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ABSTRACT We design a low-density parity-check (LDPC) coded multi-user (MU) massive multiple-
input multiple-output (MIMO) system with an iterative joint detection and decoding (JDD) algorithm.
As a low-complexity MU detection scheme, we consider a factor graph based belief propagation detection
with Gaussian approximation of interference, called a FG-GAI BP detection. We introduce a factor graph
representation of LDPC coded MU massive MIMO system and define the message updating rule in the
JDD process. We devise a design tool for analyzing extrinsic information transfer (EXIT) characteristics of
messages exchanged in JDD, based on which degree distribution of LDPC codes and a JDD strategy are
efficiently designed for coded MU massive MIMO systems. A JDD strategy and LDPC codes are designed
such that a fast convergence of JDD and a low bit error probability are attained. It is observed that the coded
MU massive MIMO system equipped with LDPC codes and the JDD strategy designed by the proposed
method shows a lower bit error rate than conventional ones with a given number of iterations.

INDEX TERMS Massive MIMO, multi-user, LDPC codes, joint detection and decoding, low complexity,
density evolution.

I. INTRODUCTION
Along with the continuous increase of demand for wireless
and mobile services, performance requirements for wire-
less communication system including data rate, spectral
efficiency and energy efficiency are getting strengthened
[1], [2]. As one of promising solutions to meet such tight
performance requirements, a multi-input and multi-output
(MIMO) technology was proposed and tremendous amount
of research works have been conducted in various aspects
of MIMO systems [3], [4]. Recently, it was found that
the use of massive number of antennas at transmitter and
receiver can improve the spectral efficiency and save energy
significantly in wireless communication systems [5], [6].
As a result, the massive MIMO technology has been under
active study in both academia and engineering fields, and
it was chosen as one of key technologies for the next
generation cellular networks, known as the fifth generation
(5G) systems [7]. Among various forms of massive MIMO
schemes, a multi-user (MU)massiveMIMO system, in which
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a base station (BS) is equipped with a large number of
antennas to serve many user equipments (UE) simultaneously
over the same time-frequency resource, has been actively
studied to be practically adopted in 5G systems [8]–[10].

Since the signal detection in massive MIMO systems
requires high amount of computations, the complexity
reduction of signal detection algorithm has been a great
concern to implement a massive MIMO technique in
practical systems [11]–[20]. Suboptimal linear detection
algorithms have been intensively studied for the purpose
of complexity reduction, where zero forcing (ZF) detec-
tion [11], [12] and minimum mean squared error (MMSE)
detection [13]–[16] are well known examples. When imple-
menting these linear detectors, various alternatives of matrix
inversion are applied [14]–[16]. Low-complexity detection
algorithms based on belief propagation (BP) over factor graph
(FG) have also been proposed [19], [20]. Among those,
the FG-based BP detection with Gaussian approximation of
interference (GAI), called FG-GAI BP detection, is known
as one of promising solutions for complexity reduction in
the receiver of massive MIMO systems [20]. Despite using
low amount of computational complexity, the FG-GAI BP
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detection shows sufficiently low probability of error through
iterative message passing on factor graphs [20].

Error control coding is widely used in a variety of commu-
nication systems to improve the communication reliability or
reduce the transmit power at the cost of bandwidth expansion.
Low-density parity-check (LDPC) codes have recently been
adopted in various communication standards thanks to the
powerful error correction capability [21]–[23]. LDPC codes
can be efficiently and systematically designed by using the
density evolution algorithm [24], whose well-known example
is the extrinsic information transfer (EXIT) chart [25]. LDPC
codes have also been applied to MIMO systems to enhance
the transmission reliability. Huge amount of research works
have been performed regarding the design of LDPC coded
MIMO systems and the analysis on the iterative detection and
decoding algorithm [26]–[29].

It is necessary to improve further the transmission relia-
bility of massive MIMO systems because the performance
requirement for data rate, spectral efficiency and energy
efficiency is obviously keep getting tighter. Thus, it is a
natural approach to apply LDPC codes having a powerful
error-correction capability to the massive MIMO systems,
by which LDPC coded massive MIMO system is devised.
To obtain a maximum performance gain, a joint detection
and decoding (JDD) scheme needs to be implemented at the
receiver. Since decoding process requires additional com-
putational complexity, a low-complexity detection algorithm
had better be applied to JDD. In [30], non-binary LDPC
codes are designed for codedmassiveMIMO systems consid-
ering modified MMSE and matched filter (MF) soft-output
detectors. In [31]–[33], binary and non-binary LDPC codes
for massive MIMO systems using the FG-GAI BP detection
are designed. Protograph LDPC codes for massive MIMO
systems [34] and LDPC coded space shift keying (SPK) for
massive MIMO system with a low-complexity detector [35]
are also proposed. In [17], [18], iterative soft-input soft-
output (SISO) MMSE detectors are proposed to enhance the
signal detection of massive MIMO systems.

