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ABSTRACT The unwanted electric discharge usually relates to arc phenomena between two connectors.
The energy from an arc might fuse the electric wiring and be responsible for a fire. Various researches have
been investigated for safety operations to improve detected techniques for arc diagnosis. There are two types
of arc faults: parallel and series arcs. A parallel arc happens among two electrical lines, or line and ground,
due to degrading insulation or contamination. On the other hand, a series arc might result from releasing
connections in the wiring. The system’s current can be significantly increased by parallel arc fault compared
with the series arc. In this work, the electrical behavior of the system is investigated during parallel arc faults
to understand the arcing characteristics from different cases, identify electrical characteristics that are useful
and reliable for the diagnosis process, and determine the location of the fault based on current or voltage of
the faulted system. Eight learning techniques are adopted to detect arc fault in this study. Parallel arc signals
were analyzed in the time and frequency domains, and unique characteristics of the current are extracted
using Fourier analysis as an indicator for diagnosing an arc fault. This research can be used to improve

arc-fault detector reliability and robustness.

INDEX TERMS Artificial intelligence, fault diagnosis, DC parallel arc.

I. INTRODUCTION

DC networks are widely used in aerospace, photovoltaic sys-
tems, data storage, electric transportation, and various areas.
However, the increasing applications of DC networks will
certainly create more and more potential failures. Arc failure
is a dangerous event that cannot be ignored in individual local
power networks. Utility the DC systems as the source should
pay attention to prevent the system from failure, especially arc
faults. The arc failure is sorted as parallel and series in the DC
network. A series arc might result from releasing connections
in the wiring [1]. A temporary short circuit usually causes this
type of arc fault. Possible reasons for series arc are loosening
busbars or cable connections with poor contact. The con-
nected loads limit the series arc current. If the arc current is in
the safety device rated current range, the failure might not be
identified in time. Otherwise, if the magnitude of arc current
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is two to five times of rated current of safety devices, the
arc would be burned in a too long time before the protection
device separates the fault from the operating network. On the
other hand, a parallel arc is an event of discharge situation
between two points with voltage differences. It can occur
owing to wrecked or scratched insulation [2]. Therefore, there
is a chance to burn with the arc current lower than the rated
current of protection devices for the parallel arc. The parallel
arc fault can be more dangerous than the series arc because it
can increase the current in the system. The rise of arc current
and the increasing heat for the period of the parallel arc fault
could make the flare to be larger and scorching, with the
major harms being destroying and vanishing the conductors
and wirings [3]. Furthermore, it could lead to physical losses
worse than the series ones.

Research on parallel arc fault detection in the DC sys-
tem is still in the initial stage, and a complete protection
scheme has not been formed. Nevertheless, many pieces of
literature have demonstrated how to detect the arc failure
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event. The differences of the parallel and series arcs in the
DC system is illustrated in [4]. The frequency- and time-
domain characteristics of the arc failure in DC systems are
illustrated in [5]. The large fluctuations of the current are
adopted to detect the parallel arc event in [6]. Moreover, one
of many works of has utilized the PSIM program to simulate
and explain the arc event in [7].

The evolution of advanced techniques is gained more con-
sideration from scientists due to its flexible capability in dif-
ferent applications. Artificial intelligence (AI) or Advanced
learning techniques have been successfully employed in var-
ious areas. They provide powerful approaches for identifying
failure in different applications, such as failure detection in
electrical machines [8], fault diagnosis in medium voltage
networks based on high impedance [9], and fault diagnosis of
track circuits in railway systems [10]. Scientists have success-
fully adopted these learning techniques for detecting arc fail-
ure and reached promising outcomes, such as the combination
of the wavelet packet decomposition (WPD) and support
vector machine (SVM) algorithm in DC system [11], and the
use of a cascaded fuzzy logic system for series arc diagno-
sis [12]. Several characteristics, such as the high-frequency
signals and current variations, are extracted and adapted for
training models centered on weighted least squares SVM
algorithms to diagnose series arc [13]. In addition, an attractor
matrix, which is constructed from singular value decompo-
sition and current signals, is employed to obtain features
in [14]. The combination of an artificial neural network and
sparse coding characteristics for arc detection was proposed
in [15]. The adoption of a neural network for arc failure
detection was presented in [16]. In [17] and [18], several
Al algorithms were adopted to detect DC series arc fault.
In addition, five features in the time domain were utilized
as inputs of learning algorithms. These features were chosen
to prevent the overlapped feature between arcing and normal
states. Studies illustrate comparisons of performance between
various Al methods in DC systems in [19]. On the other
hand, a short-observation-window singular value decompo-
sition and reconstruction algorithm are proposed to identify
AC series arc fault [20]. Although this method guarantees a
high diagnosis rate with different load types, the complexity
and the need for additional hardware are the limitations of
this proposed method. Generally, these studies focus only on
series arc fault, whereas the application of Al for the parallel
arc is not thoroughly investigated. Therefore, there is a need
for a study with various operating conditions for a parallel arc
fault.

