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ABSTRACT We present an adaptive quantized state feedback tracking methodology for a class of uncertain
multiple-input multiple-output (MIMO) nonlinear block-triangular pure-feedback systems with state quan-
tizers. Uniform quantizers are considered to quantize all measurable state variables for feedback. Compared
with the existing tracking approaches of MIMO lower-triangular nonlinear systems, the main contributions
of the proposed strategy are developing (1) a quantized-state-feedback-based adaptive tracker in the presence
of nonaffine interaction of states and control variables of MIMO systems and (2) an analysis strategy
for quantized feedback stability using adaptive compensation terms to derive bounded quantization errors.
In addition, the stability of the closed-loop system with quantized state feedback is analyzed based on the
Lyapunov stability theorem. Finally, simulation examples, including interconnected inverted pendulums, are
presented to validate the effectiveness of the proposed control strategy.

INDEX TERMS Quantized state feedback control, neural networks, state quantization, MIMO nonlinear
systems, pure-feedback form.

I. INTRODUCTION
In the field of nonlinear control, adaptive recursive con-
trol techniques based on backstepping [1], dynamic sur-
face design [2], and command-filtered backstepping design
[3], [4] have been regarded as powerful tools for dealing with
unmatched and uncertain nonlinearities. Adaptive control and
filter designs using neural-network function approximators
have been actively studied for systems with unknown non-
linearities (see [5]–[8] and references therein). To deal with
more complex nonlinear systems, these techniques have been
extended to multiple-input multiple-output (MIMO) nonlin-
ear systems that include nonlinearities with couplings among
system states and inputs. In [9], an adaptive fuzzy output
feedback controller was designed for MIMO strict-feedback
systems with unknown dead-zone inputs. In [10], an adap-
tive fuzzy tracking approach for MIMO nonlinear switched
strict-feedback systems was studied. Adaptive neural con-
trol problems of MIMO pure-feedback nonlinear systems
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were addressed in [11] and [12]. In [13] and [14], fuzzy
adaptive control approaches were developed for uncertain
nonlinear multivariable systems. Moreover, the problems
of output constraints [15] and event-triggered control [16]
have been addressed for adaptive neural control designs of
MIMO nonlinear systems. Contrary to these control designs
using continuous feedback, industrial control systems based
on digital networks require the transmission of quantized
signals with finite values owing to band-limited commu-
nication channels [17]. Linear systems [18]–[20] and non-
linear control systems [21], [22] have been considered for
quantized control. Several adaptive recursive control strate-
gies have been investigated for uncertain lower-triangular
single-input single-output nonlinear systems with quantized
input signals [23]–[28]. Furthermore, these quantized con-
trol approaches have been adopted to address several con-
trol problems of input-quantized MIMO nonlinear systems.
In [29], a tracking control problem using an observer was
investigated forMIMO time-delay nonlinear systems in pure-
feedback form. In [30], a prescribed performance control
was proposed for interconnected MIMO nonlinear systems.
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An adaptive neural control problem of switched MIMO
nonlinear systems with quantized dead-zone input was
addressed in [31]. In [32], an adaptive input-quantized control
approach was proposed for MIMO nonlinear systems with
underactuated faults and time-varying output constraints.
However, these successful quantized control approaches
[23]–[32] are only feasible in the presence of input quanti-
zation. In network-based control systems, the quantization
of measured state variables must be considered for feedback
control design because the controller and MIMO systems are
connected by band-limited network channels. To the best of
our knowledge, quantized state feedback control design of
uncertain MIMO pure-feedback nonlinear systems has not
been investigated yet.

On the other hand, quantized-state-feedback-based recur-
sive control design problems in the presence of state quan-
tizers have been recently addressed for nonlinear systems
with parametric uncertainties [33], [34]. Neural-network-
based quantized feedback control designs were developed
for strict-feedback nonlinear systems with time delays [35].
Furthermore, a distributed control strategy was presented for
multi-agent nonlinear systems in strict-feedback form [36].
However, these approaches fail to provide a quantized state
feedback control solution for MIMO nonlinear systems with
coupling of state and control variables in pure-feedback form.

A primary difficulty in addressing this problem is to deal
with unknown control coefficient matrices resulting from
unknown nonaffine nonlinearities via quantized feedback
information of states of all subsystems coupled in non-
affine nonlinear form. Owing to unknown control coefficient
matrices induced from unknown nonaffine nonlinearities,
the quantized-state-based neural network adaptive control
strategies reported in [35], [36] cannot be applied to ensure
boundedness of close-loop quantization errors for the sta-
bility analysis of the closed-loop system. Therefore, it is
important to establish quantized-state-based adaptive com-
pensation strategies for tuning neural network approximators
to guarantee that close-loop quantization errors are bounded
in the presence of unknown control coefficient matrices.

To address this difficulty, we propose an adaptive quantized
state feedback control methodology for uncertain MIMO
nonlinear pure-feedback systems with state quantizers and
external disturbances. All measurable state variables for feed-
back are quantized via state quantizers. An adaptive tracking
scheme using quantized states is constructed in the pres-
ence of nonaffine nonlinear vectors and unknown bounds
of gain matrices derived using the mean value theorem.
In the proposed scheme, adaptive neural compensation terms
using quantized state feedback are introduced to analyze
quantization errors between unquantized and quantized sig-
nals in a closed-loop system. In addition, we analyze the
boundedness of estimated parameters and quantization errors
by establishing technical lemmas. Finally, the stability of
the proposed control system is proved using the Lyapunov
stability theorem. The main contributions of this study are
as follows:

(i) Contrary to previous results [23]–[32] in which the input
quantization problems were only considered in quantized
control for MIMO lower-triangular nonlinear systems, this
study addresses the state quantization problem for uncertain
MIMO nonlinear pure-feedback systems. A neural-network-
based quantized state feedback control strategy is developed
to ensure the boundedness of quantization errors in the pres-
ence of unknown pure-feedback nonlinearities. In addition,
adaptive function approximation terms and adaptive tuning
laws using quantized states are constructed to compensate for
unknown nonaffine nonlinearities and quantization errors.

(ii) In contrast to previous recursive tracker designs using
quantized state feedback [33]–[36], this paper firstly deals
with nonaffine nonlinearities interacting state variables and
inputs in uncertain MIMO nonlinear systems. Moreover,
a design difficulty caused by unknown gain matrices derived
from the mean value theorem is resolved by introducing new
adaptive approximation terms using quantized state feedback,
contrary to [33]–[36]. The closed-loop stability based on
quantized state feedback is investigated by analyzing the
quantization errors.

The rest of the paper is organized as follows. The neural-
network-based quantized state feedback tracking problem of
MIMO nonlinear pure-feedback systems with state quantiz-
ers is described in Section II. The proposed adaptive quan-
tized control design and stability analysis are discussed in
Section III. Section IV presents simulation results including
a practical example. Finally, we draw our conclusions in
Section V.

II. PROBLEM FORMULATION
Consider the following uncertain MIMO block-triangular
pure-feedback nonlinear system with external disturbances:

ẋi = f i(x̄i, xi+1)+ d i(t), i = 1, . . . , n− 1

ẋn = f n(x̄n,u)+ dn(t)

y = x1 (1)

where xi = [xi,1, . . . , xi,m]> ∈ Rm and x̄i =

[x>1 , . . . , x
>
i ]
>
∈ Rim, i = 1, . . . , n, are the state vectors,

y = [y1, . . . , ym]> ∈ Rm is the system output vector, u =
[u1, . . . , um]> ∈ Rm is the control input vector, f i(x̄i, xi+1) =
[fi,1(x̄i, xi+1,1), . . . , fi,m(x̄i, xi+1,m)]> ∈ Rm, i = 1, . . . , n−1,
and f n(x̄n,u) = [fn,1(x̄n, u1), . . . , fn,m(x̄n, um)]> ∈ Rm are
the unknown C1 nonaffine nonlinear function vectors, and
d i(t) ∈ Rm, i = 1, . . . , n, is the external time-varying
disturbance vector.

By applying the mean value theorem to the nonaffine
functions fi,j(x̄i, xi+1,j) and fn,j(x̄n, uj), j = 1, . . . ,m,
we obtain [11]

fi,j(x̄i, xi+1,j) = fi,j(x̄i, 0)

+
∂fi,j
∂xi+1,j

∣∣∣∣
xi+1,j=κi,j

(xi+1,j − 0) (2)

fn,j(x̄n, uj) = fn,j(x̄n, 0)
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+
∂fn,j
∂uj

∣∣∣∣
uj=κn,j

(uj − 0) (3)

where κi,j ∈ (0, xi+1,j) and κn,j ∈ (0, uj).
Then, f i(x̄i, xi+1) and f n(x̄n,u) can be rewritten as

f i(x̄i, xi+1) = f i(x̄i)+ Gixi+1, i = 1, . . . , n− 1 (4)

f n(x̄n,u) = f n(x̄n)+ Gnu (5)

where f i(x̄i) = [fi,1(x̄i, 0), . . . , fi,m(x̄i, 0)]>, f n(x̄n) =
[fn,1(x̄n, 0), . . . , fn,m(x̄n, 0)]>, Gi(x̄i, κ i) = ∂f i(x̄i, xi+1)
/∂xi+1|xi+1=κ i with κ i = [κi,1, . . . , κi,m]>, and Gn(x̄n, κn) =
∂f n(x̄n,u)/∂u|u=κn with κn = [κn,1, . . . , κn,m]>. Here, Gi
and Gn are unknown gain matrices.