In JDD mechanism, one JDD iteration is composed of a
detection phase followed by a decoding phase, where each
phase may consist of multiple local iterations. JDD had better
converge by a smaller number of local iterations, i.e., with a
faster convergence speed, to meet the latency requirement.
Thus, we need to design LDPC coded MU massive MIMO
system to achieve lower BER with faster convergence speed.
In designing LDPC codes, the threshold, meaning the value
of Eb/N0 over which BER improves abruptly, is used as an
indicator for evaluating BER. The threshold is determined
by the structure of factor graph representing the overall
system. The convergence speed is controlled by the ratio
of local iteration numbers in detection phase and decoding
phase composing one JDD iteration, which will be called a
JDD strategy. There exist various techniques to predict the
threshold of LDPC coded systems. However, there exist few
works considering JDD convergence speed when designing
LDPC codes in the system. Thus, there is a strong need for

an efficient design tool by which we can check if messages
flowing in JDD evolve in the way of satisfying two design
goals: lower threshold and faster JDD convergence.

As a solution to meet this demand, we propose an EXIT
analysis tool which is useful for designing JDD strategy and
accordingly designing LDPC codes for MU massive MIMO
system, where the FG-GAI BP detection is considered as
a low-complexity detection algorithm. The proposed tool
can be used to analyze the density evolution of messages
and predict the convergence behavior of JDD. We represent
the coded MU massive MIMO system by a factor graph
composed of observation nodes, symbol nodes, bit nodes
and check nodes connected through edges, and we define
updating rules of messages flowing in JDD.We formulate the
bit-level EXIT characteristics of input and output messages of
FG-BPGAI detector based on the factor graph representation,
and combine this with the decoder to form an overall EXIT
characteristic function representing the whole JDD process.

By using the EXIT characteristic function, we optimize
the JDD strategy to result in a fast JDD convergence and
degree distributions of factor graph representing LDPC codes
to result in a low threshold. In the optimization of degree
distributions, we include an additional constraint regarding
the placement of edges between bit nodes and check nodes
in a practical point of view. Then, the parity check matrix
of LDPC codes is constructed by using the progressive edge
growth (PEG) algorithm [36]. It is observed from simulations
that the LDPC codedMUmassiveMIMO system designed by
the proposedmethod shows improved performance in view of
BER and JDD convergence speed over systems designed by
conventional methods.

This paper is organized as follows. In Sec. II, we present
a graph model for coded MU massive MIMO system.
In Sec. III, we introduce how JDD operates and messages
are updated. We propose an EXIT analysis tool to analyze
the behavior of JDD of the LDPC coded MUmassive MIMO
system in Sec. IV. In Sec. V, we design LDPC codes and
a JDD strategy by using the proposed EXIT analysis tool.
In Sec. VI, we present BER performances of the proposed
LDPC coded MU massive MIMO system in various points
of view and compare those with conventional ones. Finally,
we conclude this paper in Sec. VII.

II. SYSTEM MODEL AND GRAPH REPRESENTATION
We consider uplink communications of coded MU massive
MIMO system, in which nU UEs transmit data to a BS as
depicted in Fig. 1. We suppose each UE has a single antenna
and a BS is equipped with nR multiple antennas. Each UE
encodesK information bits to aN -bit codeword with the code
rate R = K/N and modulates it as Mo-ary QAM symbols.
Then, L = N/ log2Mo symbols generated at each UE are
transmitted to BS over L channel uses. We suppose that all
UEs transmit codeword symbols to BS in a synchronous
manner.

Let x(l)k denote the l-th symbol generated at the UE
k , where k = 1, · · · , nU and l = 1, · · · ,L. We let
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FIGURE 1. Coded MU massive MIMO system.

x(l) = [x(l)1 · · · x
(l)
nU ]

T
∈ CnU×1 denote a symbol vector

transmitted from nU UEs to BS at the l-th channel use.
We also let y(l) = [y(l)1 · · · y

(l)
nR ]

T
∈ CnR×1, w(l)

=

[w(l)
1 · · ·w

(l)
nR ]

T
∈ CnR×1 and H(l)

∈ CnR×nU denote the
received signal vector, the additive noise vector and the
channel gain matrix, respectively, all at the l-th channel use.
Let h(l)ij denote the (i, j)-th entry of H(l). Suppose that all

w(l)
i are independent and identically distributed (i.i.d.) zero-

mean circular symmetric complex white Gaussian noise with
variance of σ 2, and all h(l)ij are i.i.d. complex Gaussian with
zero mean and unit variance. The input-output relation of
the MU massive MIMO system at the l-th channel use is
expressed as

y(l) = H(l)x(l) + w(l) (1)

and its real-valued representation is written by

ȳ(l) = H̄(l)x̄(l) + w̄(l), (2)

where

x̄(l)=
[
<{x(l)1 } ={x

(l)
1 } · · · <{x

(l)
nU } ={x

(l)
nU }
]T
∈ A2nU×1

ȳ(l)=
[
<{y(l)1 } ={y

(l)
1 } · · · <{y

(l)
nR} ={y

(l)
nR}
]T
∈ R2nR×1

w̄(l)
=
[
<{w(l)

1 } ={w
(l)
1 } · · · <{w

(l)
nR} ={w

(l)
nR}
]T
∈R2nR×1

H̄(l)
=


H̄(l)

11 H̄(l)
12 · · · H̄

(l)
1nU

...
...

. . .
...

H̄(l)
nR1

H̄(l)
nR2
· · · H̄(l)

nRnU

 ∈ R2nR×2nU

with

H̄(l)
ij =

<{h(l)ij } −={h(l)ij }
={h(l)ij } <{h

(l)
ij }

 ∈ R2×2.

