas the
extended model had been validated for a small-scale synthesized
network composed of only 4 intersections, in the present study
the model was applied to jointly control a real transportation
network containing 15 intersections. When jointly controlling
the traffic signals of 15 different intersections, the original DQN
requires the total number of output nodes to be no less than 415

when each intersection has 4 available signal phases. The number
of parameters to be learned also explodes, and an unrealistic
amount of computing resources is necessary. On the other hand,
the extended DQN requires no more than 4 × 15 output nodes
while accommodating the full coordination between joint traffic
signals of individual intersections. This scheme also offers a great
advantage for training the model by facilitating the selection
of a joint action in the Q-learning algorithm without the full
enumeration of joint actions (see Section 3). The architecture of
the extended DQN was described in a rigorous manner using
mathematical expressions.
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The second problem is posed when a RL-based traffic signal
control is implemented in a complex transportation network.
It is inefficient for either a fully connected (FC) layer or a 2-D
convolutional layer to recognize the topology of a transportation
network. Thus, those methods require an inordinate amount of
computing time to accommodate the spatial dependencies be-
tween the traffic states of different intersection approaches. A
transportation network has a constant topology through which
traffic states propagate. If a graph convolution is employed in the
structure of a Q-network, the dependency of the traffic state of
a given intersection on the traffic states of other intersections
can be efficiently addressed when approximating the true ac-
tion values. Some researchers have pioneered the use of graph
convolutions to constitute a Q-network for traffic signal control
[3,4]. Their graph convolutions, however, depended on a constant
adjacency matrix, and their test bed included only a few inter-
sections and depended on a multi-agent RL algorithm that could
not fully coordinate the signal phases of different intersections.
We devised a novel graph convolution scheme that can vary the
connection intensities by time lags and incorporate them into an
extended DQN for large-scale joint traffic signal control. With this
graph convolution scheme, a deep graph Q-network (DGQN) was
developed to accommodate the spatio-temporal dependencies in
a transportation network. The DGQN made it possible to accom-
modate the traffic states of upstream and downstream roads from
past times in order to more efficiently determine the present
traffic signals of an intersection approach. It is also possible to
use either a FC or a 2-D convolutional layer to recognize spatial
correlations. A DGQN, however, is the most efficient model be-
cause it directly uses the topology of a road network to derive
action values from traffic states.

The difficulty in training a DGQN to jointly control traffic
lights on a large scale was the last issue to be addressed in
the present study. Even though the proposed DGQN can deal
with a large number of actions without an exorbitant use of
computer memory, the large action space remains unchanged and
should be explored sufficiently during training. For convergence,
a DGQN must experience as many transitions as possible from an
action-state pair to a subsequent state. In this context, a single
environment is not sufficient for a RL algorithm to reach the
convergence within a practical computation time. In the present
study, multiple environments were set up and asynchronous
updates were applied in training the DGQN. Unlike the existing
A3C algorithm developed by Mnih et al. [5], a replay memory
was separately kept for each actor-learner. Four simulated en-
vironments were used, and each environment had a different
level of traffic demand. By applying the asynchronous training
scheme, the DGQN can deal with a large number of joint actions
for area-wide traffic light control.

The proposed DGQN essentially took the form of a single-agent
RL model rather than the multi-agent RL models that prevail in
the field of study for joint traffic signal control at a network level.
Nonetheless, combining the three remedies outlined above made
it possible to find an optimal policy that could jointly control the
traffic signals of 15 intersections in a real transportation network.
The DGQN outperformed a DQN with only FC layers and an orig-
inal graph convolutional neural network (GCN) with a constant
adjacency matrix. Furthermore, an asynchronous learning scheme
made it possible for a DGQN to converge to an optimal policy
within a practical amount of computing time.

The next section introduces a literature search that dealt with
the applications of a RL algorithm to traffic signal control. In the
third section, the state, action, and reward are defined for the
proposed DGQN. The fourth section describes the structure of
the proposed DGQN to circumvent the exorbitant memory usage

with respect to a large action space. An asynchronous training
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algorithm is devised in the fifth section. How to set up simulation
experiments is described in the sixth section. The seventh section
shows analysis results and performance comparisons with other
reference models. In the last section, conclusions are drawn, and
further studies are discussed.

2. Related work

Studies that employed a RL-based algorithm to jointly control
traffic signals in a transportation network are investigated in
this section. Prior to the advance of deep learning technolo-
gies, model-based multi-agent RL algorithms had already been
adopted in joint traffic signal control to gain an advantage of sav-
ing computing resources in a distributed manner [6–11]. Wiering
[6] established an RL model prototype for traffic signal con-
trol based on multiple agents. Later, Kuyer et al. [8] extended
Wiering’s model by employing a Max-Plus algorithm to pass mes-
sages among neighboring agents, which facilitates coordination
between actions of different agents. Houli et al. [9] devised a
vehicular ad hoc network within the framework of a multi-agent
RL to streamline the information exchange among agents. More
practically, a partially coordinated multi-agent RL algorithm was
developed by El-Tantawy et al. [11], which can be applied to real-
world applications by allowing each agent to communicate only
with its first-order neighbors and to partition the entire state
space into subspaces consisting of a pair of agents. All these early
studies, however, adopted a tabular update of the Q-function
and did not approximate their Q-function using a deep neural
network.

A model-free RL algorithm that approximates the Q-function
using a deep neural network started to emerge for traffic light
control after a DQN had succeeded in the playing of classic video
games [12]. There are quite a few references in the literature to
the adoption of a deep-learning model to address issues asso-
ciated with joint traffic signal control in a large transportation
network. Some researchers used a DQN within a multi-agent
RL framework to solve the joint traffic signal control problem
[13–16]. However, they did not ensure that an exact solution
was found because only partial coordination between agents was
considered. Van der Pol and Oliehoek [16] decomposed the global
Q-function into local Q-functions and used a Max-Plus algorithm
to exchange messages between agents within a DQN framework.
Tan et al. [15] used a hierarchy to decompose a RL problem, and
a global agent utilized the achievements from local agents to
perform its own action.