In this paper, eight Al algorithms have been implemented
to detect the parallel arc event and compare the performance
between techniques. Furthermore, finding the proper input
for the best result because the arc current of parallel arc is
not measurable directly like series arc fault. Comparing and
discussing the performance of Al techniques and input com-
binations in both frequency and time domains is presented.
This paper is organized as follows. Section 2 specifics the
arc-generation hardware and the current phenomena in arcing
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FIGURE 1. Parallel DC arc setup.

and normal states. Section 3 describes the learning techniques
used for arc diagnosis, and research analyzes input extrac-
tions. Section 4 compares detection performances using dif-
ferent combinations from six features parameters and eight
learning techniques when an arcing event occurs in altered
operating conditions. In conclusion, the discussion and rec-
ommendation of arc failure detection regarding the diagnosis
rates of various combinations between feature parameters and
advanced learning techniques are desmonstrated in Section 5.

Il. CHARACTERISTICS OF PARALLEL DC ARC

The arc generator and experimental hardware were config-
ured to collect arc data, as shown in Figure 1 by referring
to UL1699B standard. DC source represents the DC supply
voltage, and its magnitude in the arc experiment is 300V. The
DC supply used in the experiment is KEYSIGHT N8741A
(maximum voltage 300V, maximum current 11A, maximum
power 3.3kW). i, is the arc current passing the arc rods. The
step motor separates the arc rods to generate arc events safely.
In addition, the separated gap of the rods is checked with
an electric ruler installed parallel to the rods. A resistance
and an inductance of 10 €2 and 10 mH are used as the loads
for the three-phase inverter. The experimental setup consists
of a DC supply source, arc generator, and load (three-phase
inverter)[21]. The resistor Rj;,;; is inserted in series in the
arc generator to limit the arc current for safety because when
generating a parallel arc using an arc generator, the amount
of source current i increases rapidly. Table 1 shows the
specifications for the parallel arc fault.

First, a DC voltage is applied to drive the inverter load.
Then, the arc rods are separated by the step motor con-
nected to the rods with a speed of 2.5 mm/s. The arc current
before and after the separation of arc rods is collected by an
oscilloscope with a sampling frequency of 250 kHz. When
the arc is initiated, the added arc current noise results in
large fluctuations. Using the collected data, the diagnosis
process is executed by using MATLAB. The selection of
sampling frequency is based on several recent research about
arc fault in DC systems [22]-[26]. Using a higher sampling
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FIGURE 2. The normal state and the arcing state waveforms for 5 A load current, 1 A arc current at 15 kHz (left) and 3 A load current, 0.5 A
arc current at 5 kHz (right). (a) Source current, (b) load current, (c) arc current, and (d) load voltage.

frequency oscilloscope could result in more information in is detecting arc fault in time to separate the fault from the

each signal. However, it could increase the execution time system. Therefore, the sampling rate of 250 kHz is high
and computation burden, whereas one of the most priorities enough to balance the efficiency and execution time. Similar
26060
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TABLE 1. Specifications of loads used in the experiment.