Note that <{·} and ={·} represent real and imaginary part of
a complex variable, respectively, and A denotes the set of
values for real-valued transmit symbols.
The receiver of coded MUmassive MIMO system with the

real-valued representation given in (2) can be expressed by a
bipartite graph shown in Fig. 2. The receiver consists of L
detectors and nU decoders, where each detector corresponds
to each channel use and each decoder corresponds to each
UE. Each detector consists of 2nR observation nodes and
2nU symbol nodes connected through edges. Each decoder
is composed of N variable nodes (or bit nodes) and N − K

FIGURE 2. Graph representation for the receiver of LDPC coded MU
massive MIMO system.

check nodes. Let o(l)i denote an observation node belonging to
the l-th detector, whose input is ȳ(l)i , 1 ≤ i ≤ 2nR, 1 ≤ l ≤ L.
We also let s(l)2k−1 and s

(l)
2k , 1 ≤ k ≤ nU , denote symbol nodes

belonging to the l-th detector, which correspond to <{x(l)k }
and ={x(l)k }, respectively. Note that s

(l)
2k−1 and s

(l)
2k is connected

to the first half and the second half of the l-th group of log2Mo
bit nodes in the k-th decoder, respectively.

III. JOINT DETECTION AND DECODING
For given received signals over L channel uses, i.e.,
ȳ(1), ȳ(2), · · · , ȳ(L), the receiver performs a JDD process in
an iterative manner over the factor graph presented in Fig. 2.
Detectors performNdet iterations and pass resultingmessages
to decoders, then decoders perform Ndec iterations and pass
computed messages to detectors. This cycle is called one
JDD iteration or a global iteration. Note that each detection
iteration and each decoding iteration will be called a local
iteration. We perform Ng global iterations for a whole JDD
process.

We consider a low-complexity FG-GAI BP-based detec-
tion algorithm [33] and a sum-product decoding algorithm
in a JDD process. We focus on the l-th detector, in which
ȳ(l)i , x̄(l)i and w̄(l)

i denote the i-th entry of ȳ(l), x̄(l) and w̄(l),
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respectively, and h̄(l)ij denotes the (i, j)-th entry of H̄(l). We
rewrite (2) as [31]

ȳ(l)i = h̄(l)ik x̄
(l)
k + z

(l)
ik , i = 1, · · · , 2nR, (3)

where z(l)ik ,
∑2nU

j=1,j6=k h̄
(l)
ij x̄

(l)
j + w̄(l)

i is an interference plus

noise in case of detecting symbol x̄(l)k , k = 1, · · · , 2nU ,
from the received signal ȳ(l)i . If nU is large enough, z(l)ik can
be approximated as a Gaussian random variable [33] with a
mean µz(l)ik

and a variance σ 2
z(l)ik

, where

µz(l)ik
=

2nU∑
j=1,j6=k

h̄(l)ij
∑
s∈A

s · Pr(i){x̄(l)j = s} (4)

and

σ 2
z(l)ik
=

2nU∑
j=1,j6=k

(
h̄(l)ij
)2{∑

s∈A
s2 · Pr(i){x̄(l)j = s}

−

(∑
s∈A

s · Pr(i){x̄(l)j = s}
)2}
+
σ 2

2
. (5)

Note that Pr(i){x̄(l)j = s} denotes the a priori probability of

x̄(l)j from the viewpoint of the observation node o(l)i .

Let us define α(l)ik (s) , Pr{ȳ(l)i |H̄
(l), x̄(l)k = s} and β(l)ki (s) ,

Pr{x̄(l)k = s|H̄(l), ȳ(l)
\i } representing the likelihood and the

extrinsic probability, respectively, of x̄(l)k = s evaluated at the
observation node o(l)i for a given H̄(l), where ȳ(l)

\i denotes a

received signal vector excluding an entry ȳ(l)i . We let γ (l)
k (s) ,

Pr{x̄(l)k = s} represent the a priori probability of x̄(l)k = s. Note
that α(l)ik (s) and β

(l)
ki (s) are obtained by [31], [33]

α
(l)
ik (s) ≈

1√
2πσ 2

z(l)ik

exp

−
(
ȳ(l)i − h̄

(l)
ik s− µz(l)ik

)2
2σ 2

z(l)ik

 (6)

and

β
(l)
ki (s) = κ

2nR∏
j=1,j6=i

α
(l)
jk (s) · γ

(l)
k (s), (7)

where κ is a constant. By the iterative detection principle,
the extrinsic probability β(l)ji (s) plays the role of the a priori

probability Pr(i){x̄(l)j = s} in (4) and (5) during iterations. So,

for a given γ (l)
k (s), the message β(l)ki (s) is used for updating

µz(l)ik
and σ 2

z(l)ik
by (4) and (5), and consequently updating α(l)ik (s)

by (6). Of course, β(l)ki (s) is updated by α(l)ik (s) as in (7).
Consequently, α(l)ik (s) and β

(l)
ki (s) are updated in a recursive

manner via detection iterations. The FG-GAI BP detection
algorithm is summarized in Algorithm 1.
After Ndet detection iterations, each symbol node s(l)k com-

putes the log-likelihood ratios (LLR) of code bits composing
the symbol x̄(l)k and delivers these to corresponding bit nodes
in decoders. Let a[t] denote the t-th bit in the bit-stream