Some pioneers have begun to use a graph-based neural net-
work to approximate the true Q-function when traffic lights are
jointly controlled in a transportation network. When construct-
ing a DQN, Nishi et al. [4] used graph convolutional layers to
accommodate spatial dependencies between traffic states sepa-
rated geographically in a transportation network. An adjacency
matrix that indicates the first-order connections in a road net-
work was prepared in advance. In their framework, however,
each traffic signal is controlled by a separately learned policy,
which means they could not find a global joint policy. More
recently, Wang et al. [3] adopted an attention-based graph con-
volution to consider spatial dependencies between traffic states
when approximating the true Q-function. The directional adja-
cency graph of traffic lights was explicitly constructed for mod-
eling the geographical structure information to facilitate coordi-
nation among multi-intersection traffic light control. A recurrent
neural network was also integrated with the graph units to ac-
commodate temporal dependencies. Spatio-temporal correlations
between traffic states were recognized simultaneously within a
DQN framework. Their DQN was evaluated simply in a distributed
manner whereby the global Q-function is decomposed into local
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ndependent Q-functions. Basically, a multi-agent RL algorithm
annot obtain a globally optimal policy, unless an agent’s action
an accommodate full coordination with the actions of other
gents [1].
Besides the value-based RL algorithms, a policy-gradient RL

lgorithm was also adopted to solve joint traffic signal con-
rol in a large transportation network [17–20]. A policy-based
L algorithm is applicable for continuous control problems to
etermine the traffic signal phase duration with the phase se-
uence fixed, whereas a value-based RL algorithm optimizes the
hase sequence for constant phase duration. The policy-based
L algorithm employs two deep neural networks, each of which
pproximates an action value function and a policy function,
espectively. The control of the algorithm is known to be more
onsistent than that of a value-based RL algorithm [21,22]. Casas
19] applied a single-agent actor–critic algorithm for the traffic
ignal control of multiple intersections, and Chu et al. [20] em-
loyed a multi-agent actor–critic algorithm that shares partial
nformation between agents to jointly control multiple traffic
ights. The latter study considered information of neighborhood
olicies to improve the observability of each local agent and
ntroduced a spatial discount factor to weaken the state and
eward signals from remote agents.

Fuzzy systems have also been used to optimize traffic signal
ontrols [23,24]. Traffic light controllers based on a fuzzy sys-
em optimize the extension of phase duration with the phase
equence fixed, which is similar to an actor–critic RL algorithm
n that both have a continuous action space. Some researchers
ave employed the neuro fuzzy systems for traffic signal control
25,26] wherein a neural network was designed to mimic the
unctions of a fuzzy system such as fuzzification, rule-based infer-
nce, and defuzzification. A fuzzy neural network can be trained
n real or simulated data, whereas a naïve fuzzy system depends
n human intuitions to set up fuzzy sets and rules. Although
his neuro fuzzy technology provides a plausible way to integrate
ule-based and learning-based models, the fuzzy traffic light con-
roller is yielding its position to a RL algorithm embedded with
eep neural networks. Recently, Kumar et al. [27] attempted to
ncorporate the fuzzy inference with a RL algorithm, so that the
ormer selected a specific mode and the latter controlled traffic
ights according to the chosen mode. The proposed DGQN was
ompared with the two different types of algorithms introduced
bove. The comparison results will be discussed in Sections 7.2
nd 7.3.

. The definitions of state, action, and reward

.1. The definition of state

Conventional traffic parameters such as delays and queue
engths are a decisive measure to evaluate the performance of
n adaptive traffic signal control system. In the field of study
or RL-based traffic signal controls, the traffic delay and queue
ength have widely been chosen to represent the traffic state
11,28–32]. The present study also adopted both of these pa-
ameters as the state of the traffic environment. However, there
ay be skepticism regarding how to accurately measure these
arameters when an RL algorithm is implemented in the field.
ur two previous studies showed strong evidence that they can
e measured onsite based solely on video images [33,34].
In this context, the traffic delay and queue length were se-

ected as the state of the present RL algorithm. The state was
efined for each lane group that is comprised of one or more
anes that share a common stop-line and capacity. Generally, all
xclusive turn lanes are treated as separate lane groups. Through
3

lanes are also generally grouped together, including through lanes
that allow for shared right and/or left-turn movements. Feasible
phases and lane groups were recognized for each intersection in
the testbed prior to establishing a DQN model.

3.2. The definition of action

There are two types of actions in a RL-based traffic signal
control problem. A continuous action allows a phase duration
or its proportion to a cycle length to be determined [19,35–
37]. In this case, the displaying sequence of given phases had
to be fixed. On the other hand, for a discrete action any feasible
phase can be selected for a time period [6,11,30]. For the discrete
action, the duration of a signal phase cannot be shortened below
the predefined interval but should be a multiple value of the
interval. The present study chose the second option for the DGQN
to secure a larger degree of freedom in a traffic signal control.
Feasible phases for each intersection were selected relative to the
real operation of a traffic signal control in the testbed. For the
discrete action space, it should be noted that the number of joint
actions explodes exponentially with increases in the number of
intersections to be jointly controlled.

For comparison, the present study offered an alternative set-
ting of continuous action to three reference models. An actor–
critic RL algorithm was chosen wherein the duration of each
traffic signal phase was the determinant variable with the phase
order predefined. A conventional fuzzy system that returns a crisp
control variable was tested. A fuzzy neural network was also cho-
sen for comparison. For both fuzzy models, each phase duration
was determined between predefined minimum and maximum
green times.