Using (4) and (5), the uncertain MIMO nonlinear sys-
tem (1) becomes

ẋi = f i(x̄i)+ Gixi+1 + d i(t), i = 1, . . . , n− 1

ẋn = f n(x̄n)+ Gnu+ dn(t)

y = x1. (6)

Assumption 1: [37] The matrix Gi(·), i = 1, . . . , n satis-
fies 0 < gim ≤ |λ(Gi)| ≤ giM where gim > 0 and giM > 0 are
unknown constants and λ(·) is the eigenvalue operator.
In this study, a network-based control problem using quan-

tized state feedback is considered for system (1). In the
network-based control problem, the system (1) and the con-
troller are assumed to be connected through a network with a
limited bandwidth. Thus, the measured state feedback infor-
mation is transmitted to the controller after state quantization.
For state quantization, the uniform quantizer is selected as
follows:

Q(xi,j) =


Zµ, Zµ −

ρ

2
≤ xi,j < Zµ +

ρ

2
0, −

ρ

2
≤ xi,j <

ρ

2
−Zµ, −Zµ −

ρ

2
≤ xi,j < −Zµ +

ρ

2

(7)

where i = 1, . . . , n and j = 1, . . . ,m, µ ∈ Z+, ρ is the
quantization level, Z1 = ρ, and Zµ+1 = Zµ + ρ. We use the
definition xqi,j , Q(xi,j) for notation simplicity. Then, using
the property of the uniform quantizer, the state quantization
error µxi,j , xi,j − xqi,j and its vector µx,i , xi − xqi satisfy
|µxi,j | ≤ ρ and ‖µx,i‖ ≤ ρ

√
m, respectively [18] where

xqi = [xqi,1, . . . , x
q
i,m]
>.

Remark 1: Owing to the uniformity of the quantization
levels and simple structure, uniform quantizers facilitate the
analysis of the quantization effect. Therefore, they are fre-
quently utilized in analog-to-digital signal conversion [18].
For this reason, we use uniform quantizers (7) to quantize all
measurable states for feedback. However, hysteresis-uniform
or logarithmic-uniform quantizers can be also applied to the
proposed approach.
Assumption 2 [33]: The quantized state vector xqi =

[xqi,1, . . . , x
q
i,m]
>
∈ Rm, i = 1, . . . , n, is available for feed-

back, rather than the unquantized state vector xi.
Assumption 3 [2]: The desired signal vector xd ∈ Rm and

its time derivatives ẋd and ẍd are bounded.

Assumption 4: The time-varying external disturbance vec-
tor d i, i = 1, . . . , n, satisfies ‖d i‖ ≤ d̄i with an unknown
constant d̄i > 0.
Lemma 1 [39]: For a Hurwitz matrix A ∈ Rm×m and a

symmetric positive definite matrix S ∈ Rm×m, the inequality
‖eAt‖ ≤ a1e−b1t is ensured where a1 =

√
λmax(S)/λmin(S),

b1 = 1/λmax(S), and λmax(S) and λmin(S) are the maximum
and minimum eigenvalues of S, respectively.
Problem 1: The control objective is to design a neural-

network-based adaptive quantized state feedback control law
u for uncertain MIMO pure-feedback nonlinear systems (1)
with state quantizers (7) so that the output vector y(t) tracks
the desired trajectory xd (t), while all the closed-loop signals
are bounded.
Remark 2: The validity of Assumptions 1–4 is explained

as follows.
(i) The matrix Gi(·) plays the role of the coefficient matrix

for the virtual and actual control laws in the control design
steps. Gi(·) 6= 0 should be assumed for controllability, which
leads to 0 < gim ≤ |λ(Gi)| ≤ giM in Assumption 1. This
implies thatGi(·) is strictly either positive or negative definite.
Without loss of generality, it is assumed that Gi(·) > 0. Thus,
Assumption 1 is reasonable.

(ii) Assumption 2 means that the state quantization prob-
lem is considered in this study. Thus, quantized state variables
are available for feedback control design. This assumption is
given for the problem formulation.

(iii) Assumption 3 implies that the desired signal and its
first two derivatives are bounded. This assumption is reason-
able for the recursive tracking control design objective.

(iv) Assumption 4 indicates that external disturbances may
not grow arbitrarily large. This is common in existing control
results.
Remark 3: For Problem 1, it is necessary to design a con-

trol law and adaptive tuning laws using quantized states in
the presence of unknown nonaffine nonlinearities in MIMO
form while ensuring the boundedness of quantization errors
between the original and quantized signals. Furthermore,
although quantized signals are used as inputs for neural net-
work approximators, the boundedness of quantization errors
and the closed-loop stability of the proposed neural-network-
based control system should be proved. However, the exist-
ing adaptive control designs [23]–[32] dealing with input
quantization of MIMO nonlinear systems use continuous
state feedback information without state quantization. Thus,
owing to the presence of quantized state feedback signals,
Problem 1 cannot be addressed by the solutions proposed
in [23]–[32].

III. NEURAL-NETWORK-BASED ADAPTIVE QUANTIZED
STATE FEEDBACK CONTROL
A. RADIAL BASIS FUNCTION NEURAL NETWORKS
Unknown continuous nonlinear function vectors N i(νi) ∈
Rm, i = 1, . . . , n, can be approximated via radial basis
function neural networks (RBFNNs) [40] in the compact set
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9i ⊂ Rpi as follows:

N i(νi) = θ>i Bi(νi)+ φi(νi), (8)

where νi ∈ 9i is the input vector of the RBFNN, θ i =
diag[θ i,1, . . . , θ i,m] ∈ RmMi×m is the ideal weighting matrix,
θ i,j = [θi,j,1, . . . , θi,j,Mi ]

>
∈ RMi , j = 1, . . . ,m, Mi is the

number of neural nodes, φi ∈ Rm, i = 1, . . . , n represents
an approximation reconstruction error such that ‖φi‖ ≤ φ̄i
with an unknown constant φ̄i > 0, Bi = [B>i,1, . . . ,B

>
i,m]
>
∈

RmMi ; Bi,j(ι) ∈ RMi , j = 1, . . . ,m, denotes the Gaussian
function vector. Using the inherent property of Gaussian basis
functions, it is ensured that ‖Bi‖ ≤ B̄i with a constant
B̄i > 0 [41], [42].
Assumption 5: [41] θ i and φi are bounded as ‖θ i‖ ≤ θ̄i

and ‖φi‖ ≤ φ̄i, respectively, where θ̄i > 0 and φ̄i > 0 are
constants.

B. ADAPTIVE CONTROL DESIGN USING QUANTIZED STATE
FEEDBACK
The quantized state variables cannot be utilized directly in a
Lyapunov-based systematic design because they are discon-
tinuous. Thus, our design strategy is based on (i) designing
the intermediate control signals using the unquantized state
variables in Step 1, (ii) expressing the actual adaptive control
input vector u using quantized state feedback in Step 2, and
(iii) analyzing the quantization errors between unquantized
and quantized signals to ensure the stability of the closed-loop
system in the stability analysis part (see Section III-C).

Step 1: For the systematic control design of intermedi-
ate control signals, the command-filtered backstepping tech-
nique using second-order low-pass filters is employed. The
error surfaces are expressed as follows:

z1 = x1 − xd
zi+1 = xi+1 − αi,f
α̃i = αi,f − αi (9)

where i = 1, . . . , n − 1, z1 = [z1,1, . . . , z1,m]> ∈ Rm and
zi+1 = [zi+1,1, . . . , zi+1,m]> ∈ Rm are error surfaces, αi =
[α1,1, . . . , α1,m]> ∈ Rm are intermediate control laws, and
αi,f = [α1,f ,1, . . . , α1,f ,m]> ∈ Rm are their corresponding
filtered signals provided by the following second-order low-
pass filters:

α̇i,f = β i

β̇ i = −2ξ i$ iβ i −$
>
i $ i(αi,f − αi) (10)

with αi,f (0) = αi(0), β i(0) = 0, and the filter constant matri-
ces ξ i = diag[ξi,1, . . . , ξi,m] and$ i = diag[$i,1, . . . ,$i,m].
Here, ξi,j > 0 and $i,j > 0, j = 1, . . . ,m, denote the damp-
ing ratio and natural frequency, respectively. The intermediate
control laws αi are established as follows.
(i) The time derivative of z1 along (6) is given by

ż1 = f 1 + G1x2 + d1 − ẋd . (11)

Let us consider the Lyapunov function V1 as follows:

V1 =
1

2g1M
z>1 z1. (12)

Differentiating V1 with respect to time yields

V̇1 ≤ z>1

(
N1 +

G1

g1M
x2 +

d1
g1M

)
(13)

where N1(ν1) = (f 1 − ẋd )/g1M ; ν1 = [x>1 , ẋ
>
d ]
>. Using (8),

the unknown function N1 is approximated by N1(ν1) =
θ>1 B1(ν1)+ φ1(ν1). Then, (13) becomes

V̇1 ≤ z>1

(
θ>1 B1 + φ1 +

G1

g1M
x2 +

d1
g1M

)
. (14)