Algorithm 1 FG-GAI BP Detection

1 for m = 1 to Ndet do
2 for i = 1 to 2nR do
3 for j = 1 to 2nU do
4 ξµij ← h̄(l)ij ·

∑
s∈A s · β

(l)
ji (s)

5 ξσ 2ij
←
(
h̄(l)ij
)2∑

s∈A s
2
· β

(l)
ji (s)− ξ

2
µij

6 ξµi ←
∑2nU

j=1 ξµij

7 ξσ 2i
←
∑2nU

j=1 ξσ 2ij
+

σ 2

2

8 for k = 1 to 2nU do
9 µzik ← ξµi − ξµik
10 σ 2

zik ← ξσ 2i
− ξσ 2ik

11 α
(l)
ik (s)←

1√
2πσ 2zik

exp
(
−

(ȳ(l)i −h̄
(l)
ik s−µzik )

2

2σ 2zik

)
,

∀s ∈ A.
12 for k = 1 to 2nU do
13 βk (s)← κ

∏2nR
j=1 α

(l)
jk (s) · γ

(l)
k (s), ∀s ∈ A

14 for i = 1 to 2nR do
15 β

(l)
ki (s)← βk (s)/α

(l)
ik (s), ∀s ∈ A

composing a symbol a. The LLR of x̄(l)k [t] is defined by

L(x̄(l)k [t]) , log
Pr{x̄(l)k [t]=0}

Pr{x̄(l)k [t]=1}
and obtained as [33]

L(x̄(l)k [t]) = log

∑
s∈S0t Pr{x̄

(l)
k = s|H̄(l), ȳ(l)}∑

s∈S1t Pr{x̄
(l)
k = s|H̄(l), ȳ(l)}

= log

∑
s∈S0t

∏2nR
i=1 α

(l)
ik (s)∑

s∈S1t
∏2nR

i=1 α
(l)
ik (s)

, (8)

where S0t = {s|s[t] = 0} and S1t = {s|s[t] = 1},
and the last equality comes from Pr{x̄(l)k = s|H̄(l), ȳ(l)} ∝∏2nR

i=1 Pr{ȳ
(l)
i |H̄

(l), x̄(l)k = s}. If we let r = (2(l−1)+mod(k+
1, 2)) · log2

√
Mo+ t , the message L(x̄(l)k [t]) is delivered to the

r-th bit node in the k-th decoder, denoted by vkr .
By using L(x̄(l)k [t]) obtained in (8) as the channel LLR of

the corresponding bit node v = vkr , i.e., Lv = L(x̄(l)k [t]) for
v = vkr , the sum-product decoding is performed in an iterative
manner. Let Lvc and Lcv denote the message sent from the
bit node v to the check node c, and the message sent from
the check node c to the bit node v, respectively. Then, these
messages are updated [24] as

Lvc = Lv +
∑

c′∈Cv\c

Lc′v, (9)

and

Lcv =
∏

v′∈Vc\v

sign(Lv′c) · φ
( ∑
v′∈Vc\v

φ (|Lv′c|)
)
, (10)

where φ(x) = log exp(x)+1
exp(x)−1 . Note that Cv\c denotes the set of

check nodes except c connected to the bit node v and Vc\v
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FIGURE 3. Factor graph of LDPC coded MU massive MIMO system for the
bit-level EXIT analysis of JDD.

denotes the set of bit nodes except v connected to the check
node c.

After Ndec decoding iterations, the LLR of x̄(l)k [t] is
computed as L ′(x̄(l)k [t]) =

∑
c∈C

vkr
Lcvkr and delivered to

the symbol node s(l)k in the detector ł. Then, the a priori
probability γ (l)

k (s) is computed as

γ
(l)
k (s) =

log2
√
Mo∏

t=1

exp
(
(1− s[t]) · L ′(x̄(l)k [t])

)
1+ exp

(
L ′(x̄(l)k [t])

) (11)

and used in (7) at the next global iteration.
After Ng global iterations, we make decision on each code

bit such that x̄(l)k [t] is estimated as 1 if L(x̄(l)k [t])+L ′(x̄(l)k [t]) <
0 and as 0 otherwise. The overall procedure of JDD is
presented in Algorithm 2.

Algorithm 2 Joint Detection and Decoding (JDD)

1 Initialize : β(l)ki (s) =
1
√
Mo
, ∀l, i, k, s,

Pr{x̄(l)k = s} = 1
√
Mo
, ∀l, k, s, and Lcv = 0, ∀c, v.

2 for l ′ = 1 to Ng do
3 for l = 1 to L do
4 Run Algorithm 1 in the l-th detector.

5 Compute Lv, ∀v, by (8).
6 for l ′′ = 1 to Ndec do
7 Update Lvc and Lcv, ∀v, c, by (9) and (10),

respectively.