3.3. The definition of reward

The goal of joint traffic signal control is to minimize the total
delay at the entire transportation network level. The conventional
algorithm for adaptive traffic light control has not achieved this
goal in the real world. Most adaptive signal control systems
cannot help leading to a local optimum. For example, applying
the best offset for a major corridor may undermine minor traffic
flows, which is frequently observed in the field. Even though
a multi-agent RL algorithm chooses a delay-dependent reward
specification, it ends up with a local solution since it should be
learned in a distributed manner without the full action coordina-
tion. The present study uses a single reward that is derived from
the total cumulative delay in an entire transportation network.
A single agent finds an optimal traffic signal policy so that the
total system delay can be minimized. At the end of every learning
interval, the reward is set as +1 if the delay cumulated during the
urrent interval is less than that cumulated during the previous
nterval and is set as −1 otherwise.

. The structure of DGQN

.1. An overview of graph convolution

A 2-D convolution cannot efficiently extract correlations be-
ween nodes in a graph. Kipf and Welling [38] simplified a graph
onvolution method by confining the filters’ operation to only
he first-order neighbors. Repeating the graph convolution, how-
ver, extends to remote nodes from a target node. The working
rinciple of the graph convolution is as follows.
Given a graph, G = (V, E), a GCN requires two matrices as

nput. A feature matrix (X ∈ RN×F0 ) and an adjacency matrix
(A ∈ RN×N ) is fed into a GCN. A hidden layer of the GCN is
generated by a propagation rule based on the previous hidden
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ayer and an adjacency matrix that represent a graph topology .
ow to choose the propagation rule is the key in the concept of
CN. Eq. (1) is the conventional form of a layer-wise propagation
ule, wherein weights are separated from a constant adjacency
atrix.
l
= σ

(
AH l−1Q l−1) (1)

N = number of vertices
F 0

= number of given features for a node
F l

= number of neurons (dimension) of lth
hidden layer

V = set of vertices (=nodes)
E = set of edges
H0

= initial hidden layer (=X)
H l

= lth hidden layer
σ (·) = activation function such as a sigmoid

and a rectified linear unit (ReLU)
Q l−1

∈ RF l−1
×F l

= weight parameter matrix

However, there are two typical problems regarding Eq. (1).
irst, multiplying an adjacency matrix with a hidden-feature ma-
rix cannot transfer a node’s own features to the next layer. Only
eatures of its neighbor nodes can be passed to the next layer.
o circumvent this drawback, an identity matrix is added to the
iven adjacency matrix (Ã = I + A). Second, feature values
cale up as the layer-by-layer propagation repeats. The average
ormalization of the adjacency matrix (Ã) can be an option to
idestep this problem. A diagonal node-degree matrix (D) is pre-
ared such that its diagonal element sums up the row values
f the adjacency matrix (Dii =

∑
j Ãij). The adjacency matrix

is then normalized by multiplying the inverse of the diagonal
matrix and the given adjacency matrix (D−1Ã), and thus all rows
of the resultant matrix sum to one. On the other hand, instead
of this average normalization, Kipf and Welling [38] adopted
a spectral normalization to secure a greater dynamic for the
propagation rule (D−

1
2 ÃD−

1
2 ). The spectral normalization scheme

ivided an element of the adjacency matrix by the row sum and
he column sum ( Ãij√

Dii
√

Djj
), whereas the average normalization

cheme divided an element only by the row sum in ( ÃijDii
). The final

ropagation rule established by Kipf and Welling [38] takes the
orm of Eq. (2).

l
= σe

(
D−

1
2 ÃD−

1
2 H l−1Q l−1

)
(2)

The concept of this graph convolution, however, is not ap-
propriate for a case where the intensity of connection varies
by adjacent edges. The propagation of traffic states is a typical
example wherein the influence of a road segment’s traffic state is
exerted differently on its first-order neighbors. A fixed adjacency
matrix cannot accommodate such traffic propagation. Recently,
some researchers utilized graph-attention networks to assign
different weights to neighboring nodes and to learn the weights
from data [39–41]. Their model, however, is redundant when
applied to a fixed-graph topology since it should train parameters
for all possible connections between nodes. This type of a full-
attention mechanism is inefficient for a problem involving a fixed
graph such as a transportation network.

In our previous study [42], we devised a novel graph convolu-
tion scheme for a constant transportation network to overcome
the redundancy and forecasted traffic speeds on an area-wide
scale. This scheme was adapted to compose a DGQN for RL-based
traffic signal control. The incorporation of a network topology
into a Q-function facilitates the approximation of true action
values from traffic states. The present study recomposed a trans-
portation network such that vertices and edges represented lane
4

groups and the connections between them, respectively. A vari-
able adjacency matrix was prepared such that the row and col-
umn dimension of the adjacency matrix was set equal to the total
number of lane groups in the testbed. For the row of a specific
lane group, a non-zero value was assigned only for columns cor-
responding to first-order downstream and upstream neighbors
(see Fig. 1). By doing so, different traffic propagation patterns
were accommodated. That is, the traffic state of a lane group can
be differently affected by upstream or downstream lane groups.
Eq. (3) denotes how to parameterize the variable adjacency in an
element-wise manner.

Al
ij = softmax

(
θ l
ij

)
=

eθ lij∑
k∈Ni

eθ lik
(3)

Al
= variable adjacent matrix for lth hidden layer

Al
ij = ij element of Al

θ l
ij = weight parameter in Al

Ri = set of lane groups that are directly connected to
the lane group i

Repeating a graph convolution makes it possible to recognize
he influence of lane groups in remote intersections. For each
raph convolution in a DGQN, a different adjacency matrix was
sed with the position of non-zero cells maintained, so that the
nfluence of neighboring lane groups could be differentiated by
patio-temporal domain. The proposed graph convolution is dif-
erent from the original one in that connection intensities within
n adjacency matrix are not fixed but parameterized.

.2. The architecture of a DGQN

.2.1. The former portion of a DGQN to elicit features from states
The former portion of the proposed DGQN was designed to

xtract features from input states. The portion was built on novel
raph convolutions with multiple adjacency matrices to reflect
he different spatio-temporal effects of neighboring lane groups
y connection order. As far as we could ascertain, the present
tudy is the first traffic signal control attempt to use a Q-network
ased on graph convolutions with parameterized adjacency ma-
rices.