From Assumptions 1 and 5, it holds that

z>1 θ
>

1 B1 ≤
g1m
g1M

z>1 z1 +
g1M
4g1m
‖B1‖

2
‖θ1‖

2

≤
1
g1M

z>1 G1z1 +
g1m
g1M
‖B1‖

2W1 (15)

where W1 = (g21M /4g
2
1m
)θ̄21 . Then, (13) becomes

V̇1 ≤
1
g1M

z>1 G1(z1 + z2 + α̃1 + α1)

+ z>1

(
φ1 +

d1
g1M

)
+
g1m
g1M
‖B1‖

2W1. (16)

The intermediate signal α1 is designed as follows

α1 = −(ζ1 + 1)z1 −
z1‖B1‖

2Ŵ1

(z>1 z1 + ε̄)
− δ̂1 tanh

(
z1
ε1

)
(17)

where ζ1 is a design parameter, tanh(z1/ε1) = [tanh(z1,1/
ε1,1), . . . , tanh(z1,m/ε1,m)]> ∈ Rm; ε1,j > 0, j = 1, . . . ,m,
are design parameters, ε̄ is a design parameter satisfying ε̄ ≥
1/4, and Ŵ1 is the estimate of W1, and δ̂1 is the estimate of
an unknown constant δ1 > 0, which is defined subsequently.
Substituting (17) into (16) gives

V̇1 ≤ −
1
g1M

ζ1z>1 G1z1 +
1
g1M

z>1 G1(z2 + α̃1)

−
z>1 G1z1

g1M (z
>

1 z1 + ε̄)
‖B1‖

2(W1 + W̃1)

+
g1m
g1M
‖B1‖

2W1 + z>1

(
φ1 +

d1
g1M

)
−

1
g1M

z>1 G1(δ̃1 + δ1) tanh
(
z1
ε1

)
(18)

where δ̃1 = δ̂1 − δ1 and W̃1 = Ŵ1 − W1 are the estimation
errors.

Then, using −z>1 G1z1 ≤ −g1mz
>

1 z1, we have

−
z>1 G1z1

g1M (z
>

1 z1 + ε̄)
‖B1‖

2W1 +
g1m
g1M
‖B1‖

2W1

=
−z>1 G1z1‖B1‖

2W1 + g1mz
>

1 z1‖B1‖
2W1

g1M (z
>

1 z1 + ε̄)
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+
g1m ε̄‖B1‖

2W1

g1M (z
>

1 z1 + ε̄)

≤
g1m ε̄‖B1‖

2W1

g1M (z
>

1 z1 + ε̄)
. (19)

Thus, (18) becomes

V̇1 ≤ −
1
g1M

ζ1z>1 G1z1 +
1
g1M

z>1 G1(z2 + α̃1)

+
g1m ε̄‖B1‖

2W1

g1M (z
>

1 z1 + ε̄)
−

z>1 G1z1
g1M (z

>

1 z1 + ε̄)
‖B1‖

2W̃1

+ z>1

(
φ1 +

d1
g1M

)
−

1
g1M

z>1 G1δ1 tanh
(
z1
ε1

)
−

1
g1M

z>1 G1δ̃1 tanh
(
z1
ε1

)
. (20)

(ii) The time derivative of zi along (6) is given by

żi = f i + Gixi+1 − α̇i−1,f + d i (21)

where i = 2, . . . , n− 1.
Consider the Lyapunov function Vi = (1/(2giM ))z

>
i zi.

Differentiating Vi with respect to time yields

V̇i =
1
giM

z>i (f i + Gixi+1 − β i−1 + d i) (22)

where α̇i−1,f = β i−1 is used from (10).
Adding and subtracting z>i−1Gi−1zi/g(i−1)M , (22) becomes

V̇i = z>i

(
N i +

Gi
giM

xi+1 +
d i
giM

)
−

1
g(i−1)M

z>i−1Gi−1,izi (23)

where N i(νi) = (f i − β i−1)/giM + G>i−1zi−1/g(i−1)M ; νi =
[x̄>i , z

>

i−1,β
>

i−1]
>. From (8), the unknown function N i is

approximated as N i(νi) = θ>i Bi(νi)+φi(νi). Similar to (15),
it holds that

z>i θ
>
i Bi ≤

1
giM

z>i Gizi +
gim
giM
‖Bi‖2Wi (24)

where Wi = (g2iM /4g
2
im )θ̄

2
i . Using (24), (23) becomes

V̇i =
1
giM

z>i Gi(zi + zi+1 + α̃i + αi)+ z
>
i

(
φi +

d i
giM

)
−

1
g(i−1)M

z>i−1Gi−1zi +
gim
giM
‖Bi‖2Wi. (25)

Let us design the intermediate signal αi as

αi = −(ζi + 1)zi −
zi‖Bi‖2Ŵi

(z>i zi + ε̄)
− δ̂i tanh

(
zi
εi

)
(26)

where ζi is a design parameter, tanh(zi/εi) = [tanh(zi,1/εi,1),
. . . , tanh(zi,m/εi,m)]> ∈ Rm; εi,j > 0, j = 1, . . . ,m, are
design parameters, and Ŵi and δ̂i are estimates of Wi and an
unknown constant δi > 0 to be defined later, respectively.

Substituting (26) into (25) and using the inequality as in (19)
yields

V̇i ≤ −
1
giM

ζiz>i Gizi +
1
giM

z>i Gi(zi+1 + α̃i)

−
1

g(i−1)M
z>i−1Gi−1,izi +

gim ε̄‖Bi‖
2Wi

giM (z
>
i zi + ε̄)

−
z>i Gizi

giM (z
>
i zi + ε̄)

‖Bi‖2W̃i + z>i

(
φi +

d i
giM

)
−

1
giM

z>i Gi(δi + δ̃i) tanh
(
zi
εi

)
(27)

where δ̃i = δ̂i−δi and W̃i = Ŵi−Wi are the estimation errors.
(iii) The time derivative of zn along (6) is given by

żn = f n + Gnu− α̇n−1,f + dn. (28)

Consider the Lyapunov function Vn = (1/(2gnM ))z
>
n zn.

Differentiating Vn with respect to time yields

V̇n =
1
gnM

z>n (f n + Gnu− βn−1 + dn). (29)

Adding and subtracting z>n−1Gn−1zn/g(n−1)M , (29) becomes

V̇n = z>n

(
Nn +

Gn
gnM

u+
dn
gnM

)
−

1
g(n−1)M

z>n−1Gn−1zn

(30)

where Nn(νn) = (f n − βn−1)/gnM + G>n−1zn−1/g(n−1)M ;
νn = [x̄>n , z

>

n−1,β
>

n−1]
>. Using (8), the unknown function

Nn is approximated as Nn(νn) = θ>n Bn(νn) + φn(νn). Then,
similar to (15), it holds that

z>n θ
>
n Bn ≤

1
gnM

z>n Gnzn +
gnm
gnM
‖Bn‖2Wn (31)

where Wn = (g2nM /4g
2
nm )θ̄

2
n . Using (31), (30) becomes

V̇n =
1
gnM

z>n Gn(µu + zn + v)+ z
>
n

(
φn +

dn
gnM

)
−

1
g(n−1)M

z>n−1Gn−1zn +
gnm
gnM
‖Bn‖2Wn (32)

where µu = u− v and v is an intermediate signal.
Let us design the intermediate signal v as

v = −(ζn + 1)zn −
zn‖Bn‖2Ŵn

(z>n zn + ε̄)
− δ̂n tanh

(
zn
εn

)
(33)

where ζn is a design parameter, tanh(zn/εn) = [tanh(zn,1/
εn,1), . . . , tanh(zn,m/εn,m)]> ∈ Rm; εn,j > 0, j = 1, . . . ,m,
are design parameters, Ŵn, and δ̂n are estimates ofWn and an
unknown constant δn > 0 to be defined later, repectively.
Substituting (33) into (32) and using the following

inequality

−
z>n Gnzn

gnM (z>n zn + ε̄)
‖Bn‖2Wn +

gnm
gnM
‖Bn‖2Wn

≤
gnm ε̄‖Bn‖

2Wn

gnM (z>n zn + ε̄)
. (34)
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gives

V̇n =
1
gnM

z>n Gnµu −
1
gnM

ζnz>n Gnzn

−
1

g(n−1)M
z>n−1Gn−1zn +

gnm ε̄‖Bn‖
2Wn

gnM (z>n zn + ε̄)

−
z>n Gnzn

gnM (z>n zn + ε̄)
‖Bn‖2W̃n + z>n

(
φn +

dn
gnM

)
−

1
gnM

z>n Gn(δn + δ̃n) tanh
(
zn
εn

)
(35)

where δ̃n = δ̂n − δn and W̃n = Ŵn − Wn are the estimation
errors.

Step 2: In this step, we present a quantized-state-based
control law u based on the structures of the error surfaces
and the intermediate signals designed in Step 1. Owing to the
recursive design property of a quantized-state-based control
law u, all error surfaces and intermediate signals designed in
Step 1 are redefined using quantized states.

The error surfaces using state quantization are defined as

z∗1 = xq1 − xd
z∗i+1 = xqi+1 − α

∗
i,f (36)

where i = 1, . . . , n − 1, and α∗i,f are the command-filtered
signals of the virtual control laws α∗i using quantized states
expressed as

α̇∗i,f = β
∗
i

β̇
∗

i = −2ξ i$ iβ
∗
i −$

>
i $ i(α∗i,f − α

∗
i ) (37)

with α∗i,f (0) = α
∗
i (0) and β

∗
i (0) = 0.