8 Compute γ (l)
k (s), ∀l, k, s, by (11).

9 Determine the value of code bit corresponding to v, ∀v

IV. EXIT ANALYSIS OF JOINT DETECTION AND DECODING
We propose an analysis tool for studying the behavior of JDD
in the coded MUmassive MIMO system in terms of extrinsic

information transfer (EXIT) characteristics of component
units. We investigate the mutual information between code
bits and corresponding soft-valued messages traveling in
JDD. For this purpose, we construct a bit-level factor graph
by decomposing observation nodes and symbol nodes in
Fig. 2 as sub-nodes, where each observation node and symbol
node is decomposed into log2

√
Mo sub-nodes. Each symbol

sub-node is connected to the corresponding bit node in an
one-to-one manner, so that symbol sub-nodes can be simply
merged by bit nodes. As a result, we obtain a bit-level
factor graph as shown in Fig. 3, where only a part of graph
associated with observation nodes o(1)1 , · · · , o

(1)
2nR

and symbol

nodes s(1)1 , s(1)2 is depicted.
Let Lvo and Lov denote bit LLRs sent from a bit node to

an observation sub-node and from an observation sub-node
to a bit node, respectively. For an observation node o = o(l)i
and a bit node v corresponding to x̄(l)k [t], the bit LLRs are

obtained by Lvo = log

∑
s∈S0t

β
(l)
ki (s)∑

s∈S1t
β
(l)
ki (s)

and Lov = log

∑
s∈S0t

α
(l)
ik (s)∑

s∈S1t
α
(l)
ik (s)

.

By lettingU denote a code bit, we define IVO = I (U;Lvo) and
IOV = I (U;Lov), where I (U;X ) is the mutual information
betweenU and X . Note that IVO and IOV are input and output,
respectively, of observation sub-nodes in terms of bit-level
EXIT characteristics. We also define ICV = I (U;Lcv)
and IVC = I (U;Lvc), where ICV and IVC are input and
output, respectively, of bit nodes as well as output and input,
respectively, of check nodes in terms of EXIT characteristics.

Allowing slight abuse of notation, we represent ICV
associated with degree-dc check nodes as ICV (dc). We also
represent IVC associated with degree-dv bit nodes as IVC (dv).
In the similar manner, we use IVO(dv) and IOV (dv) to
denote IVO and IOV , respectively, associated with degree-
dv bit nodes. Then, we define averages of these as
ĪCV =

∑dc,max
dc=2

ρdc ICV (dc), ĪVC =
∑dv,max

dv=2
λdv IVC (dv)

and ĪOV =
∑dv,max

dv=2
λdv IOV (dv), where λdv and ρdc denote

the fractions of edges that are connected to degree-dv bit
nodes and degree-dc check nodes, respectively, and dv,max and
dc,max are maxima of dv and dc, respectively.
By defining J (σX ) as [27]

J (σX ) = 1−
∫
∞

−∞

e−(ξ−σ
2
X /2)

2/2σ 2X√
2πσ 2

X

· log2[1+ e
−ξ ]dξ, (12)

we obtain I (U;X ) = J (σX ), where σ 2
X is the variance of

a normally distributed random variable X . At bit nodes, the
message going to a target node is generated by summing up
all incoming messages except one from a target node, so Lvo
is obtained by summing up 2nR−1 copies of Lov and dv copies
of Lcv. Then, IVO(dv) is obtained as

IVO(dv)

= J
(√

(2nR − 1)·
[
J−1 (IOV (dv))

]2
+ dv ·

[
J−1

(
ĪCV

)]2)
,

(13)
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Algorithm 3 Density Evolution in Terms of EXIT Characteristics

1 Initialize: ĪCV = 0 and IOV (dv) = 0, ∀dv
2 for l ′ = 1 to Ng do
3 for dv = 2 to dv,max do
4 for m = 1 to Ndet do

5 IOV (dv)← fO

(
J
(√

(2nR − 1) ·
[
J−1 (IOV (dv))

]2
+ dv ·

[
J−1

(
ĪCV

)]2)
, EbN0

)
6 ĪOV ←

∑
dv λdv IOV (dv)

7 for l ′′ = 1 to Ndec do

8 ĪVC ←
∑dv,max

dv=1
λdv · J

(√
2nR ·

[
J−1 (IOV (dv))

]2
+ (dv − 1) ·

[
J−1

(
ĪCV

)]2)
9 ĪCV ←

∑dc,max
dc=1

ρdc ·
(
1− J

(√
dc − 1 · J−1(1− ĪVC )

))

where IOV (dv) is defined as a function of IVO(dv) as

IOV (dv) = fO

(
IVO(dv),

Eb
N0

)
. (14)

The EXIT function of observation sub-node, fO(·), is obtained
in a polynomial form by using Monte Carlo simulation [27]
and a curve fitting technique. In the same manner, the LLR
message Lvc is obtained by summing up 2nR copies of Lov and
dv − 1 copies of Lcv. Thus,

IVC (dv)

= J
(√

2nR ·
[
J−1 (IOV (dv))

]2
+ (dv − 1)·

[
J−1

(
ĪCV

)]2)
,

(15)

where the EXIT function of check node is defined as [27]

ICV (dc) ≈ 1− J
(√

dc − 1 · J−1(1− ĪVC )
)
. (16)

The density evolution of soft messages exchanged in the JDD
process in terms of EXIT characteristics is summarized in
Algorithm 3.