Load Modulation Load Ll.m it Arc Switching
type technique cur.rent resistor cu_rrent frequency

(i) (Riimit) (arc)
0.5A 5 kHz
3A 6000 0.5A 15 kHz
1A 5 kHz

- Q

Tl;:; Space vector 300 1A 15 kHz
irl:ve rter modulation 600 Q 0.5A 5 kHz
SA 0.5A 15 kHz
300 0 1A 5 kHz
1A 15 kHz

to the window length, the longer window results in more
information, which could increase the diagnosis accuracy.
However, the increasing amount of information could affect
the processing speed and calculation resources. Therefore,
the selected window length is a 2 ms period. The collected
signals were divided into different sets of 2 ms periods for
testing and training processes using Al techniques. This study
employed space vector modulation (SVPWM) to control the
three-phase inverter. The objective of SVPWM was to util-
ity the desired voltage and modulated switches to imitate
the three-phase waveforms with sinusoidal form, whereas
amplitude and frequency were designable. Figure 2 shows
the experimental arcing and normal state signals at various
setting conditions (3 and 5 A load current, 0.5 and 1 A arc
current, 5 and 15 kHz switching frequency). As shown in
the figure, all the forms of signals or the waveform shapes
were stable and similar before arcing points. However, when
a failure event was initiated, numerous abnormal behaviors
were added to the signals, such as harmonic components
in the arc signals, the distortion of the waveforms, and the
fluctuations in the signal amplitude. This led to the generation
of large negative fluctuations in the observed signals. The
abovementioned unusual activities could be useful and poten-
tially adopted for diagnosing the fault event. The arc current
is obtained by using the relationship between the source and
load currents. In practical systems, the measurement of arc
current is not possible because the location of an arc event is
unknown. Therefore, the arc current is not used for the fault
diagnosis process in this study. It is only used for setting the
working conditions in each case of the experiment.

Ill. ADVANCED LEARNING ALGORITHMS

A. ADVANCED LEARNING ALGORITHMS STRUCTURES
Figure 3 illustrates the principle and structure of various
advanced algorithms. The objective of the support vector
machine (SVM) algorithm is to locate a hyperplane with the
largest margin. Then, this hyperplane is used to classify the
data of one class from another class [27]. The K-Nearest
neighbor (KNN) technique assumes that similar things locate
in neighboring closeness. In another way, similar things are
close to their family [28]. A decision tree (DT) can be used for
classification as well as regression problems. The name itself
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FIGURE 3. Principles and structures of artificial intelligence algorithms.

TABLE 2. Hidden stuctures of deep learning techniques for DC parallel
arc diagnosis.

st nd rd th th
Structures 1* layer/ 2" layer/ | 3™ layer/ | 4™ layer/ 5™ Jayer/
neurons neurons neurons neurons neurons
DNN FC/100 FC/50 FC/2 N/A N/A
LSTM FC/100 LSIT6M/ FC8 | LSTMB | FC2
GRU FC/100 GRU/16 FC/8 GRU/8 FC/2

suggests that it uses a flowchart like a tree structure to show
the predictions that result from a series of feature-based splits.
It starts with a root node and ends with a decision made by
leaves [29]. Random forest (RF) consists of many individual
decision trees that operate as an ensemble. Each tree in the
random forest returns an independent prediction, and the class
with the most votes becomes the model’s prediction [30].
Naive Bayes (NB) classifiers are classification algorithms
based on Bayes’ theorem. It is a family of algorithms that
share a common principle. That every pair of features being
classified is independent of each other [31]. Unlike machine
learning, deep learning (DL) teaches computers to do what
comes naturally to humans: learn by example. In deep learn-
ing, a computer model performs classification tasks directly
from images, text, or sound. Deep learning models can
achieve high accuracy, sometimes exceeding human ability.
Models are trained using a large set of labeled data and
neural network architectures containing many layers, such as
input, hidden, and output layers. Each layer contains various
neurons; the output of one neuron in the n* layer is the input
of another neuron in the n+1" layer [32]. The hidden con-
figurations of DL algorithms (deep neural network (DNN),
gated recurrent unit (GRU), and long-short term memory
(LSTM)) are listed in Table 2.