Then, we introduce the quantized-state-feedback-based
virtual control laws α∗i and the adaptive actual control law
u as follows:

α∗i = −(ζi + 1)z∗i −
z∗i

((z∗i )
>z∗i + ε̄)

‖B∗i ‖
2Ŵi − δ̂i tanh

(
z∗i
εi

)
(38)

u = −(ζn + 1)z∗n −
z∗n

((z∗n)>z∗n + ε̄)
‖B∗n‖

2Ŵn

− δ̂n tanh
(
z∗n
εn

)
(39)

˙̂Wj = 0W ,j(‖z∗j ‖
2
‖B∗j ‖

2
− σW ,j‖z∗j ‖

2Ŵj) (40)

˙̂
δj = 0δ,j

(
(z∗j )
> tanh

( z∗j
εj

)
− σδ,j‖z∗j ‖δ̂j

)
(41)

where i = 1, . . . , n − 1, j = 1, . . . , n, B∗j = Bj(ν∗j );
ν∗1 = [(xq1)

>, ẋ>d ]
>, ν∗k = [(x̄qk )

>, (z∗k−1)
>, (β∗k−1)

>]>, k =
2, . . . , n, 0W ,j > 0 and 0δ,j > 0 are tuning gains, and σW ,j
and σδ,j are positive constants for σ -modification. A block
diagram of the proposed state feedback adaptive tracking
system is shown in Fig. 1.
Remark 4: Compared with previous recursive tracking

results using quantized state feedback [33]–[36], we intro-
duce the neural-network-based adaptive compensation

terms −
z∗i

((z∗i )
>z∗i +ε̄)

‖B∗i ‖
2Ŵi, i = 1, . . . , n, in (38) and (39).

Thus, we enable the analysis of the boundedness of the quan-
tization errors in the presence of unknown control coefficient
matrices Gi, which will be presented in the next section. The
stability of the quantized state feedback adaptive tracking
system is analyzed based on these terms. Furthermore, the
adaptive laws (40) and (41) using quantized states are derived
to ensure that the estimates Ŵj and δ̂j are bounded, as proved
in the next section.
Remark 5: Using the second-order command filter (37),

α̇∗i,f , i = 1, . . . , n− 1, are replaced by the continuous signals
β∗i in the control laws (38) and (39) where β

∗
i are included in

the inputs of neural networks. Thus, from the recursive design
procedure, we attenuate the unexpected chattering effects
caused by α̇∗i,f in the control law u.

C. STABILITY ANALYSIS
Define ¯̃αj = [α̃>1 , . . . , α̃

>

j ]
>, β̄ j = [β>1 , . . . ,β

>
j ]
>, z̄i =

[z>1 , . . . , z
>
i ]
>, Ŵ i = [Ŵ1, . . . , Ŵi]>,

¯̂
δi = [δ̂1, . . . , δ̂i]>,

x̄d = [x>d , ẋ
>
d , ẍ
>
d ]
>, and d̄ i = [d>1 , . . . , d

>
i ]
> for j =

1, . . . , n − 1 and i = 1, . . . , n. Then, the time derivative
χ j = [α̃>j ,β

>
j ]
> along (10) is obtained as

χ̇ j = 3jχ j +HP j (42)

where 3j =

[
0 I

−$>j $ j −2ξ j$ j

]
, H =

[
I
0

]
; 0 ∈ Rm×m

denotes the matrix with zero elements, I ∈ Rm×m is the
identity matrix, and

P1(z̄2, α̃1, Ŵ1, δ̂1, x̄d , d1)

= (ζ1 + 1)ż1 +
ż1(z>1 z1 + ε̄)− 2z1z>1 ż1

(z>1 z1 + ε̄)
2

‖B1‖
2Ŵ1

+
2z1

(z>1 z1 + ε̄)
B>1 Ḃ1Ŵ1 +

z1
(z>1 z1 + ε̄)

‖B1‖
2 ˙̂W1

+
˙̂
δ1 tanh

(
z1
ε1

)
+ δ̂1sech2

(
z1
ε1

)
ż1
ε1

Pk (z̄k+1, ¯̃αk , β̄k−1, Ŵ k , δ̄k , x̄d , d̄k )

= (ζk + 1)żk +
żk (z>k zk + ε̄)− 2zkz>k żk

(z>k zk + ε̄)
2

‖Bk‖2Ŵk

+
2zk

(z>k zk + ε̄)
B>k ḂkŴk +

zk
(z>k zk + ε̄)

‖Bk‖2
˙̂Wk

+
˙̂
δk tanh

(
zk
εk

)
+ δ̂ksech2

(
zk
εk

)
żk
εk

for k = 2, . . . , n − 1. Here, 3j are Hurwitz matrices due to
ξj,l > 0 and $j,l > 0, l = 1, . . . ,m. Thus, for any matrix
Qj > 0, 3>j Sj + Sj3j = −Qj is ensured with a symmetric
matrix Sj > 0.
Lemma 2: For the adaptive laws (40) and (41), there exist

compact sets9W ,i = {W̃i||W̃i| ≤ �W ,i}with a constant�W ,i
and 9δ,i = {δ̃i| |δ̃i| ≤ �δ,i} with a constant �δ,i such that
W̃i(t) ∈ 9W ,i and δ̃i(t) ∈ 9δ,i, ∀t ≥ 0 provided that W̃i(0) ∈
9W ,i and δ̃i(0) ∈ 9δ,i, respectively, where i = 1, . . . , n.
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FIGURE 1. Block diagram of the proposed quantized state feedback adaptive tracking system.

Proof: To prove the boundedness of W̃i, consider a
Lyapunov function candidate VW ,i = (1/20W ,i)W̃ 2

i . Then,
from ‖θ i‖ ≤ θ̄i, ‖Bi‖ ≤ B̄i, and ‖B∗i ‖ ≤ B̄i, the time
derivative of VW ,i is obtained as

V̇W ,i = ‖z∗i ‖
2W̃i(‖B∗i ‖

2
− σW ,iŴi)

≤ ‖z∗i ‖
2
|W̃i|(B̄2i + σW ,iwiθ̄

2
i − σW ,i|W̃i|). (43)

where wi = (g2iM /4g
2
im ). Therefore, it is ensured that V̇W ,i <

0 when |W̃i| > �W ,i with �W ,i , (B̄2i + σW ,iwiθ̄
2
i )/σW ,i.

Thus, VW ,i decreases when Wi(t) /∈ 9W ,i, and Wi(t) remains
within 9W ,i.
Let us show the boundedness of δ̃i by considering Vδ,i =

(1/20δ,i)δ̃2i . From ‖ tanh(z
∗
i /εi)‖ ≤

√
m and δ̂i = δi + δ̃i,

it holds that

V̇δ,i ≤ |δ̃i|‖z∗i ‖(
√
m+ σδ,iδi − σδ,i|δ̃i|). (44)

Therefore, it is ensured that V̇δ,i < 0 when |δ̃i| > �δ,i with
�δ,i , (

√
m+ σδ,iδi)/σδ,i. Thus, Vδ,i decreases when δi(t) /∈

9δ,i, and δi(t) remains within9δ,i. If δi(0) ∈ 9δ,i, δi(t) ∈ 9δ,i
for all t ≥ 0. This completes the proof of this lemma.
Lemma 3: Define the quantization error vectors of the

closed-loop signals as

µz,i = zi − z∗i , µα,j = αj − α
∗
j

µα,j,f = αj,f − α
∗
j,f , µβ,j = β j − β

∗
j

where i = 1, . . . , n and j = 1, . . . , n − 1, and consider the
quantization errors of the control input µu = u − v. Then,
there exist positive constants 1z,i, 1α,j, 1χ,j, and 1u such
that ‖µz,i‖ ≤ 1z,i, ‖µα,j‖ ≤ 1α,j, ‖µχ,j‖ ≤ 1χ,j, and
‖µu‖ ≤ 1u, respectively, where µχ,j = [µ>α,j,f ,µ

>
β,j]
>.

Proof: We prove this lemma following a recursive
approach.

(i) From the property ‖µx,i‖ ≤ ρ
√
m and µz,1 = z1 − z∗1,

it holds that

‖µz,1‖ = ‖µx,1‖ ≤ ρ
√
m , 1z,1. (45)

Lemma 2 leads to |W̃1| ≤ �̄W ,1 and |δ̃1| ≤ �̄δ,1
where �̄W ,1 = max{|W̃1(0)|, �W ,1} and �̄δ,1 =

max{|δ̃1(0)|, �δ,1}. From the boundedness ofW1 and δ1, there
exist unknown constants ¯̂W1 and ¯̂δ1 that satisfy |Ŵ1| ≤

¯̂W1

and |δ̂1| ≤
¯̂
δ1. Using (17) and (38), we obtain

µα,1 = −(ζ1 + 1)(z1 − z∗1)−
(

z1
(z>1 z1 + ε̄)

‖B1‖
2

−
z∗1

((z∗1)
>z∗1 + ε̄)

‖B∗1‖
2
)
Ŵ1

− δ̂1

(
tanh

(
z1
ε1

)
− tanh

(
z∗1
ε1

))
. (46)

Here, ‖z1/(z>1 z1 + ε̄)‖ ≤ 1 is satisfied because of
ε̄ ≥ 1/4. Using the inequalities ‖Bi − B∗i ‖ ≤ 2B̄i and
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‖ tanh( zi
εi
)− tanh(

z∗i
εi
)‖ ≤ 2

√
m, i = 1, . . . , n, we have

‖µα,1‖ ≤ (ζ1 + 1)1z,1 + 2B̄1
¯̂W1 + 2 ¯̂δ1

√
m

, 1α,1. (47)

From (10) and (37), the time derivative of the quantization
error µχ,1 = [µα,1,f ,µβ,1]

> is given by

µ̇χ,1 = 31µχ,1 +H1µα,1 (48)

where31 =

[
0 I

−$>1 $ 1 −2ξ1$ 1

]
andH1 = [0,$>1 $ 1]>.