By running Algorithm 3, we trace the value of the average
mutual information ĪVC of output message at the bit node
updated through iterations. If the value of ĪVC reaches
1 through a sufficient number of iterations at a certain
Eb/N0, this implies that the JDD converges and the decoding
succeeds at this Eb/N0. The minimum value of Eb/N0 at
which ĪVC converges to 1 is defined as the threshold.
Let us consider 3-D EXIT chart composed of two EXIT

surfaces, each of which represents EXIT characteristics of
bit node and check node, respectively. The space between
two EXIT surfaces may or may not form a tunnel with
an entry and an exit. If a tunnel is formed, JDD trajectory
penetrates through the tunnel by 3-D zigzag movements and
reaches the point of ĪVC = 1. This situation corresponds
to the convergence of JDD and a low BER is obtained.
On the other hand, if a tunnel is not formed, JDD trajectory
gets stuck at a point of ĪVC < 1 resulting in high BER.
We can obtain JDD trajectory by connecting points of ĪVC ,
ĪCV and ĪOV , which are obtained by running Algorithm 3,

FIGURE 4. 3-D EXIT chart and trajectories of JDD for (3, 6)-regular LDPC
coded MU massive MIMO system with nU = 10 and nR = 64 at
Eb/N0 = −6[dB], where 4-QAM is used for modulation. Note that ĪOV
denotes the mutual information per observation node.

with straight lines. By a detection iteration, the trajectory
experiences a straight movement in the direction of ĪOV -axis.
By a decoding iteration, the trajectory experiences a pair of
orthogonal movements on the ĪVC -ĪCV plane. Fig. 4 shows
an example of 3-D EXIT chart and some JDD trajectories
obtainedwith different JDD strategies, whichmeans the value
of Ndet : Ndec composing one global iteration. It is observed
that using different JDD strategies result in distinct JDD
trajectories. A JDD trajectory reaching the point of ĪVC =
1 with a small number of zigzag movements implies a fast
convergence of JDD. Since a tunnel between EXIT surfaces
is uneven or bumpy, we need to design an efficient strategy
for trajectory movement.

Thus, for the purpose of designing LDPC coded MU
massive MIMO system to attain low BER with a fast
convergence speed, we need to judge if a tunnel exists
between two EXIT surfaces and investigate by how many
zigzag movements JDD trajectory reaches the point of
ĪVC = 1. As an efficient tool for conducting these judgement
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and investigation, we propose an EXIT analysis tool, which
traces the value of ĪVC by running Algorithm 3. The details
of the proposed EXIT analysis tool is presented in Sec. V.

V. DESIGN OF LDPC CODES AND JDD STRATEGY
We have mainly two design parameters for building LDPC
codedMUmassive MIMO system. The first one is the degree
distribution of factor graph representing LDPC codes. The
second one is the ratio of Ndet : Ndec composing one global
iteration of JDD process, which is called a JDD strategy. Note
that the first design parameter determines the existence of a
tunnel for a given Eb/N0, while the second design parameter
determines the convergence speed of JDD.

To design JDD strategy resulting in a fast convergence,
we trace the evolution of ĪVC with respect to the total number
of local iterations by running Algorithm 3 as shown in Fig. 5.
Recall that a local iterationmeans each detection iteration and
decoding iteration. Note that Ng global iterations conducted
with the ratio Ndet : Ndec result in total Ng(Ndet + Ndec)
local iterations. A smaller number of local iterations required
for ĪVC to reach 1 implies a faster convergence speed of
JDD. It is clear that different JDD strategies result in distinct
convergence speeds.

We design LDPC codes for theMUmassiveMIMO system
by using the proposed EXIT analysis tool so that the lowest
threshold and the fastest convergence of JDD are achieved.
In general, LDPC codes are designed through two steps,
which are the degree distribution optimization and the edge
placement between bit nodes and check nodes, or a parity-
check matrix construction. Degree distributions of bit nodes
and check nodes from the edge perspective are represented in
the form of polynomials as [23]

λ(x) =
dv,max∑
dv=2

λdvx
dv−1 and ρ(x) =

dc,max∑
dc=2

ρdcx
dc−1, (17)

respectively. Then, the code rate R is given by [23]

R(λ, ρ) = 1−

∑dc,max
dc=2

ρdc/dc∑dv,max
dv=2

λdv/dv
, (18)

where λ = {λ2, · · · , λdv,max } and ρ = {ρ2, · · · , ρdc,max }.
We determine degree distributions λ and ρ to maximize

the code rate R(λ, ρ) guaranteeing the convergence of JDD
at a given Eb/N0 by using the EXIT analysis introduced
in Sec. IV. For a given target code rate, we perform the
EXIT analysis with various values of Eb/N0 and find the
smallest Eb/N0 resulting in the maximum R(λ, ρ) exceeding
the target code rate. Such Eb/N0 is called the threshold
and will be denoted by (Eb/N0)∗. The corresponding degree
distributions are considered optimal and will be denoted
by (λ∗, ρ∗).
Next, we place edges between bit nodes and check nodes

in a factor graph based on (λ∗, ρ∗) to satisfy the following
criteria [23]:
(a) Avoid short cycles involving only degree-2 bit nodes.

FIGURE 5. Evolution of ĪVC with respect to the total number of local
iterations for some JDD strategies, where R = 1/2, nU = 6, nR = 16.