Fig. 2 depicts the recursive expression of graph convolutions
hat constitutes a former portion of the DGQN. The row dimen-
ion for input (N) was set equal to the number of lane groups
n the testbed, and the column dimension (P) of the input was
et equal to the number of state variables. The number of graph
onvolutions was varied to consider the different spatio-temporal
nfluences of input states. Four-dimensional weight parameters
θ kt
ij ) were included to differentiate the impact of input states

or different time intervals. A tensor (S t = [st−2 st−1 st ]) that
oncatenated the vectors of three previous time intervals was
hosen as the RL state at time t , and each input vector was
eparately fed to subsequent graph convolutions so that an older
raffic state could be processed through a greater number of
raph convolutions. Since the proposed model did not include
eparate weight matrices (Q l), a dimension for hidden layers was
aintained through all graph convolutions.
Eqs. (4a) to (4d) represent graph convolution layers to accom-

odate the spatio-temporal influence of input states on action
alues. The last hidden tensor after graph convolutions goes
hrough a 2-D convolution, and the output tensor is flattened and
ully connected to a dense layer. The dense layer acts as an input
o the latter portion of the DGQN.

t−2 = σ
(
A32

θ σ
(
A22

θ σ
(
A12

θ st−2
)))

(4a)

= σ
(
A21σ

(
A11s

))
(4b)
t−1 θ θ t−1
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Fig. 1. The concept of adjacency matrix. The fixed adjacency matrix (right) is used as a mask to constitute the parameterized adjacency matrices in a DGQN.
Fig. 2. The former parts of the proposed DGQN for graph convolutions.
Fig. 3. The latter parts of the proposed DGQN to accommodate a larger action space.
t = σ
(
A10

θ st
)

(4c)

t = [Ht−2 Ht−1 Ht ] for t = 2, . . . , T − 2 (4d)

st = input state vector in interval t
Akl

θ = parameterized adjacency matrix to
accommodate the kth graph convolution for st−l

{θ kl
ij } = parameter set included in Akl

θ

Ht = hidden layer from st after going through graph
convolutions

H t = tensor that concatenates Ht−2, Ht−1, and Ht
along the last axis
5

4.2.2. The latter portion of the DGQN to accommodate a large action
space

The latter portion of the proposed DGQN maps the abstracted
features into action values (see Fig. 3). A conventional DQN takes
a specific form whereby the number of output nodes should be
the same as the size of the action space. Thus, if the number of
joint actions increases, the specification cannot work properly.
Our previous study overcame this problem by selectively fixing
weight parameters between the last hidden layer and the output
layer [2]. This measure was mathematically expressed and em-
bedded into the proposed DGQN. For brevity, the subscript for
time index will be dropped from all notations hereafter. Eq. (5)
represents the global Q-function that can be decomposed into
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ndividual intersections with correlations between signal phases
onsidered.

(S, ⟨a1, . . . , aI⟩|θ, ⟨W 1, . . . ,W I⟩)

=

I∑
i=1

8∑
j=1

N
T
θ (S)wi

jδj (ai)

=

I∑
i=1

N
T
θ (S)W iδ (ai) (5)

I = number of intersections to be jointly
controlled

8 = max. number of feasible signal phases for an
intersection

N = number of lane groups (=77 for the present
testbed)

P = number of attributes to represent a state (=2
for the present study including delay and queue
length)

L = number of time lags (=3 for the present
study)

S = [N × P × L] state tensor representing the
traffic states of the entire transportation
network during the present and (L − 1) previous
intervals.

⟨a1, . . . , aI⟩ = a joint signal phase (=action) with each
ai ∈ {1, . . . , 8} representing a specific signal
phase for the ith intersection

M = number of nodes for the last FC layer
Nθ (S) = [M × 1] tensor corresponding to the last FC

layer of the former portion of the DGQN
NT

θ (S) = the transposed Nθ (S)
W i =

{
wi

kj

}
, [M × 8] weight matrix that includes

connections between the last FC layer and the
de-facto output nodes for the ith intersection,
k = 1, . . . ,M, j = 1, . . . , 8 and i = 1, . . . , I

wi
j =

[
wi

1j, . . . , w
i
Mj

]T
, [M × 1] vector denoting the

jth column of the matrix W i, j = 1, . . . , 8 and
i = 1, . . . , I

δ (ai) = [δ1 (ai) , . . . , δ8 (ai)]T , [8 × 1] indicator of the
vector used to choose a phase given to the ith

δj (ai) =

⎧⎨⎩
1 If ai = the jth signal phase

of the intersection i
0 Otherwise

, j =

1, . . . , 8 and i = 1, . . . , I

In Eq. (5), Nθ (S) is last hidden layer of the former portion
f the DGQN following the graph convolutions. This layer can
e interpreted as a function of an input traffic state (S), given

that θ is a set of parameters {θ kl
ij } associated with former graph

convolutions to extract features from the traffic state. Elements of
the indicator vector [δ (ai)] should meet the following conditions
to guarantee that only a single signal phase is assigned to each
intersection.

8∑
j=1

δj (ai) = 1, i = 1, . . . , I (6)

The loss function represents the discrepancy between the
target and the incumbent Q-network in terms of the Bellman
optimality equation. In Eq. (7), θ− and ⟨W−

1 , . . . ,W−

1 ⟩ are pa-
ameters of the target Q-network that are fixed when updating
he parameters of the incumbent Q-function. To get the target
arameters, the parameters of the incumbent Q-function are pe-
iodically copied on a long-term basis while learning. A replay set
6

was maintained so that prior experiences {(S, ⟨a1, . . . , aI⟩, S ′, r)}
could be stored. The loss function was minimized for each batch
of examples taken randomly from the replay set. The loss function
was reduced to the last term of Eq. (7) by substituting Eq. (5)
for Q-functions and introducing a batch scheme instead of gen-
eral expectations. In Eq. (7), B represents the batch size, and(
Sb, ⟨a1b, . . . , aIb⟩, S ′

b, rb
)
is the bth example in the batch. It is a

great advantage that the maximum of the target Q-function can
be obtained only by adding the largest node values in the de-
facto output layer across all intersections. If the original DQN
were used, a full enumeration of joint actions would be neces-
sary for every iteration to solve the maximization problem. For
convenience, the former and later portions of the network are
separately drawn in Figs. 2 and 3. The first hidden layer of Fig. 3 is
the same as the last FC layer of Fig. 2. The target Q-network also
uses the same architecture but has a different set of parameters.