Thus, the solution of (48) is obtained as

µχ,1(t) = e31tµχ,1(0)+
∫ t

0
e31(t−τ )H1µα,1(τ )dτ. (49)

From ‖µα,1‖ ≤ 1α,1, we have that for all t ≥ 0,

‖µχ,1(t)‖ ≤ ‖e
31t‖‖µχ,1(0)‖

+1α,1‖H1‖‖3
−1
1 (I − e31t )‖. (50)

From Lemma 1, the inequality ‖e31t‖ ≤ a1e−b1t is ensured
where a1 > 0 and b1 > 0 are constants. Thus, (50) is
expressed as

‖µχ,1(t)‖ ≤ a1‖µχ,1(0)‖

+1α,1‖H1‖‖3
−1
1 ‖(1+ a1) , 1χ,1. (51)

It is satisfied that ‖µα,1,f ‖ ≤ 1χ,1 and ‖µβ,1‖ ≤ 1χ,1.
(ii) Owing to ‖µx,j‖ ≤ ρ

√
m, µz,j is bounded as

‖µz,j‖ ≤ ‖µx,j‖ + ‖µα,j−1,f ‖

≤ ρ
√
m+1χ,j−1 , 1z,j (52)

where j = 2, . . . , n − 1. Using (26), (38), and the inequality
‖zj/(z>j zj + ε̄)‖ ≤ 1, µα,j is bounded as

‖µα,j‖ ≤ 1α,j (53)

where 1α,j , (ζj + 1)1z,j + 2B̄j
¯̂Wj + 2 ¯̂δj

√
m with positive

unknown constants ¯̂Wj and
¯̂
δj satisfying |Ŵj| ≤

¯̂Wj and

|δ̂j| ≤
¯̂
δj, respectively. Similar to (48)-(51), there exists a

constant 1χ,j such that ‖µα,j,f ‖ ≤ 1χ,j and ‖µβ,j‖ ≤ 1χ,j.
(iii) Similar to (52), it is satisfied that

‖µz,n‖ ≤ 1z,n (54)

where 1z,n = ρ
√
m + 1χ,n−1. Then, from (33) and (39),

we obtain

µu = −(ζn + 1)(zn − z∗n)

−

(
zn

(z>n zn + ε̄)
‖Bn‖2 −

z∗n
((z∗n)>z∗n + ε̄)

‖B∗n‖
2
)
Ŵn

− δ̂n

(
tanh

(
zn
εn

)
− tanh

(
z∗n
εn

))
. (55)

Then, using ‖zn/(z>n zn + ε̄)‖ ≤ 1, µu is bounded as

‖µu‖ ≤ 1u (56)

where 1u , (ζn + 1)1z,n + 2B̄n
¯̂Wn + 2 ¯̂δn

√
m with positive

unknown constants ¯̂Wn and ¯̂δn satisfying |Ŵn| ≤
¯̂Wn and

|δ̂n| ≤
¯̂
δn, respectively. This completes the proof.

Choose the overall Lyapunov function candidate V as

V =
n∑
i=1

Vi +
n−1∑
j=1

χ>j Sjχ j (57)

where Sj > 0 is a symmetric matrix.
Remark 6: Contrary to the existing neural-network-based

adaptive control approaches considering state quantiza-
tion [34]–[36], this paper deals with the problem of unknown
control coefficient function matrices Gi in the control design
procedure. Specifically, the minimal parameter technique is
employed to tune the unknown parameters Wi, i = 1, . . . , n
including the norm of the weights of RBFNNs. The minimal
parameter technique is commonly used in the form zi‖Bi‖2Ŵi
in the existing studies for uncertain nonlinear pure-feedback
systems [12], [15], [16], [28], [29]. However, this form cannot
be directly adopted in our quantized state feedback con-
troller because the boundedness of the quantization errors
zi‖Bi‖2Ŵi − z∗i ‖B

∗
i ‖

2Ŵi cannot be analyzed based on the
boundedness of µz,i and B

∗
i in Lemma 3. Thus, we introduce

adaptive neural compensation terms zi‖Bi‖2Ŵi/(z>i zi + ε̄) in
the proposed tracker (i.e., (38) and (39)) and the inequality
zi‖Bi‖2Ŵi/(z>i zi + ε̄) ≤ B̄2i

¯̂Wi is employed in the proof of
Lemma 3.
Theorem 1: Consider an uncertain MIMO pure-feedback

nonlinear system (1) with state quantizers (7) where state
variables and control inputs are fully interconnected in the
block-triangular pure-feedback form. Then, for any initial
conditions satisfying V (0) ≤ ψ with a constant ψ > 0, the
neural-network-based quantized adaptive tracking scheme
consisting of (38)–(41) ensures uniform ultimate bounded-
ness of all closed-loop signals using quantized feedback and
the convergence of the tracking error z1 to an arbitrarily small
neighborhood of the origin.

Proof: Substituting (20), (27), (35), and (42) into the
time derivative of V yields

V̇ ≤ −
n∑
i=1

1
giM

ζiz>i Gizi −
n−1∑
j=1

χ>j Qjχ j

+ 2
n−1∑
j=1

χ>j SjHP j +
n−1∑
j=1

1
gjM

z>j Gjα̃j

+

n∑
i=1

gim
giM

z>i δ̆i −
n∑
i=1

1
giM

z>i Giδi tanh
(
zi
εi

)

−

n∑
i=1

1
giM

z>i Giδ̃i tanh
(
zi
εi

)

+

n∑
i=1

gim ε̄‖Bi‖
2Wi

giM (z
>
i zi + ε̄)

(58)
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where

δ̆j =
1
gjm

(
gjMφj + d j −

Gjzj‖Bj‖2W̃j

(z>j zj + ε̄)

)
δ̆n =

1
gnm

(
gnMφn + dn −

Gnzn‖Bn‖2W̃n

(z>n zn + ε̄)
+ Gnµu

)
with j = 1, . . . , n − 1. From Assumptions 4 and 5, and
Lemma 2, there exist positive unknown constants φ̄i, d̄i, B̄i,
and �̄W ,i such that ‖φi‖ ≤ φ̄i, ‖d i‖ ≤ d̄i, ‖Bi‖ ≤ B̄i
and |W̃i| ≤ �̄W ,i, i = 1, . . . , n and zi/(z>i zi + ε̄) satisfies
‖zi/(z>i zi+ ε̄)‖ ≤ 1 for any positive constants ε̄ ≥ 1/4. Then,
δi, i = 1, . . . , n, are defined as

‖δ̆j‖ ≤
1
gjm

(gjM φ̄j + d̄j + gjM B̄
2
j �̄W ,j

√
m) , δj (59)

‖δ̆n‖ ≤
1
gnm

(gnM φ̄n + d̄n + gnM B̄
2
n�̄W ,n

√
m+ gnM1u) , δn

(60)

where j = 1, . . . , n − 1. From (59) and (60), we obtain the
following inequality

gim
giM

z>i δ̆i −
1
giM

z>i Giδi tanh
(
zi
εi

)
≤

gim
giM

δi

(
‖zi‖ − z>i tanh

(
zi
εi

))
≤

m∑
j=1

0.2785εi,jδi. (61)

Using (61), (58) becomes

V̇ ≤ −
n∑
i=1

gim
giM

ζiz>i zi −
n−1∑
j=1

qjm‖χ j‖
2

+ 2
n−1∑
j=1

χ>j SjHP j +
n−1∑
j=1

1
gjM

z>j Gjα̃j

−

n∑
i=1

1
giM

z>i Giδ̃i tanh
(
zi
εi

)

+

n∑
i=1

gim ε̄‖Bi‖
2Wi

giM (z
>
i zi + ε̄)

+

n∑
i=1

m∑
j=1

0.2785εi,jδi (62)

where qjm is the minimum eigenvalue ofQj. Since d j, W̃j, and
δ̃j are bounded, there exist positive functions P̆ j such that

‖P1(z̄2, α̃1, x̄d , Ŵ1, δ̂1, d1)‖ ≤ P̆1(z̄2, α̃1, x̄d )

‖Pk (z̄k+1, ¯̃αk , β̄k−1, x̄d , Ŵ k ,
¯̂
δk , d̄k )‖

≤ P̆k (z̄k+1, ¯̃αk , β̄k−1, x̄d ) (63)

where k = 2, . . . , n − 1. Let us define the compact sets
zj ∈ R(3j+1)m, j = 1, . . . , n − 1, and zd ∈ R3m as
zj = {