(b) Length-4 cycles need to be avoided.
(c) All degree-2 bit nodes need to represent only non-

systematic bits.
The criterion (c) is satisfied if the following condition

λ2 ≤ 2
dc,max∑
dc=2

ρdc/dc (19)

is met [31]. Furthermore, the condition (19) can be incor-
porated in the degree distribution optimization process as a
constraint [31]. The criteria (a) and (b) can be satisfied by
placing edges between nodes based on the progressive edge
growth (PEG) algorithm [36]. Then, the degree distribution
for a given Eb/N0 is determined as

max
λ,ρ

R(λ, ρ)

s.t. ĪVC = 1 after running Algorithm 3,

λ2 ≤ 2
dc,max∑
dc=2

ρdc/dc,

dc,max∑
dc=2

ρdc =

dv,max∑
dv=2

λdv = 1 with ρdc , λdv ≥ 0, (20)

where the first constraint guarantees the convergence of
JDD and the second constraint is used to satisfy the
criterion (c) introduced earlier. The lowest Eb/N0, at which
the resultant maximum R(λ, ρ) exceeds the target rate,
is considered the threshold (Eb/N0)∗ and the corresponding
degree distributions are defined as (λ∗, ρ∗).

In addition, we take into consideration the convergence
speed of JDD when designing LDPC codes. The fastest
convergence of JDD algorithm can be achieved by selecting
the optimal JDD strategy. The convergence speed is predicted
by observing the evolution of ĪVC as shown in Fig. 5. The
degree distribution achieving (Eb/N0)∗ as well as the fastest
JDD convergence will be considered the overall optimal and
will be denoted as (λ†, ρ†). Consequently, LDPC codes for
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TABLE 1. Optimal degree distributions (λ∗, ρ∗) of rate-1/2 LDPC codes for MU massive MIMO system with some candidate JDD strategies, where (nU ×
nR ) = (6 × 16) and (6 × 64) are considered, and dv,max = 24 is used.

TABLE 2. Optimal degree distributions (λ∗, ρ∗) of rate-1/2 LDPC codes for MU massive MIMO system with some candidate JDD strategies, where (nU ×
nR ) = (10 × 16) and (10 × 64) are considered, and dv,max = 24 is used.
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TABLE 3. Optimal degree distributions (λ∗, ρ∗) of rate-3/4 LDPC codes for MU massive MIMO system with some candidate JDD strategies, where (nU ×
nR ) = (6 × 16) and (6 × 64) are considered, and dv,max = 20 is used.

TABLE 4. Optimal degree distributions (λ∗, ρ∗) of rate-3/4 LDPC codes for MU massive MIMO system with some candidate JDD strategies, where (nU ×
nR ) = (10 × 16) and (10 × 64) are considered, and dv,max = 20 is used.

MUmassive MIMO system are constructed by the following
procedure:
(i) perform the optimization process (20) for various

Eb/N0 and candidate JDD strategies.
(ii) determine (Eb/N0)∗ and the optimal JDD strat-

egy, and find the corresponding degree distribution
(λ†, ρ†).

(iii) construct the parity-check matrix of LDPC codes from
(λ†, ρ†) by using the PEG algorithm.

By following the above procedure, we can efficiently
construct LDPC codes for MU massive MIMO system
showing the lower threshold (Eb/N0)∗, or equivalently the
better error correcting capability, and the faster convergence
of JDD.
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FIGURE 6. Evolution of ĪVC with respect to the total number of local
iterations for some JDD strategies, where R = 1/2, nU = 10, nR = 16.

FIGURE 7. Evolution of ĪVC with respect to the total number of local
iterations for some JDD strategies, where R = 3/4, nU = 6, nR = 16.

FIGURE 8. Evolution of ĪVC with respect to the total number of local
iterations for some JDD strategies, where R = 3/4, nU = 10, nR = 16.

VI. NUMERICAL RESULTS
We consider LDPC coded MU massive MIMO systems with
nU = 6 or 10 and nR = 16 or 64. We call the MU massive

FIGURE 9. BER of LDPC coded MU massive MIMO system with
N = 64000, nU = 10 and nR = 64, where the total number of local
iterations is high enough to result in the convergence of JDD.

FIGURE 10. BER of rate-1/2 LDPC coded MU massive MIMO system with
N = 2304 over 6 × 16 channel obtained with different JDD strategies and
different total numbers of local iterations.

MIMO system with nU UEs and nR BS antennas as nU ×
nR channel. We suppose the channel gain of each pair of UE
and BS antenna is i.i.d. complex Gaussian with zero mean
and unit variance, while additive noises at BS antennas are
assumed to be i.i.d. zero-mean circular symmetric complex
white Gaussian. Each UE encodes information bits to rate-
1/2 or 3/4 LDPC codes and maps code bits to 4-QAM
symbols by Gray-mapping.

We solve the optimization problem (20) for each
Eb/N0 and JDD strategy by using the differential evolution
algorithm [37]. In degree distribution optimization, we use
the concentrated check node degree distribution [24], i.e.,
ρ(x) = ρdcx

dc + (1 − ρdc )x
dc+1. For each massive MIMO

channel and code rate under consideration, we find degree
distributions (λ∗, ρ∗) achieving the threshold (Eb/N0)∗ by
distinct JDD strategies. Among (λ∗, ρ∗) found for various
JDD strategies, we determine the overall optimal distribution
(λ†, ρ†) resulting in the fastest JDD convergence.
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FIGURE 11. BER of rate-1/2 LDPC coded MU massive MIMO system with
N = 2304 over 10 × 16 channel obtained with different JDD strategies
and different total numbers of local iterations.