L (θ, ⟨W 1, . . . ,W I⟩)

= E(S,⟨a1,...,aI ⟩,S′,r)⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝r + γ max

⟨a′
1,...,a′

I ⟩
Q
(
S ′, ⟨a′

1, . . . , a
′

I⟩|θ
−, ⟨W−

1 , . . . ,W−

I ⟩
)

  
A constant value with the target Q−network

−Q (S, ⟨a1, . . . , aI⟩|θ, ⟨W 1, . . . ,W I⟩)

⎞⎟⎟⎟⎟⎠
2⎤⎥⎥⎥⎥⎦

≈
1
B

B∑
b=1

[(
rb + γ max

⟨a′
1,...,a′

I ⟩

I∑
i=1

N
T
θ−

(
S ′

b

)
W−

i δ
(
a′

i

)
−

I∑
i=1

N
T
θ (Sb)W iδ (aib)

)2
⎤⎦ (7)

5. Asynchronous algorithm to train DGQN

The architecture of a DGQN takes the form of a single-agent
RL method but can accommodate a large state and action spaces
without the need of an exorbitant amount of computer mem-
ory. However, this does not mean that the proposed DGQN can
be trained using only limited examples of state–action pairs.
Basically, for convergence a DGQN must go through as many
transition experiences as possible while training, which requires
a considerable amount of time. To reduce the computation time
in the present study, multiple actor-learners were mobilized in
parallel, and a RL environment was copied to them so that a
separate traffic simulation could be carried out for each actor-
learner. At a given simulation time, each actor-learner had a
traffic condition that differed from that of their counterparts,
which also made it possible to avoid autocorrelations between
consecutive traffic states when a single traffic simulation would
be used.

A common Q-network was set up and asynchronously updated
by multiple actor-learners (see Fig. 4), each of which learned
from its own environment. A target Q-network was also shared
by multiple actor-learners. Each actor-learner managed its own
replay set unlike the original A3C algorithm wherein no replay
set is used. This scheme required a greater amount of computer
memory but was advantageous in facilitating the convergence. An
actor-learner in an asynchronous setting should not be confused
with an agent in a multi-agent RL algorithm. Basically, actor-
learners must be independent of each other in that an agent’s
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Fig. 4. The concept of asynchronous updating of a shared Q-network.

ction only affects its own environment, whereas agents in a
ulti-agent RL algorithm must be dependent in that an agent’s
ction changes a single shared environment. An outline of the
roposed asynchronous algorithm for each actor-learner thread
s shown in Fig. 5. Applying this asynchronous training scheme
o the proposed DGQN that can accommodate a large number of
oint actions made it possible to solve a large-scale traffic signal
ontrol problem.
The simulation experiment was performed under the follow-

ng computing conditions. The main memory was 256 GB. Python
ain-logic and traffic-simulation software (Vissim v10.0) was im-
lemented on two CPUs with the following specifications: AMD
yzen Threadripper 3960X Processor @ 3.8 GHz. There were 24
vailable CPU cores, which fell under the maximum number of
ores (=32) that the traffic simulator allows. The proposed DGQN
was trained on a single GPU, which was a NVIDIA GeForce GTX
1080Ti with 11 GB of GDDR5 memory. A graphic accelerator was
used to train the DGQN, whereas the animation was run on CPU
cores. It took an average of 4 min to run a single episode. The total
computation time for 2000 episodes was tantamount to 40 h.

6. Simulation experiments

6.1. A description of the testbed

A handicap of RL-based traffic control is that the algorithm
annot be trained in the real world. A robust simulator is nec-
ssary to train the algorithm. Vissim v10.0, a commercial traffic
imulator, was chosen to mimic real-world traffic conditions. On
he other hand, the testbed was chosen among real transportation
etworks. The testbed lies in the southwest area of Seoul, Korea
s shown in Fig. 6. The network includes 15 intersections to
e jointly controlled in the present study. Intersections that are
ot numbered indicate an unsignalized intersection or a grade-
eparated intersection without traffic lights. Fig. 6 also lists the
urrent signal phases for each intersection in the morning peak
ours. The reason some 4-leg intersections ( 1⃝, 2⃝, 9⃝, 13⃝, and 14⃝)

have only two or three phases is because they have a major road
that either over- or under-passes a minor road. The cycle length
ranges from 120 to 190 s.

The current phases were used as feasible phases for the

present RL algorithm. That is, the currently available phases were

7

Table 1
Average traffic volumes in the entry links to the testbed during the morning
peak hours.
Intersection Direction Entry volume

(veh/h)

1 East-bound 81
1 South-bound 2506
2 South-bound 259
3 South-bound 169
4 South-bound 494
5 East-bound 2511
5 South-bound 352
7 North-bound 13
9 North-bound 236
10 West-bound 3107
12 West-bound 972
13 North-bound 485
14 North-bound 871
15 West-bound 231
15 North-bound 457
Fixed operation South-bound 183
Roundabout North-bound 575

implemented without a constant order for every time interval of
the RL algorithm. The proposed RL-based traffic signal controller
does not depend on the cycle length. The order of the signal
phases varied according to traffic conditions. Thus, the controller
must provide drivers with a relevant warning, so that they will
be cognizant of variations in the signal order.

6.2. Setting up traffic simulations

Traffic simulation requires the traffic volumes in the entry
links of the testbed and the turning rates of traffic flows at the
stop lines of intersections. The present experiment used input
data that are compatible with real-world traffic conditions. The
data were excerpted from the final report of a traffic impact
analysis study that had been implemented in the testbed. The
average entry traffic volumes and the average turning rates are
shown in Tables 1 and 2, respectively.