∑j+1
l=1 z

>
l zl + 2

∑j
l=1 χ

>
l Slχ l ≤ 2ψ}, and zd =

{x>d xd + ẋ
>
d ẋd + ẍ

>
d ẍd ≤ ςd } with a constant ςd > 0. Then,

there exists a constant P̄j satisfying ‖P̆ j‖ ≤ P̄j on a compact
set zj ×zd . This yields

2χ>j SjHP j ≤
‖P̆ j‖2‖Sj‖2‖χ j‖

2

ε̆
+ ε̆

1
gjM

z>j Gjα̃j ≤
1
2
‖zj‖2 +

1
2
‖χ j‖

2

−
δ̃i

giM
z>i Gi tanh

(
zi
εi

)
≤

1
2
‖zi‖2 +

m
2
�̄2
δ,i

gim ε̄‖Bi‖
2Wi

giM (z
>
i zi + ε̄)

≤ wiB̄2i θ̄
2
i

where j = 1, . . . , n−1, i = 1, . . . , n, and ε̆ > 0 is a constant.
By selecting design parameters as ζi = giM (ζ̄i + 1)/gim ,
ζn = gnM (ζ̄n + 1/2)/gnm , and qim = 1/2+ P̄2i ‖Si‖

2/ε̆ + q̄im ,
i = 1, . . . , n− 1, with positive constants ζ̄i, ζ̄n, and q̄im , (62)
becomes

V̇ ≤ −
n∑
i=1

ζ̄i‖zi‖2 −
n−1∑
j=1

q̄jm‖χ j‖
2

−

n−1∑
j=1

(
1−
‖P̆ j‖2

P̄2j

) P̄2j ‖Sj‖2‖χ j‖2
ε̆

+ C (64)

where C =
∑n

i=1(wiB̄
2
i θ̄

2
i +m�̄

2
δ,i/2+

∑m
j=1 0.2785εi,jδi)+

ε̆(n − 1). Since ‖P̆ j‖ ≤ P̄j on V = ψ , the
inequality (64) becomes V̇ ≤ −ζV + C where
ζ = mini=1,...,n,j=1,...,n−1{2ζ̄igiM , q̄jm/λmax(Sj)}. When ζ >
C/ψ , V̇ < 0 on V = ψ , which leads to the invariant set
V ≤ ψ . Then, it is shown that zi and χ j, i = 1, . . . , n,
j = 1, . . . , n − 1, are bounded. From the boundedness of z1
and xd , x1 is bounded and α1 in (17) is bounded according to
the boundedness of Ŵ1 and δ̂1 from Lemma 2. Moreover, the
boundedness of α1 results in the boundedness of α1,f and β1
with the stable filter (10). Then, x2 is bounded according to
the boundedness of z2 and α1,f . Using a similar argument,
xi,αj,αj,f ,β j, and v are bounded for i = 1, . . . , n, j =
1, . . . , n− 1. Thus, using Lemma 3, α∗j ,α

∗
j,f and β

∗
j are also

bounded and we conclude that the actual control input u is
bounded. Furthermore, (1/2g1M )z

>

1 z1 ≤ V (t) ≤ e−ζ tV (0)+
(C/ζ )(1 − e−ζ t ) is satisfied from V̇ ≤ −ζV + C . Thus, the
tracking error z1 is reduced to an adjustable compact setϒ =
{z1| ‖z1‖ ≤

√
2g1MC/ζ } by choosing design parameters.

Remark 7: The control performance can be improved by
reducing the compact setϒ in the proof of Theorem 1. In this
direction, the guidelines for the design parameters of the
proposed adaptive quantized state feedback controller are as
follows.

(i) Increasing the control gains ζi, i = 1, . . . , n, helps in
increasing ζ and consequently ϒ can be reduced.

(ii) C in ϒ can be reduced by reducing the quantization
level ρ as long as the network resources allow, and by decreas-
ing the design parameters εi,j, i = 1, . . . , n, j = 1, . . . ,m.
Then, the compact set ϒ can be reduced.

(iii) Selecting the filter constants $ i and ξ i appropri-
ately helps in increasing the minimum eigenvalue qim of Qi,
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FIGURE 2. Tracking results for Example 1 (a) x1,d and y1 (b) x2,d and y2.

i = 1, . . . , n − 1, which subsequently increases ζ . Conse-
quently, the compact set ϒ is then reduced.

(iv) Increasing the tuning gains 0W ,i and 0δ,i, i = 1, . . . , n
and fixing σW ,i and σδ,j as small values help to increase the
learning speed of the estimated vectors Ŵi and parameters δ̂j.
Remark 8: In [43], a fuzzy adaptive output feedback con-

trol approach was presented for MIMO nonlinear systems
with full-states prescribed performance in finite-time. In [44],
a finite-time adaptive quantized control problem was investi-
gated for stochastic systems in presence of input quantiza-
tion. The finite-time controllers designed in [43], [44] are
based on non-quantized state variables (i.e., continuous state
feedback information). To apply the proposed state-quantized
design approach to the finite-time control problem, a finite-
time control design ensuring bounded quantization errors,
as reported in Lemma 3, should be newly developed. There-
fore, it will be interesting to address the finite-time control
problem based on quantized state feedback of MIMO nonlin-
ear pure-feedback systems in future studies.

IV. SIMULATION RESULTS
To demonstrate the effectiveness of our theoretical tracking
strategy in the presence of state quantization, we present
two examples including interconnected inverted pendulums.
In addition, we compare the tracking performance of the

FIGURE 3. Control errors z1,1 and z1,2 for Example 1.

FIGURE 4. Control inputs u1 and u2 for Example 1.

FIGURE 5. Estimates of W1, W2, δ1 and δ2 for Example 1.

proposed state-quantized controller and the existing tracking
controller [11] designed without state quantization.
Example 1: The following MIMO nonlinear system is

considered:

ẋ1 = f 1(x1, x2)+ d1
ẋ2 = f 2(x̄2,u)+ d2
y1 = x1 (65)

where x1 = [x1,1, x1,2]>, x2 = [x2,1, x2,2]>, and

f 1(x1, x2) =
[
(4+ sin(x1,1x1,2))x2,1 + 0.3 cos(x2,1)
(2+ cos(x1,1x1,2))x2,2 + 0.7 sin(x2,2)

]
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f 2(x̄2,u) =

[
x2,2e

−x1,1x22,1 + (2+ x21,2)u1 + 0.5 cos(u1)

x1,2e
−x2,1x21,2 + (3+ x21,1)u2 + 0.3 sin(u2)

]

d1 =
[
0.15 cos(0.5t)
0.15 sin(0.5t)

]
, d2 =

[
0.1 cos(t)
0.1 sin(t)

]
.

Here, the unknown nonaffine nonlinearities f 1 and f 2 include
the interactions of the state variables and control inputs.
The desired signal vector is set to xd = [−0.3 sin(0.5t) +
0.5 cos(0.25t + π/3), 0.3 sin(0.5t) + 0.5 cos(0.25t)]>. The
initial conditions of the state variables are set as x1 = [0, 0]>

and x2 = [0, 0]>. The quantization level is set to ρ =
0.005. The design parameters of the proposed state-quantized
adaptive tracker are chosen to be ζ1 = 5, ζ2 = 7, 0W ,i = 3,
0δ,i = 1.5, σW ,i = 0.01, σδ,i = 0.1, εi,1 = εi,2 = 0.08, ε̄ =
0.25, ξ1,1 = ξ1,2 = 0.707, $1,1 = 80, and $1,2 = 80 where
i = 1, 2. The control gains and weight tuning parameters of
the existing adaptive tracker [11] are set to be identical to
those of the proposed tracker.

The quantized state feedback tracking results and errors
of the proposed state-quantized adaptive tracker and the pre-
vious adaptive tracker [11] are compared in Figs. 2 and 3.
The time responses of the system outputs and desired signals
are compared in Fig. 2 and those of the tracking errors are
displayed in Fig. 3. The tracking errors rapidly converge to
nearly zero. Although the proposed tracker is designed under
state quantization, its tracking performance is similar to that
of the unquantized state feedback tracker [11] for MIMO
pure-feedback nonlinear systems. Fig. 4 shows the control
inputs u1 and u2 of the proposed approach. The estimates of
Wi and δi, i = 1, 2 of the proposed approach are depicted in
Fig. 5. These results demonstrate that satisfactory tracking
performance is achieved by the proposed neural-network-
based quantized state feedback tracker while ensuring that all
the state variables and tracking errors are bounded.
Example 2: In this example, two inverted pendulums inter-

connected by a spring are taken as an example to verify the
effectiveness of the proposed control strategy. The model is
expressed as follows [45]:

J1θ̈1 = m1gLp sin(θ1)− 0.5ScLp(Ld − S`) cos(θ1 − θ0)+ u1
J2θ̈2 = m2gLp sin(θ2)− 0.5ScLp(Ld − S`) cos(θ2 − θ0)+ u2

(66)

where θ1 and θ2 are pendulum angular positions, u1 and u2
are control torques, m1 = 1.5 kg and m2 = 1.2 kg are the
masses, Lp = 0.4 m is the pendulum length, J1 = m1L2p and
J2 = m2L2p are the moments of inertia, D = 0.3 m denotes
the ground distance between two pendulums, Sc = 45 N/m
and S` = 0.5 m represent the spring constant and spring
natural length, respectively, and Ld is the distance between
the connection points, which is expressed as follows

Ld =

√
D2 + dLp(sin θ1 − sin θ2)+

L2p
2
(1− cos(θ2 − θ1)).

