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REDUCING AND TOROIDAL DEHN FILLINGS ON
3-MANIFOLDS BOUNDED BY TWO TORI

SANGYOP LEE

ABSTRACT. We show that if M is a simple 3-manifold bounded by two tori such
that M(r1) is reducible and M (r2) is toroidal, then A(ri,r2) < 2, answering a
question raised by Gordon. To do this, we first prove that there exists only one
simple 3-manifold having two Dehn fillings of distance 3 apart one of which yields
a reducible manifold and the other yields a 3-manifold containing a Klein bottle.

1. Introduction

Let M be a compact connected orientable 3-manifold with a torus boundary
component dyM and r a slope, the isotopy class of an essential simple closed
curve, on dg M. The manifold obtained by r-Dehn filling is defined to be M (r) =
M U J, where J is a solid torus glued to M along dyM so that r bounds a disk
in J.

Following [22]|, we say that M is simple if it contains no essential sphere,
torus, disk or annulus. For two slopes r; and r on 9yM, the distance A(ry,rs)
denotes their minimal geometric intersection number. For simple manifolds M,
if both M (r1) and M(rs) fail to be simple, then the upper bounds for A(ry,r2)
have been established in various cases. See [8] for more details.

For example, Oh [18] and independently Wu [23] showed that for a simple
manifold M, if M(ry) is reducible and M(ry) is toroidal then A(ry,re) < 3.
Furthermore, Wu [22] also showed that if one puts an additional condition
Hy(M,0M — 0gM) # 0, then A(ry,72) < 1. In particular, this homological
condition holds if M has a boundary component with genus greater than one or
if M has more than two boundary tori. Note that M has no boundary sphere, for
M is simple. It is natural then to consider the following question raised by Gor-
don [8, Question 5.1]; if M consists of two tori, is it possible that A(ry,r2) = 37
In this paper we give a negative answer to the question.

Theorem 1.1. Let M be a simple 3-manifold with boundary a union of two
tori. If r1 and ro are slopes on one boundary component OyM such that M (rq)
is reducible and M (rq) is toroidal, then A(ry,ry) < 2.

Received by the editors February 21, 2005.
2000 Mathematics Subject Classification. 57N10.
Key words and phrases. Reducible manifolds, Toroidal manifolds, Dehn fillings.

287



288 S. LEE

Our theorem is sharp because Eudave-Munioz and Wu [5, Theorem 2.6] have
given infinitely many simple manifolds which are bounded by two tori and admit
reducing and toroidal Dehn fillings at distance 2.

Oh [19] showed that if one Dehn filling yields a reducible manifold and another
yields a manifold containing a Klein bottle, then the distance between their filling
slopes is not greater than 3. On the other hand, Boyer and Zhang [1, p.286]
gave an example of a simple manifold showing Oh’s result is sharp. This simple
manifold, which we shall denote by W (6), is obtained from the exterior W of the
Whitehead link by performing Dehn filling on its one boundary component with
slope 6 under the standard meridian-longitude coordinates. In this paper, we
shall show that W (6) is the only simple manifold having two such Dehn fillings
at distance 3.

Theorem 1.2. Let M be a simple manifold. If M(ry) is reducible and M (r2)
contains a Klein bottle with A(ry,r2) = 3, then M is homeomorphic to W (6).

Corollary 1.3. Let M be a simple manifold. If M (ry) is reducible and M (r3) is
a Seifert fibered manifold over the 2-sphere with three exceptional fibers of orders
2,2,n, then A(ry,ry) < 2.

It is still unknown whether or not the upper bound 2 is the best possible.

2. The intersection graphs

From now on we assume that M is a simple 3-manifold with a torus boundary
component JyM and that r; and ro are slopes on dgM of distance 3 apart such
that M (ry) is reducible and M (r2) contains an essential torus or a Klein bottle.

Over all reducing spheres in M (r1) which intersect the attached solid torus
Jp in a family of meridian disks, we choose a 2-sphere 131 so that F| = F 1N M
has the minimal number, say n, of boundary components. Similarly let F, be
either an essential torus or a Klein bottle in M (r2) which intersects the attached
solid torus Jo in a family of meridian disks, the number of which, say ns, is
minimal over all such surfaces and let F5 = 1/7\2 N M. Let uy,us,...,u,, be the
disks of ﬁl N Ji, labelled as they appear along .J;. Similarly let vy, vs,..., v,
be the disks of 1/7\2 N Jy. Then Fj is an essential planar surface, and F5 is an
essential punctured torus or a punctured Klein bottle in M. We may assume
that F; and F5 intersect transversely and the number of components in F; N Fy
is minimal over all such surfaces. Then no circle component of F; N F5, bounds a
disk in either F} or F5 and no arc component is boundary-parallel in either F}
or F5. The components of OF; are numbered 1,2,...,n; according to the labels
of the corresponding disks of F; N J;. We obtain a graph G; in F; by taking
as the (fat) vertices of G; the disks in E N J; and as the edges of G; the arc
components of F; N Fy in F;. Each endpoint of an edge of GG; has a label, that is,
the number of the corresponding component of OF}, ¢ # j. Since each component
of OF; intersects each component of 0F; in A(= A(ry,re) = 3) points, the labels
1,2,...,n; appear in order around each vertex of G; repeatedly A times.
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For a graph G, the reduced graph G of G is defined to be the graph obtained
from G by amalgamating each family of parallel edges into a single edge. For
an edge a of G, the weight of a, denoted by w(a), is the number of edges of G
represented by a.