The traffic volume of only the approaches entering the testbed
was set as the input. Traffic volumes on the inner road segments
were determined by the turning rates of the traffic flows at each
stop line of intersection approaches. Each actor-learner shared
a fixed set of average traffic flows at entry links and turning
rates at each stop line of intersection approaches. However, the
traffic volumes were varied within ±30% at the beginning of
each episode to reflect the traffic conditions for different times of
the day. In addition, the average turning rates of traffic volumes
were periodically altered within ±30% during an episode in an
effort to reflect the random fluctuations of real traffic volumes.
Fig. 7 shows how traffic volumes and turning rates change for
an episode. Because some entry approaches may be saturated
due to randomly varied traffic volumes while implementing a
RL algorithm, an episode for each actor-learner was terminated
when at least one of the entry approaches was full of vehicles
and could not receive a new vehicle from outside the transport
network.

6.3. Setting up the hyper-parameters of an RL algorithm

Table 3 shows the hyper-parameters used to implement the
present RL algorithm. The simulation time for each episode was
set at 4000 s, which included 400 s of idling periods for warm-up.
The traffic simulation was implemented each second of the simu-
lation clock, and a RL update was implemented every 20 s of the
simulation clock. More concretely, a RL update was carried out
after 17 s from the onset of every update period, and 3 s of time
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Fig. 5. Asynchronous algorithm for each actor-learner thread, which was used to train the proposed Q-network.
as provided for amber signals. The lane groups received a 3-s

mber phase on the simulation clock when their current signal
8

phase switched to another, whereas the lane groups without the

phase change continued their current phase.
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Table 2
Average turning rates of traffic flows during the morning peak hours.
Inter-
section

East-bound West-bound North-bound South-bound

Left turn
(%)

Through
(%)

Right turn
(%)

Left turn
(%)

Through
(%)

Right turn
(%)

Left turn
(%)

Through
(%)

Right turn
(%)

Left turn
(%)

Through
(%)

Right turn
(%)

1 83 – 17 24 – 76 – 85 15 14 58 28
2 4 80 16 9 86 5 26 29 45 59 23 18
3 11 62 27 20 73 7 65 10 25 33 35 32
4 57 53 – – – – 46 55 – 44 – 56
5 13 87 – – 82 18 – – – 49 – 51
6 20 6 74 55 19 26 43 46 11 11 83 6
7 11 81 8 93 – 7 – – 100 35 14 51
8 – 81 19 3 69 28 37 23 40 19 71 10
9 6 87 7 7 87 6 68 – 32 7 – 93
10 7 93 – – 83 17 – – – 67 – 33
11 – 94 6 – – – – 100 – – 53 47
12 37 45 18 26 32 42 10 59 31 25 38 37
13 71 – 29 – – 100 16 70 14 – 59 41
14 – – 100 46 – 54 – 82 18 15 82 3
15 – 31 69 – 74 26 11 73 16 2 81 17
Setting up the rates of exploration and exploitation is very
mportant for the convergence of a RL algorithm. The exploration
ate dwindled from the maximum (=1.0) down to the minimum
=0) while implementing a RL algorithm. The present study dif-
erentiated the exploration rate for each actor-learner. A different
ecaying parameter was applied to each actor-learner, as shown
n Table 3. Empirical evidence showed that this scheme expedited
he convergence. The target Q-network was updated for every
500 updates of the incumbent Q-network.
9

7. Results from simulation experiments

The objectives of the present study were three-fold. The first
objective was to confirm whether the proposed DGQN, with mod-
ifications to accommodate a large action space, could effectively
manage joint traffic signal control on an area-wide scale. The
objective was accomplished since a RL model with the remedy
to accommodate a large action space succeeded in jointly control-
ling 15 intersections. The second objective was to prove the utility
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Table 3
Hyper-parameters for implementing an RL algorithm.
Hyper-parameter Description Applied value

∆ Time step for traffic simulation 1 s
Tmax Simulation period for each episode 4000 s
Tinitial Warming-up period for each episode 400 s
∆t Time interval for RL algorithm 20 s
Ta Amber time 3 s
εmax Initial probability of exploration 1.0
εmin Final probability of exploration 0
E1 Decaying parameter of exploration probability for actor-learner1 2.3E6
E2 Decaying parameter of exploration probability for actor-learner2 2.6E6
E3 Decaying parameter of exploration probability for actor-learner3 2.9E6
E4 Decaying parameter of exploration probability for actor-learner4 3.2E6
D Size of replay memory set 30,000
Dinitial Initial replay memory 3000
B Size of mini-batch 32
Itarget Cycle for updating target Q-function 2500 iterations
c
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Fig. 7. Varying traffic conditions for an episode. Traffic simulation during the
warm-up period was based on the average entry traffic volumes and on the
average turning rates.

of adopting graph convolutions with variable adjacency matrices.
To verify this objective, several reference models were set up for
comparison (see Section 7.1). The last objective involved demon-
strating the efficiency of asynchronous updates for a DGQN. The
evidence for the utility of an asynchronous update was clarified,
because we failed in leading to a convergence of the DGQN with
a single environment. In theory, it would be possible for a single
actor-learner to obtain a convergence with a single environment
if a long computing time was allowed. However, a DGQN did
not lead to a convergence without asynchronous updating, even
though it was trained on the same number of episodes as the sum
of each actor-learner’s episodes.

7.1. Selecting reference models

The current fixed operation of traffic signals in the testbed
as chosen as a baseline (see Fig. 6). A simple RL algorithm
hat involved a DQN composed only of FC layers was chosen as
he second reference (DQN-FC). Another DQN with the original
raph convolutions that used a constant adjacency matrix was
stablished as the last reference model (DQN-OGCN). The perfor-
ances of these three references were compared with that of the
roposed DGQN. For fair comparisons, the proposed scheme to
ccommodate a large action dimension was commonly applied to
he architectures of both the DQN-FC and the DQN-OGCN. More-
ver, each reference network was designed so that the number
f weight parameters could match that of the proposed DGQN. In
articular, the former architecture of the DQN-OGCN to abstract
he traffic state was the same as that of the proposed DGQN, with
he exception of a parameterized adjacency matrix. For reference
odels and a DGQN, 600 episodes were implemented to test
odels trained for about 2000 episodes. For each testing episode,

he same rule used in training times was also adopted to generate
raffic conditions.