FIGURE 6. Tracking results for Example 2 (a) x1,d and y1 (b) x2,d and y2.

FIGURE 7. Control errors z1,1 and z1,2 for Example 2.

The relative angular position θ0 can be defined as

θ0 = tan−1
(

0.5Lp(cos θ2 − cos θ1)
D+ 0.5Lp(sin θ1 − sin θ2)

)
.

Let us define the state variables x1,j = θj and x2,j = θ̇j,
and assume that the nonaffine nonlinear uncertainties 1f1,j
and 1f2,j and the external disturbances d1,j and d2,j, j =
1, 2, influence the system, as reported in [46]. The dynamics
of (66) can then be rewritten as

ẋ1,1 = f1,1(x1, x2,1)+ d1,1
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FIGURE 8. Control inputs u1 and u2 for Example 2.

FIGURE 9. Estimates of W1, W2, δ1 and δ2 for Example 2.

ẋ1,2 = f1,2(x1, x2,2)+ d1,2
ẋ2,1 = f2,1(x̄2, u1)+ d2,1
ẋ2,2 = f2,2(x̄2, u2)+ d2,2 (67)

where x1 = [x1,1, x1,2]>, x2 = [x2,1, x2,2]>, x̄2 =
[x>1 , x

>

2 ]
>,

f1,1 = x2,1 +1f1,1(x1, x2,1)

f1,2 = x2,2 +1f1,2(x1, x2,2)

f2,1 = J−11 [m1gLp sin(x1,1)− 0.5ScLp cos(x1,1 − θ0)

× (Ld − S`)+ u1]+1f2,1(x̄2, u1)

f2,2 = J−12 [m2gLp sin(x1,2)− 0.5ScLp cos(x1,2 − θ0)

× (Ld − S`)+ u2]+1f2,2(x̄2, u2)

d1,1 = 0.1 cos(2t), d1,2 = 0.1 sin(2t)

d2,1 = 0.2 sin(t), d2,2 = 0.2 cos(t)

with 1f1,1 = 0.3 cos(x21,1x1,2)x2,1, 1f1,2 = 0.2 sin(x1,1
×x1,2)x2,2, 1f2,1 = J−11 [(0.2 + 0.1 cos(x1,1x1,2)) ×u1], and
1f2,2 = J−12 [(0.2+0.1 cos(x2,1x2,2))u2]. The desired signals
are set to xd = [0.5 sin(0.3t)+0.3 cos(π t/3), 0.3 sin(π t/4)+
0.5 cos(0.3t)]>. The initial conditions of the state variables
are set to x1 = [x1,1, x1,2]> = [0, 0]> and x2 =
[x2,1, x2,2]> = [0, 0]>. The quantization level is set to ρ =
0.01. The design parameters are chosen as ζi = 18, 0W ,1 =
100, 0W ,2 = 10, 0δ,1 = 10, 0δ,2 = 0.2, σW ,i = 0.1,
σδ,1 = 0.5, σδ,1 = 1, εi,1 = εi,2 = 0.1, ε̄ = 0.25,
ξ1,1 = ξ1,2 = 0.707, $1,1 = 60, and $1,2 = 80 where
i = 1, 2. The control gains and weight tuning parameters
of the existing adaptive tracker [11] are set to be identical to
those of the proposed tracker.

The tracking results and errors for Example 2 are com-
pared in Figs. 6 and 7. The tracking results of the position
angles y1 and y2 are compared in Fig. 6. Fig. 7 shows a
comparison of the tracking errors. Despite the quantization
of state feedback signals, the proposed approach has a sim-
ilar tracking performance to that of the previous adaptive
tracker [11]. Fig. 8 illustrates the control inputs u1 and u2 of
the proposed approach. The estimates of Wi and δi, i = 1, 2,
of the proposed approach are displayed in Fig. 9. From these
results, we conclude that the proposed adaptive neural tracker
using quantized state feedback is effective in coping with
unknown nonaffine nonlinearities of MIMO pure-feedback
systems and state quantization.

V. CONCLUSION
We have presented a neural-network-based adaptive
quantized state feedback control design and stability anal-
ysis strategies for uncertain MIMO block-triangular pure-
feedback nonlinear systems with state quantization. The key
aspect of the proposed strategy is that adaptive neural com-
pensation terms using quantized states are derived to ensure
the boundedness of the quantization errors of the closed-loop
signals and to deal with unknown control coefficient func-
tions derived from recursive designs. The adaptive neural
tracker and its adaptive laws have been designed via quan-
tized states, and the quantization errors have been compen-
sated by the adaptive laws. By constructing technical lemmas
for quantization errors and adaptive parameters, the uniform
ultimate boundedness of all signals of the closed-loop system
using quantized feedback is proved based on the Lyapunov
stability analysis. Finally, the simulation results demonstrate
that the proposed theoretical strategy provides effective con-
trol with good tracking performance. The neural-network-
based quantized feedback tracking problem in the presence
of measurement noise or faults will be investigated in future
studies.

REFERENCES
[1] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and Adap-

tive Control Design. New York, NY, USA: Wiley, 1995.
[2] D. Swaroop, J. K. Hedrick, P. P. Yip, and J. C. Gerdes, ‘‘Dynamic surface

control for a class of nonlinear systems,’’ IEEE Trans. Autom. Control,
vol. 45, no. 10, pp. 1893–1899, Oct. 2000.

[3] J. A. Farrell, M. Polycarpou,M. Sharma, andW.Dong, ‘‘Command filtered
backstepping,’’ IEEE Trans. Autom. Control, vol. 54, no. 6, pp. 1391–1395,
Jun. 2009.

[4] Q. Shen and P. Shi, ‘‘Distributed command filtered backstepping consensus
tracking control of nonlinear multiple-agent systems in strict-feedback
form,’’ Automatica, vol. 53, pp. 120–124, Mar. 2015.

[5] T. Zhang, S. S. Ge, and C. C. Hang, ‘‘Adaptive neural network control for
strict-feedback nonlinear systems using backstepping design,’’ Automat-
ica, vol. 36, no. 12, pp. 1835–1846, 2000.

[6] S. S. Ge and C. Wang, ‘‘Adaptive NN control of uncertain nonlinear pure-
feedback systems,’’ Automatica, vol. 38, no. 4, pp. 671–682, Apr. 2002.

[7] Q. K. Shen, P. Shi, J. W. Zhu, S. Y. Wang, and Y. Shi, ‘‘Neural networks-
based distributed adaptive control of nonlinear multiagent systems,’’ IEEE
Trans. Neural Netw. Learn. Syst., vol. 31, no. 3, pp. 1010–1021, Mar. 2020.

[8] Q. Shen, P. Shi, R. K. Agarwal, and Y. Shi, ‘‘Adaptive neural network-
based filter design for nonlinear systems with multiple constraints,’’ IEEE
Trans. Neural Netw. Learn. Syst., vol. 32, no. 7, pp. 3256–3261, Jul. 2021.

[9] S. Tong and Y. Li, ‘‘Adaptive fuzzy output feedback control of MIMO
nonlinear systems with unknown dead-zone inputs,’’ IEEE Trans. Fuzzy
Syst., vol. 21, no. 1, pp. 134–146, Feb. 2013.

38740 VOLUME 10, 2022



B. M. Kim, S. J. Yoo: Adaptive Neural Control of Uncertain MIMO Nonlinear Pure-Feedback Systems via Quantized State Feedback

[10] Y. Cui, H. Zhang, Y. Wang, and H. Jiang, ‘‘A fuzzy adaptive tracking
control for MIMO switched uncertain nonlinear systems in strict-feedback
form,’’ IEEE Trans. Fuzzy Syst., vol. 27, no. 12, pp. 2443–2452, Dec. 2019.

[11] Z. Chen, S. S. Ge, Y. Zhang, and Y. Li, ‘‘Adaptive neural control of
MIMO nonlinear systems with a block-triangular pure-feedback con-
trol structure,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 11,
pp. 2017–2029, Nov. 2014.

[12] Y. Zhou,W. Dong, Y. Chen, R. Zuo, Z. Liu, and S. Dong, ‘‘Robust adaptive
control of MIMO pure-feedback nonlinear systems via improved dynamic
surface control technique,’’ IEEE Access, vol. 7, pp. 96672–96685, 2019.

[13] A. Boulkroune, L. Merazka, and H. Li, ‘‘Fuzzy adaptive state-feedback
control scheme of uncertain nonlinear multivariable systems,’’ IEEE Trans.
Fuzzy Syst., vol. 27, no. 9, pp. 1703–1713, Sep. 2019.

[14] M. Haddad, F. Zouari, A. Boulkroune, and S. Hamel, ‘‘Variable-structure
backstepping controller for multivariable nonlinear systems with actuator
nonlinearities based on adaptive fuzzy system,’’ Soft Comput., vol. 23,
no. 23, pp. 12277–12293, Dec. 2019.

[15] H. Liu, T. Zhang, and X. Xia, ‘‘Adaptive neural dynamic surface control of
MIMO pure-feedback nonlinear systems with output constraints,’’ Neuro-
computing, vol. 333, pp. 101–109, Mar. 2019.

[16] Y. Hua and T. Zhang, ‘‘Adaptive neural event-triggered control of MIMO
pure-feedback systems with asymmetric output constraints and unmodeled
dynamics,’’ IEEE Access, vol. 8, pp. 37684–37696, 2020.