There are three layers in deep neural network, and five lay-
ers in LSTM and GRU structures. The DNN’s layers are fully
connected (FC) type, and the neuron amounts of layers 1, 2,
and 3 were 100, 50, and 2, respectively. The numeral neurons
in GRU and LSTM layers 1, 2, 3, 4, and 5 were 100, 16, 8, 8,
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FIGURE 4. FFT analysis. (a) Source current, (b) load current, and (c) load voltage.

and 2, respectively. The difference between GRU and LSTM
structures is that the second and fourth layers of the GRU
structure are the GRU type, whereas they are LSTM type in
the LSTM structure. The trial and error method chooses the
specifications of hidden layers. The selected layer structures
of DL methods provided the highest effectiveness among
numerous configurations. However, there are other possible
structures, which are also appropriate.

B. INPUT ANALYSIS

Features from the signals could be extracted by using several
techniques, such as wavelet transformation and fast Fourier
transform (FFT). Figure 4 shows the FFT analysis of source
current, load current, and load voltage for 5 A load current,
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1 A arc current for 15 kHz switching frequency. The larger
harmonic components around 15, 30, 45, 60 kHz are the har-
monics content concentrated around multiples of the switch-
ing frequency (15 kHz) owing to the utilization of SVPWM
for controlling the three-phase inverter load. This technique
utilizes three switching vectors in one sampling frequency.
Therefore, the switching frequency is constant and results
in the larger harmonics content around multiples of switch-
ing frequency. In addition, the parallel arc tends to increase
the current when it occurs. Therefore, the harmonics in the
arcing state are much larger than that of in the normal state.
As shown in the figure, the high order harmonics are added
in the signals after the arc event is initial. However, these
feature analyses belong to the frequency domain, and their
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TABLE 3. Possible cases of input combinations for DC parallel arc fault
diagnosis.

. Cases
Signals 1234567809
el JR-IN BN RGN BECRECAN |
o | e 0 o0 e|0|e|(0| el
Sour(c;(:)t;rrent Blelelnlnlel e nln
Ladvolisee | o\ g | o || @ | 0| 0| W
Frdveney | Lodesent | o 0 ||| o0 | |01
Sou;';:::(f}:;;‘rem slnlmlele nlnleln

l: data used as input of Al algorithms; &): data not used for Al algorithms.

Cases
1{213(415]|6]|7]|8 9

6,000 training sets
4,800 test sets
Normal & arcing ratio:
1:1

3,000 training sets
2,400 test sets
Normal & arcing ratio: 1:1

Test:
24,000 data
sets

Training:
30,000 data sets

Total

FIGURE 5. Proportion of test and training data.

analysis needs high computational resources and sampling
rates. These disadvantages could suspend execution time and
disturb precision when a failure happens in real applications.
On the other hand, the signal in the time domain could be
processed with a low sampling rate, which offers a fast com-
putation effort. This study utilized both time- and frequency-
domain inputs for parallel arc diagnosis. First, the signals
were collected at a sampling rate of 250 kHz. Next, the
collected signals were divided into different sets of 2 ms
periods for testing and training processes. The FFT technique
is adopted for each set of data to obtain the frequency-domain
feature. After that, time and frequency signals were used as
input for eight advanced algorithms to diagnosis the parallel
arc event. Table 3 presents the possible cases of different
combinations between time and frequency signals. Each case
has at least one load voltage, one load current, and one source
current, whether they belong to time or frequency domains.
In the last case, all time and frequency domains signals are
employed as inputs for learning algorithms.

IV. THE PERFORMANCE OF ADVANCED LEARNING
ALGORITHMS IN PARALLEL ARC DIAGNOSIS

The proportion of test and training data is illustrated in
Figure 5. There are nine possible cases for time and frequency
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domain combination. There are 3,000 training sets and
2,400 test sets in each case, from cases one to eight. In case
nine, all time and frequency signals are employed as inputs
of Al techniques; thus, there are 6,000 training sets and
4,800 test sets in this case. Totally, 30,000 data sets are used
for training, and 24,000 data sets are used for the test process.
The proportion of arcing and normal sets is 1:1 in all cases.
The accuracy metric is adopted to value the effectiveness of
the eight advanced algorithms. The accuracy detection rate
is the proportion of correctly predicted data sets to the total
number of test data sets. It is expressed as

# of correctly predicted data sets

% of Total Acc. =
oof total # of test data sets

ey

The best advanced algorithm is the algorithm with the
highest accuracy.