Besides the value-based models, an actor–critic RL algorithm
ased on the policy gradient was chosen as another reference for
omparison. As mentioned earlier, the signal phase duration is
ptimized with the phase sequence fixed in an actor–critic model.
 0

10
This policy gradient model uses two neural networks, each of
which is used to approximate a policy function and an action
value function (=Q-function), respectively. The actor network
orresponds to the policy function, while the critic network to the
-function. The actor network is updated with its gradient with
espect to its weights. According to the policy gradient theorem
43], when computing the gradient, the critic network that has
reviously been updated is used to regulate it. After updating
he actor network, the critic network is updated according to
he conventional Q-learning theory. These two steps alternately
epeat until convergence. The critic network was set up to include
he former graph convolution layers of the DGQN, and the actor
etwork was separated for each intersection following the rule of
‘centralized critic and decentralized policies’’ [44].

In the same context of the policy gradient RL method, two
uzzy algorithms were employed for comparison. First, a naïve
uzzy system was set up for the present traffic light control
roblem. The delay and queue length of each lane group was
hosen as input, and how much green time can be extended was
hosen as the output of the system. The decision was made every
ime the current phase terminated. Fuzzy sets for the two input
ariables and the output variable were designed based on our
ntuitions and experiences, and fuzzy rules that designated the
elationship between the input and output variables were also
ationally assumed. 6 fuzzy sets were assumed for each input
ariable, and 6 fuzzy sets were used to represent the output
ariable. Correspondingly, 36 plausible fuzzy rules were made
ased on our insight. A neuro fuzzy system had the same fuzzy
ets and rules and incorporated three functions of fuzzification,
ule-based inference, and defuzzification into a neural network.
he fuzzy neural network was trained on data extracted from a
raffic simulator, Vissim v10.0. The two fuzzy systems sought to
etermine the duration of traffic signal phases with the order of
hases fixed.

.2. The convergence and test results of value-based RL algorithms

An asynchronous update was applied to training all the value-
ased RL models as well as a DGQN. Fig. 8 shows the convergence
f the RL models. During training, an average reward was com-
uted for every episode and plotted as implementing successive
pisodes. For brevity, the convergence of the first actor-learner
as depicted, since those of the remaining actor-learners were
ot much different. The black solid line represents the moving
verage of the previous 10 average rewards, which clarifies the
rend of convergence.

The average reward of the former two models (DGQN and
GQN-OGCN) was based on graph convolutions and converged at

.3, whereas the average reward for the DQN-FC with FC layers
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Table 4
A comparison of model performance based on the total traffic delay.
Total delay (h) DGQN DQN-OGCN DQN-FC Baseline (Current fixed operation)

Mean Standard deviation Mean Standard deviation Mean Standard deviation Mean Standard deviation

381.9 109.8 496.8 178.1 630.3 196.6 685.2 110.3
Table 5
A comparison of model performance based on the maximum queue length.
Maximum queue length (m) DGQN DQN-OGCN DQN-FC Baseline (Current fixed operation)

Mean Standard deviation Mean Standard deviation Mean Standard deviation Mean Standard deviation

83.4 13.1 101.8 24.3 109.6 17.7 113.5 8.2
led to a higher value (=0.5). This was because the traffic delays
of the latter model fluctuated more than those of the two former
models during training, and the reward was computed based on
the change in the total delay in the testbed. Fig. 9 expounds
upon this phenomenon. The total delay fluctuated more within
each episode for a DQN-FC. If the total delay increased at any
iteration of an episode, a DQN-FC successively received a positive
reward that allowed it to recover the previous damage. On the
other hand, there was no drastic change in the total delay while
training a DGQN. Thus, a DGQN showed a more consistent pattern
of alternating positive and negative rewards, which decreased the
average rewards during training. As a result, the variance in traffic
delays was smaller for a DGQN than that for a DQN-FC.

According to guidelines in the highway capacity manual, the
total traffic delay and the maximum queue length were cho-
sen to compare the performance of the proposed DGQN with
those of reference models. For each model, 600 delay indices and
600 queue length indices were derived from testing episodes.
Figs. 10 and 11 depict the probabilistic distributions drawn from
the delay and queue length indices, respectively. Tables 4 and
5 list the numerical parameters derived from the distributions.
When comparing models based on the mean of performance
indices, the DGQN outperformed all other references. The DQN-
OGCN ranked as the second-best model, which implies that graph
convolutions were advantageous in recognizing spatio-temporal
dependencies among traffic states in a transportation network.
Regarding comparisons based on the variance of performance
indices, the DGQN also proved to be more robust than the two
other RL-based reference models, which means it resulted in the
most consistent operation of traffic lights.

There was a distinct outcome with regard to the variance of
the performance indices. A fixed operation had smaller variances
than the two other RL-based reference models, even though it had
larger average delays and queue lengths. This result is consistent
with a finding by Casas [19] that the output of Q-learning when
applied to traffic signal control showed a larger variance. On
the other hand, a DGQN had a smaller variance in traffic delays
compared with an affixed operation. In this regard, the success of
a DGQN in reducing the variance in delays translates to a great
enhancement. Also, a DGQN had a similar variance in maximum
queue lengths compared with a fixed operation.

It should be noted that there were outliers for a DGQN in
both performance indices, even though it recorded the best per-
formance on average. This problem is common to all available
RL algorithms, since the RL environment of traffic light control
is intrinsically nonstationary. The traffic condition within an RL
environment is affected by varying the entry traffic volumes and
their dynamic route choice patterns, which are totally exogenous
and cannot be known in advance. This means that the transi-
tion probabilities for a MDP are inconsistent. To overcome this
complication, Padakandla and Bhatnagar [45] proposed a robust
method to dynamically differentiate the state regimes of a RL
environment. We are attempting to apply this method to traffic
signal control on a large scale. In further studies we expect to

reduce the variance in traffic delays and queue lengths.