[17] G. N. Nair, ‘‘Quantized control and data-rate constraints,’’ in Encyclopedia
of Systems and Control. Berlin, Germany: Springer, 2015, pp. 1–9.

[18] R.W. Brocket andD. Liberzon, ‘‘Quantized feedback stabilization of linear
systems,’’ IEEE Trans. Autom. Control, vol. 45, no. 7, pp. 1279–1289,
Jul. 2000.

[19] D. Liberzon, ‘‘Hybrid feedback stabilization of systems with quantized
signals,’’ Automatica, vol. 39, no. 9, pp. 1543–1554, Sep. 2003.

[20] S.W.Yun, Y. J. Choi, and P. G. Park, ‘‘H2 control of continuous-time uncer-
tain linear systems with input quantization and matched disturbances,’’
Automatica, vol. 45, pp. 2435–2439, Oct. 2009.

[21] T. Hayakawa, H. Ishii, and K. Tsumura, ‘‘Adaptive quantized control
for nonlinear uncertain systems,’’ Syst. Control Lett., vol. 58, no. 9,
pp. 625–632, 2009.

[22] J. Zhou, C. Wen, and G. Yang, ‘‘Adaptive backstepping stabilization of
nonlinear uncertain systems with quantized input signal,’’ IEEE Trans.
Autom. Control, vol. 59, no. 2, pp. 460–464, Feb. 2014.

[23] J. Zhou, C. Wen, and W. Wang, ‘‘Adaptive control of uncertain nonlinear
systems with quantized input signal,’’ Automatica, vol. 95, pp. 152–162,
Sep. 2018.

[24] Y. H. Choi and S. J. Yoo, ‘‘Robust event-driven tracking control with preas-
signed performance for uncertain input-quantized nonlinear pure-feedback
systems,’’ J. Franklin Inst., vol. 355, no. 8, pp. 3567–3582, May 2018.

[25] S. Song, J. H. Park, B. Zhang, and X. Song, ‘‘Composite adaptive fuzzy
finite-time quantized control for full state-constrained nonlinear systems
and its application,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 52, no. 4,
pp. 2479–2490, Apr. 2022, doi: 10.1109/TSMC.2021.3051352.

[26] W. Liu, Q. Ma, S. Xu, and Z. Zhang, ‘‘Adaptive finite-time event-
triggered control for nonlinear systems with quantized input signals,’’ Int.
J. Robust Nonlinear Control, vol. 31, no. 10, pp. 4764–4781, 2021, doi:
10.1002/rnc.5510.

[27] K. Sun, H. R. Karimi, and J. Qiu, ‘‘Finite-time fuzzy adaptive quantized
output feedback control of triangular structural systems,’’ Inf. Sci., vol. 557,
pp. 153–169, May 2021.

[28] B. Niu, H. Li, T. Qin, and H. R. Karimi, ‘‘Adaptive NN dynamic surface
controller design for nonlinear pure-feedback switched systems with time-
delays and quantized input,’’ IEEE Trans. Syst., Man, Cybern., Syst.,
vol. 48, no. 10, pp. 1676–1688, May 2018.

[29] W. Liu, C. C. Lim, P. Shi, and S. Xu, ‘‘Observer-based tracking con-
trol for MIMO pure-feedback nonlinear systems with time-delay and
input quantisation,’’ Int. J. Control, vol. 90, no. 11, pp. 2433–2448,
2016.

[30] L. N. Bikas and G. A. Rovithakis, ‘‘Combining prescribed tracking perfor-
mance and controller simplicity for a class of uncertain MIMO nonlinear
systems with input quantization,’’ IEEE Trans. Autom. Control, vol. 64,
no. 3, pp. 1228–1235, Mar. 2019.

[31] K. Xie, Z. Lyu, Z. Liu, Y. Zhang, and C. L. P. Chen, ‘‘Adaptive neural
quantized control for a class of MIMO switched nonlinear systems with
asymmetric actuator dead-zone,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 31, no. 6, pp. 1927–1941, Jun. 2020.

[32] K. Zhao and J. Chen, ‘‘Adaptive neural quantized control of MIMO non-
linear systems under actuation faults and time-varying output constraints,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 9, pp. 3471–3481,
Sep. 2020.

[33] J. Zhou, C. Wen, W. Wang, and F. Yang, ‘‘Adaptive backstepping control
of nonlinear uncertain systems with quantized states,’’ IEEE Trans. Autom.
Control, vol. 64, no. 11, pp. 4756–4763, Nov. 2019.

[34] Y. H. Choi and S. J. Yoo, ‘‘Quantized feedback adaptive command filtered
backstepping control for a class of uncertain nonlinear strict-feedback
systems,’’ Nonlinear Dyn., vol. 99, no. 4, pp. 2907–2918, Mar. 2020.

[35] Y. H. Choi and S. J. Yoo, ‘‘Neural-networks-based adaptive quantized feed-
back tracking of uncertain nonlinear strict-feedback systemswith unknown
time delays,’’ J. Franklin Inst., vol. 357, no. 15, pp. 10691–10715,
Oct. 2020.

[36] Y. H. Choi and S. J. Yoo, ‘‘Distributed quantized feedback design strategy
for adaptive consensus tracking of uncertain strict-feedback nonlinear
multiagent systems with state quantizers,’’ IEEE Trans. Cybern., early
access, Jan. 21, 2021, doi: 10.1109/TCYB.2021.3049488.

[37] W. Meng, Q. Yang, and Y. Sun, ‘‘Adaptive neural control of nonlinear
MIMO systems with time-varying output constraints,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 26, no. 5, pp. 1074–1085, May 2015.

[38] M. M. Polycarpou, ‘‘Stable adaptive neural control scheme for nonlin-
ear systems,’’ IEEE Trans. Autom. Control, vol. 41, no. 3, pp. 447–451,
Mar. 1996.

[39] G.-D. Hu and M. Liu, ‘‘The weighted logarithmic matrix norm and bounds
of the matrix exponential,’’ Linear Algebra Appl., vol. 390, pp. 145–154,
Oct. 2004.

[40] J. Park and I. W. Sandberg, ‘‘Universal approximation using radial-basis-
function networks,’’Neural Comput., vol. 3, no. 2, pp. 246–257,Mar. 1991.

[41] C. Wang, D. J. Hill, S. S. Ge, and G. R. Chen, ‘‘An ISS-modular approach
for adaptive neural control of pure-feedback systems,’’Automatica, vol. 42,
no. 5, pp. 625–635, 2006.

[42] A. J. Kurdila, F. J. Narcowich, and J. D.Ward, ‘‘Persistency of excitation in
identification using radial basis function approximants,’’ SIAM J. Control
Optim., vol. 33, no. 2, pp. 625–642, 1995.

[43] S. Sui, H. Xu, S. Tong, and C. L. P. Chen, ‘‘A novel prescribed performance
fuzzy adaptive output feedback control for nonlinear MIMO systems in
finite-time,’’ IEEE Trans. Fuzzy Syst., early access, Oct. 14, 2021, doi:
10.1109/TFUZZ.2021.3119750.

[44] S. Sui, C. L. P. Chen, S. Tong, and S. Feng, ‘‘Finite-time adaptive quantized
control of stochastic nonlinear systems with input quantization: A broad
learning system based identification method,’’ IEEE Trans. Ind. Electron.,
vol. 67, no. 10, pp. 8555–8565, Oct. 2020.

[45] W. KhanLin, Y. Lin, S. U. Khan, and N. Ullah, ‘‘Quantized adaptive
decentralized control for interconnected nonlinear systems with actuator
faults,’’ Appl. Math. Comput., vol. 320, pp. 175–189, Mar. 2018.

[46] R. Zuo, X. Dong, Y. Liu, Z. Liu, and W. Zhang, ‘‘Adaptive neural control
for MIMO pure-feedback nonlinear systems with periodic disturbances,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 6, pp. 1756–1767,
Jun. 2019.

BYUNG MO KIM received the B.S. and
M.S. degrees from the School of Electrical
and Electronics Engineering, Chung-Ang Uni-
versity, Seoul, South Korea, in 2019 and 2021,
respectively. His current research interests include
non-linear adaptive control and intelligent control
using neural networks.

SUNG JIN YOO (Member, IEEE) received
the B.S., M.S., and Ph.D. degrees in elec-
trical and electronic engineering from Yonsei
University, Seoul, South Korea, in 2003, 2005,
and 2009, respectively. He was a Postdoctoral
Researcher with the Department of Mechani-
cal Science and Engineering, University of Illi-
nois at Urbana-Champaign, Champaign, IL, USA,
from 2009 to 2010. Since 2011, he has been with
the School of Electrical and Electronics Engineer-

ing, Chung-Ang University, Seoul, where he is currently a Professor. His
research interests include non-linear adaptive control, decentralized control,
distributed control, fault-tolerant control, and neural networks theories, and
their applications to robotic, flight, non-linear time-delay systems, large-
scale systems, and multi-agent systems.

VOLUME 10, 2022 38741

http://dx.doi.org/10.1109/TSMC.2021.3051352
http://dx.doi.org/10.1002/rnc.5510
http://dx.doi.org/10.1109/TCYB.2021.3049488
http://dx.doi.org/10.1109/TFUZZ.2021.3119750