Figure 6 demonstrates the performances of Al algorithms
in case 1. When the load current and the arc current are set
at 3 and 0.5 A, respectively, RF and DNN hit the maximum
diagnosis rate (100%) for both 5 and 15 kHz switching fre-
quency. SVM and the other two DL techniques also show
superior performances. Their accuracies are above 97.75 % at
5 kHz and higher at 15 kHz. The performances of KNN and
DT are high (about 90-95%). The accuracies of NB are lowest
even though its performance is improved when increasing
switching frequencies. The load current has remained the
same for the following condition, whereas the arc current is
increased to 1 A. RF, LSTM, and GRU detect the arc event
with the highest rates (above 97.5 %) compared with other
learning techniques for both 5 and 15 kHz switching frequen-
cies. The diagnosis accuracy of DNN is also high (around
96%) and increases with the increase of switching frequency.
SVM and KNN show mediocre performance; the accuracies
of DT and NB are lowest at 5 and 15 kHz, respectively. In the
next condition, the load current is increased to 5 A, and the arc
current is reduced to 0.5 A. RF, NB, and GRU show the best
diagnosis rates (above 99%) at 5 and 15 kHz; LSTM also
shows superior performances. DNN, KNN, and SVM show
high performance at 5 kHz; however, their accuracy decreases
significantly when the switching frequency increases. The
performance of DT is mediocre, and its accuracies are lowest
compared with other techniques. The accuracy of all tech-
niques declines with the rise of the switching frequency in
this condition. Next, the arc current is increased to 1 A.
NB, KNN, and GRU show superior detected rates at 5 kHz,
whereas their detected rates are declined at 15 kHz. There
are two trends in this condition, the accuracies of Al tech-
niques such as GRU, NB, KNN, and RF declined when the
switching frequency increased, whereas the detected rates
of SVM, DT, and DNN rise with the increase of switch-
ing rate. However, the increased accuracies of SVM, DT,
DNN are still lower than the declined accuracies of other
learning techniques. Table 4 presents the average accuracies
of all Al techniques in case 1. The average accuracy of
each learning technique considers all the mentioned working
conditions. The best three diagnosis rates are highlighted for
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TABLE 4. The comparison of diagnosis rates in case one for DC parallel arc fault.

Operating conditions
3 Aload 3 Aload 3 Aload 3 Aload 5 Aload 5 Aload 5 A load 5 A load
Al . current & current & | current& I | current & 1 current & current & | current& 1 | current & 1 Average
algorithms 0.5 A arc 0.5 A arc Aarc A arc 0.5 A arc 0.5 A arc Aarc Aarc accura%
current at 5 current at current at 5 current at current at 5 current at current at 5 current at y
kHz 15 kHz kHz 15 kHz kHz 15 kHz kHz 15 kHz
SVM 99.75 % 99.8 % 87.1 % 91.15 % 96.5 % 88 % 67 % 72.8 % 88 %
KNN 90.85 % 94.85 % 90.6 % 82.5% 98.9 % 96.35 % 99.15 % 89 % 93 %
RF 100 % 100 % 98 % 100 % 99.9 % 99.9 % 973 % 93.05 % 99 %
NB 59.35% 64.5 % 74 % 78.25 % 100 % 100 % 100 % 93.05 % 84 %
DT 92.9 % 90.65 % 71.35% 81.6 % 83.85 % 81.85 % 65.2 % 73.55 % 80 %
DNN 100 % 100 % 95.75 % 97.65 % 98.4 % 88.85 % 61.5% 79.15 % 90 %
LSTM 97.75 % 99 % 97.5 % 98.15 % 98 % 99.9 % 92.15% 92.75 % 97 %
GRU 99.75 % 98.75 % 99.15 % 99.9 % 100 % 99.25 % 99.9 % 92.4 % 99 %
TABLE 5. The performance summary of nine cases for DC parallel arc fault diagnosis.
Al Cases
gleortns 1 2 3 4 5 6 7 8 9
SVM 88 % 92 % 90 % 89 % 89 % 83 % 94 % 90 % 88 %
KNN 93 % 98 % 99 % 89 % 97 % 97 % 98 % 95 % 98 %
RF 99 % 96 % 100 % 98 % 99 % 96 % 99 % 99 % 99%
NB 84 % 82 % 99 % 82 % 83 % 98 % 99 % 92 % 98 %
DT 80 % 99 % 99 % 84 % 85 % 99 % 99 % 85 % 99 %
DNN 90 % 91 % 90 % 91 % 87 % 90 % 89 % 76 % 91 %
LSTM 97 % 94 % 91 % 92 % 99 % 92 % 92 % 97 % 93 %
GRU 99 % 93 % 93 % 98 % 98 % 91 % 93 % 96 % 91 %