11
7.3. The test results of policy-based rl algorithm and fuzzy systems

An actor–critic algorithm was trained and tested for the same
environment of the value-based RL algorithms. The policy-based
model did not outperform the DGQN when comparing the av-
erage delay and queue length (see Figs. 12 and 13). Tables 6
and 7 confirm the results based on numerical parameters. This
might be due to the limited degree of freedom that prevented
an actor–critic algorithm from changing the sequence of traffic
signal phases. Nonetheless, an actor–critic algorithm succeeded
in reducing the variance in the traffic delay and queue length. It is
widely accepted that a policy-based RL algorithm is better than a
Q-learning algorithm in reducing the variance in the reward. Our
further study will focus on adjusting a policy-based RL algorithm
to a large-scale discrete traffic signal control.

Regarding the test results of two fuzzy systems, Figs. 12 and
13 show that no algorithm outperformed the proposed DGQN,
and the results are supported numerically in Tables 6 and 7. This
outcome is compatible with our prior expectation that a rule-
based AI cannot adjust to conditions out of the predefined rule
set, whereas a learning-based AI responds well to them. Another
reason for this outcome might stem from the fact that fuzzy ref-
erence models could not accommodate the action coordination,
since they were implemented independently for each intersec-
tion. When the two fuzzy models were compared, a fuzzy neural
network marginally outperformed a naïve fuzzy system, because
the former was trained on simulation data but the latter was set
up based solely on human intuitions and experiences. For the
comparison between an actor–critic and a fuzzy neural network,
the former outperformed the latter in minimizing traffic delays,
but vice versa in minimizing queue lengths. Another plausible
finding was that a fuzzy neural network had a variance in the
queue length that was smaller than that of the DGQN.

8. Conclusions and further studies

The contribution of the present study is three-fold. First, the
conventional DQN architecture was revised to accommodate a
large action space, which made it possible to jointly control real-
world traffic lights in a fully coordinated fashion. Second, the
present study adopted novel graph convolution layers parame-
terized with variable adjacency matrices to replace dense or 2-D
convolutional layers in the conventional DQN model. The graph
convolutions mimic actual traffic propagation in a large-scale
transportation network in mapping the traffic state into action-
values. Last, a practical way to secure the convergence of a large-
scale RL model was devised by employing multiple actor learners,
each of which updated the DGQN in an asynchronous manner
during training. Simulation experiments for a real-world trans-
portation network confirmed that combining these three schemes
could secure the convergence of the proposed DGQN-based traffic
control.

Nonetheless, the proposed approach was still hampered by
at least one limitation. The most critical problem was that even
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Fig. 8. Convergence in RL models.
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Fig. 9. The trend of rewards for different RL models.
Fig. 10. Distributions of total traffic delay from different DQN models.
Fig. 11. Distributions of maximum queue length from different DQN models.
Table 6
A comparison of the model performance with soft actor–critic and fuzzy traffic signal controllers based on the total traffic delay.
Total delay (h) DGQN Soft actor–critic Fuzzy neural net Fuzzy system Baseline (Current fixed operation)

Mean Standard
deviation

Mean Standard
deviation

Mean Standard
deviation

Mean Standard
deviation

Mean Standard deviation

381.9 109.8 527.7 82.8 563.5 152.5 617.3 156.2 685.2 110.3
13



G. Kim and K. Sohn Applied Soft Computing 119 (2022) 108497
Fig. 12. Distributions of the total traffic delays from soft actor–critic and fuzzy traffic signal controllers.
Fig. 13. Distributions of the maximum queue lengths from soft actor–critic and fuzzy traffic signal controllers.
Table 7
A comparison of the model performances of soft actor–critic and fuzzy traffic signal controllers based on maximum queue lengths.
Maximum queue length (m) DGQN Soft actor–critic Fuzzy neural net Fuzzy system Baseline (Current fixed operation)

Mean Standard
deviation

Mean Standard
deviation

Mean Standard
deviation

Mean Standard
deviation

Mean Standard deviation

83.4 13.1 91.5 6.2 87.2 9.1 93.4 13.7 113.5 8.2
though an asynchronous learning method was adopted to reduce
the training time, the DGQN could not avoid failing to converge
for city-wide traffic control that included hundreds or thousands
of intersections. This is the main reason that multi-agent RL mod-
els prevail in academia at the expense of losing the opportunity to
find a global optimum. As a practical consideration, the highway
capacity manual (HCM) exemplifies that the adequate number of
intersections to be jointly controlled ranges approximately from
12 and 20 for real-world applications. As a single-agent RL model,
the proposed DGQN could be the best option to secure a global
optimum solution to real-world traffic signal control problems.
We did not argue that the proposed DGQN could resolve the curse
of dimensionality when a large number of intersections must be
14
jointly controlled. What we provide is an efficient neural network
architecture that is able to accommodate any size of action-state
space without an exorbitant use of computer memory. It should
be noted that there is no perfect RL model to overcome the
curse of dimensionality for an action-state space. The meaningful
advantage of the present study is that it pioneered a practical way
that depend on a single agent to find a global solution that reflects
perfect coordination among jointly controlled traffic lights.

We have an important task to fulfill. As far as we could ascer-
tain, there is no RL-based traffic signal controller that is trained
and implemented in the field. It is very difficult even to adapt a
RL-based controller to a real-world situation after the model has

been fully trained on simulated environments. While fine-tuning
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RL model in the field, it became apparent that drivers must
ncounter the occasional occurrence of unexpected traffic delays
ue to traffic signals that a RL controller randomly determines.
e are devising a methodology to fine-tune a pre-trained RL
odel in a supervised manner using past signal operation data.

f successful, a DGQN is expected to be operational in real-world
ettings.
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