FIGURE 12. BER of rate-3/4 LDPC coded MU massive MIMO system with
N = 4608 over 6 × 16 channel obtained with different JDD strategies and
different total numbers of local iterations.

In Table 1 - Table 4, we list degree distributions (λ∗, ρ∗)
of LDPC codes for MU massive MIMO systems achieving
the threshold with some candidate JDD strategies over
nU × nR channels and code rates under consideration.
By a practical reason, λdv and ρdc having negligible
values are enforced to be null. In each table, the channel
capacity and the threshold value obtained by EXIT analysis
are also listed. It is found that for a given nU × nR
channel, the same threshold is obtained irrespective of
the choice of JDD strategy. This implies that equivalent
error correcting capabilities are obtained by different JDD
strategies if an infinite number of iterations are allowed,
while different convergence speeds are obtained with distinct
JDD strategies.

Fig. 5 - Fig. 8 show the evolutions of ĪVC with respect to
the total number of local iterations obtained by various JDD
strategies for given massive MIMO channel and code rate.
Note that evolution curves are obtained by EXIT analysis

FIGURE 13. BER of rate-3/4 LDPC coded MU massive MIMO system with
N = 4608 over 10 × 16 channel obtained with different JDD strategies
and different total numbers of local iterations.

FIGURE 14. BER of rate-1/2 LDPC coded MU massive MIMO system
designed by the proposed scheme and conventional schemes, where
N = 2304, nU = 6 and nR = 16.

for MU massive MIMO system equipped with LDPC codes
whose degree distributions are listed in Table 1 - Table 4. It is
obvious that distinct JDD strategies may result in different
convergence speeds. We use boldface fonts to list values
of (λ†, ρ†) resulting in the threshold with the fastest JDD
convergence speed for each massiveMIMO channel and code
rate in Table 1 - Table 4.

We construct parity-check matrices of LDPC codes with
specific blocklengths N for MU massive MIMO system
with some candidate JDD strategies by applying the PEG
algorithm [36] to the obtained degree distributions (λ∗, ρ∗).
In Fig. 9, we plot the BER of MU massive MIMO system
employing optimized LDPC codes with sufficiently large
blocklength, i.e.,N = 64000. It is observed that the threshold
prediction based on EXIT analysis agrees quite well with
the result of BER simulation. This observation verifies the
practical effectiveness of the proposed EXIT analysis in
predicting the performance of coded MU massive MIMO
systems.
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FIGURE 15. BER of rate-3/4 LDPC coded MU massive MIMO system
designed by the proposed scheme and conventional schemes, where
N = 4608, nU = 6 and nR = 64.

In Fig. 10 - Fig. 13, we plot BER performances of
coded MU massive MIMO system with short to medium
blocklength whose LDPC codes are constructed by using
(λ∗, ρ∗) listed in Table 1 - Table 4. In each figure, we plot
BER curves obtained by three different total numbers of
local iterations to show different JDD convergence speeds
attained by distinct JDD strategies. It is observed that the
convergence speed of JDD strategies can be predicted well
by investigating the evolution of ĪVC obtained by the proposed
EXIT analysis as depicted in Fig. 5 - Fig. 8. Using the optimal
JDD strategy and overall optimal degree distribution (λ†, ρ†)
results in the fastest convergence of JDD for each MIMO
channel and code rate. The lower BER can be obtained for
a given total number of local iterations if the optimal JDD
strategy and the corresponding degree distributions are used
in the construction of LDPC codes.

In Fig. 14 and Fig. 15, we compare BER performances of
the LDPC coded MU massive MIMO systems designed by
the proposed scheme and conventional schemes. As conven-
tional schemes, we consider the MU massive MIMO system
employing 802.16e LDPC codes [38] and JDD strategyNdet :
Ndec = 1 : 1 as well as the MU massive MIMO system using
MMSE-PIC detection [18] with JDD strategy Ndet : Ndec =
1 : 1 and correspondingly designed optimal LDPC codes.
It is observed that the MU massive MIMO system designed
as proposed outperforms those designed in conventional
manners. The coding gain of the proposed system at BER of
10−5 after convergence with N = 2304, R = 1/2 over 6 ×
16 MIMO channel is about 0.2 dB over 802.16e LDPC based
system and about 1.6 dB over MMSE-PIC based system. The
coding gain of the proposed system at BER of 10−5 after
convergence with N = 4608, R = 3/4 over 6 × 64 MIMO
channel is about 0.3 dB over 802.16e LDPC based system
and about 0.8 dB over MMSE-PIC based system.

VII. CONCLUSION
In this paper, we designed LDPC coded MU massive MIMO
system equipped with an iterative JDD algorithm using the

low-complexity FG-GAI BP detection. We defined a factor
graph representation of the LDPC codedMUmassive MIMO
system and defined updating rules for messages flowing in
the JDD. We proposed an EXIT analysis tool to investigate
the behavior of iterative JDD algorithm of coded massive
MIMO receiver. Based on the EXIT analysis, we designed
jointly irregular LDPC codes through the optimization of
degree distributions and the JDD strategy to achieve the
lowest BER and the fastest JDD convergence. The coded MU
massive MIMO system equipped with the proposed LDPC
codes and the proposed JDD strategy results in the improved
BER performance over conventional schemes.
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