each condition at a specific switching frequency. Then, the
average accuracies are obtained. RF, GRU, and LSTM are the
best three techniques for DC parallel arc diagnosis in case 1.
Their performances are superior in all conditions. In case 1,
only the time-domain signals are adopted as the inputs of
all learning algorithms. The advantage of DL algorithms is
clearly demonstrated; they do not need any feature parameter
analysis to achieve high accurateness, whereas other ML
techniques show mediocre performances. The accuracy of
all learning algorithms usually increases with the rise of
the switching frequency. When the switching rate increases,

26064

there might be more useful evidence in each divided set.
Thus, the diagnosis accuracies could be enhanced. Similar
evaluations are replayed for each case to obtain the average
accuracies. Table 5 illustrates the performance summary of
all learning techniques in nine cases. The condition for nine
cases is the same for all setting parameters, rated voltage,
and current. The only difference is the use of input sig-
nals; each case uses different input combinations in time
and frequency domains. This study aims to find the suitable
input combination for each learning algorithm to achieve the
highest performance. First, the process in case 1 is repeated
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FIGURE 6. Detection rates for different conditions in case 1.

for the other eight cases with different input signals regarding
Table 3. Then, Table 5 summarizes the average diagnosis rate
in each case. The best three Al algorithms are RF, KNN,
and GRU, whereas LSTM shows superior performance (aver-
age 94%). The other techniques show high (DT, NB) and
mediocre (SVM, DNN) performances. ML algorithms need
feature extractions to maintain the high detection rates. Thus,
their accuracy increases when a frequency-domain signal is
applied, and their performances are greatly improved with
the presence of two or three frequency-domain signals as the
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m Switching rate 15kHz

input. In cases 2, 3, 6, 7, and 9, when the input signals are
analyzed using the FFT technique, the average accuracies of
all ML techniques increase compared with that of in other
cases. Comparing cases 3, 4, and 5, all ML techniques use
only one processed signal, but the accuracies of ML tech-
niques in case 3 are higher than in cases 4, and 5. Similarly,
comparing cases 6, 7, and 8, all ML methods use two pro-
cessed signals, but the accuracies of ML techniques in cases 6,
and 7 are higher than in case 8. It can be seen that the pro-
cessed source current signal is the critical signal for the high
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performance of ML techniques. In cases 1, 4, 5, and 8§, the
accuracies of LSTM and GRU are higher than that of in other
cases (especially case 3). Case 3 uses the raw signals of load
voltage and current for arc diagnosis, the accuracies of LSTM
and GRU in case 3 are lower than in cases 4, and 5; which are
also use two raw signals (one of them is source current sig-
nal). Similarly, case 8 uses only one raw source current signal,
and the average accuracies of LSTM and GRU in this case are
still higher than cases 6, and 7. The raw source current signal
is the key input for the high accuracy of DL approaches. Some
useful evidence might vanish due to the source current’s FFT
analysis, reducing the deep learning technique accuracy. The
results show that the diagnosis techniques should be chosen
depending on the input signal. When the raw source current
in the time domain is adopted as input, the DL techniques
should be used for parallel arc detection. Otherwise, the ML
should be adopted with the presence of the processed signal,
such as the use of two or three frequency-domain signals as
the input. Among six inputs (three inputs in time domain and
three inputs in frequency domain), the source current in the
time and frequency domains relates to the high performance
of DL and ML techniques, respectively. The study focuses on
finding the suitable input signals returning the highest general
diagnosis rate. The feature extractions of the suitable input
signal will result in higher accuracy if adopted. Therefore,
finding the critical input signal is essential before features
are extracted. In addition, several learning techniques, such
as DL, have not required feature extraction for obtaining high
accuracy rates. Therefore, feature extraction might degrade
the performance of DL detection owing to the loss of useful
information during the extraction progress.

V. CONCLUSION

Eight advanced algorithms combined with various input fea-
tures in both frequency and time domains to detect parallel
arc in this study under UL1699B standard. Generally, when
the switching frequency increases, the diagnosis accuracy
increases whether the inputs belong to the frequency or time
domain. Furthermore, when the switching frequency to be
used for controlling the 3-phase inverter increases, the num-
ber of sampling periods in each data increases. Therefore,
the valuable characteristics in each data set are obviously
increased, which results in the improvement of the accuracy
rates. In addition, if the switching frequency is increased, the
distortion of the signals will be lower. Thus, signals become
smooth, and the difference between arcing and normal states
becomes clear to detect. Furthermore, using a higher sam-
pling frequency oscilloscope could result in more information
in each signal. However, it could increase the execution time
and computation burden, whereas one of the most priorities
is detecting arc fault in time to separate the fault from the
system.

The training process is needed when a new operating con-
dition is applied, such as the change of switching frequency,
load types, current and voltage amplitudes, or the weather.
For example, when a cloud or rain cuts off the sunlight, the
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current and voltage characteristics in both arcing and normal
states might be changed. Thus, the data, when the current and
voltage changed, should be trained to enhance the diagnosis
results. Otherwise, the accuracy rates might be degraded. The
FFT analysis is employed to obtain the frequency-domain
inputs. However, these inputs need higher computational
resources and sampling rates than time-domain input. Thus,
using inputs in the frequency domain could consume more
processing time and hardware resources. This study offers a
specific view and helpful information for arc failure diag-
nosis. However, this study is implemented in a laboratory
environment and needs proper adjustments before applying
to practical systems or applications. Another limitation is that
the authors did not consider the hyper-parameter modifica-
tions of different Al techniques. It has been argued that the
same Al technique could provide different accuracy rates for
the same data set with different values of hyper-parameters.
Thus, this study mainly focuses on finding the most suitable
inputs returning the highest general diagnosis rate for ML and
DL algorithms.

Machine learning techniques need feature extraction to
maintain high detection rates. The source current in the fre-
quency domain is the key to ML techniques’ high perfor-
mance. On the other hand, the high performance of deep
learning approaches requires an extensive data set without
feature analysis and high computational cost owing to their
deeper structures compared with that of ML approaches.
The hidden layer configurations in deep learning algorithms
(LSTM, GRU, and DNN) were chosen based on the trial and
error method. Therefore, many tests are required to find the
most optimal performance. RF is the best diagnosis tech-
nique for DC parallel arc detection among eight learning
algorithms. The detection rates of RF are greater than 96 %
in all cases, and it offers high performance for both raw and
processed input signals.

The diagnosis results prove that the source current in the
time and frequency domains significantly relates to the high
performance of DL and ML techniques, respectively. Thus,
the diagnosis techniques should be chosen depending on the
input signal. When the raw source current in the time domain
is adopted as input, the DL techniques should be used for
parallel arc detection. Otherwise, the ML should be adopted
with the presence of the processed source current signal. This
study offers a specific view of different learning techniques
and input types. This might be helpful research for selecting
the combinations between learning techniques, input types,
feature extraction methods, which can support in building
more reliable and robust systems when implementing an arc
fault detection system regarding different priorities.
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