Although F5 may be non-orientable, we can establish a parity rule. In fact,
this is a natural generalization of the usual one. First, orient all components of
OF; so that they are mutually homologous on dyM, i = 1,2. Let e be an edge in
G;. Since e is a properly embedded arc in F}, it has a disk neighborhood D in F;
with 0D = aUbU cUd, where a and c¢ are arcs in 0F; with induced orientation
from OF;. On D, if a and ¢ have opposite directions, then e is called positive,
otherwise negative. See Figure 1. Then we have the following.

Parity rule. An edge is positive on one graph if and only if it is negative on
the other graph.

positive negative

FIGURE 1

Orient the core of J;. If 131 is orientable, we can give a sign to each vertex
of GG; according to the sign of its intersection with the core of J;. Two vertices
(possibly equal) of G; are called parallel if they have the same sign, otherwise
antiparallel. A positive edge connects parallel vertices, while a negative one
connects antiparallel vertices. Let G;r denote the subgraph of G; consisting of
all the vertices and all the positive edges of G;.

Let G be G1 or G5 and let x be a label of G. An z-edge is an edge of G with
label x at one endpoint. An z-cycle is a cycle of positive x-edges which can be
oriented so that the tail of each edge has label x. A cycle in G is a Scharlemann
cycle if it bounds a disk face, and the edges in the cycle are all positive and
have the same label pair. If the label pair is {z,y}, then we refer to such a
Scharlemann cycle as an (x,y)-Scharlemann cycle. In particular, a Scharlemann
cycle of length 2 is called an S-cycle. An edge in G is called level if its endpoints
have the same label. A set of four parallel edges {e1, e2, €3, e4} of G5 is called an
extended S-cycle if {eq, e3} is an S-cycle and ey, is adjacent to ex41 (k =1,2,3).

Lemma 2.1. (1) G2 has no positive level edge.
(2) G2 has no extended S-cycle.

(3) Suppose ﬁj 1s not a Klein bottle. If G; has a Scharlemann cycle, F\j 18
separating, i # j.
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Any two Scharlemann cycles of Go have the same label set.

Any positive edge o of Go has w(a) < ny/2 + 1.

Any edge a of G5 has w(a) < ny.

Let {eq,...,ex} be a set of parallel positive edges of Gy with e; adjacent
toe1 (l=1,...,k—1). If the sets of labels at two ends of {e1,...,er}
have a label in common, then either {e1,e2} or {ex—_1,ex} forms an S-
cycle. Moreover, the common label belongs to the label set of the S-cycle.

NN S
~N O Ot

Proof. (1) By the parity rule a positive level edge in G5 is a negative loop in G,
which has a Mobius band neighborhood in 2 1, contradicting that P 1 is a sphere.
(2)—(4) follow from [23, Lemma 1.2], (5) and (6) follow from [23, Lemma 1.5],
and (7) follows from (2),(4) and [4, Lemma 2.6.6]. O

Lemma 2.2. ny = 2 when ﬁg 1s a torus, and no = 1 when ﬁg 1s a Klein bottle.

Proof. This is a part of the main result in [17]. O

3. Klein bottle

Throughout this section we assume that ﬁg is a Klein bottle. Then G5 has
a single vertex v by Lemma 2.2. The reduced graph G, is a subgraph of the
graphs shown in Figure 2. Whether G is a subgraph of the graph in Figure 2(a)
or (b), there are three edge classes, a, 3 and . An edge in G or G5 is called an
a-edge, B-edge or y-edge according as, being regarded as an edge in G, it lies
in class a, B or . In G4, all y-edges are positive, while the others are negative.

oa |y o
JAN 7/ JAN
v W ﬁ v N\ ﬁ
(a) (b)
FIGURE 2

Lemma 3.1. The weights of the reduced edges o and 3 in Go are positive.

Proof. Assume w(a) = 0. By Lemma 2.1(5) and (6), w(8) = n; —1 and w(y) =
ni/2 + 1. If G is a subgraph of the graph in Figure 2(a), then G5 has two
positive level edges, contradicting Lemma 2.1(1). If Gy is a subgraph of the
graph in Figure 2(b), then G5 contains an S-cycle, so F} is separating and nq
is even. However, for any (-edge in G2, which is negative, the two labels at
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its endpoints have distinct parities. This contradicts the parity rule. Similarly,
w(B) > 0. O

Thus the edges in G5 cut F, into one or two disks, so there is no circle
component of Fy N F5.

Orienting the negative edges in Gy as shown in Figure 2, we can think of G
as a directed graph. If a disk face of G| is bounded by a circuit of consistently
oriented edges, we call it a cycle face. Throughout this section, let I(«) (resp.

I5(a)) denote the shortest interval on Jv containing a-edge endpoints at the
head of «v (resp. at the tail of ). And similarly for I;(5) and I2(03).

Lemma 3.2. Gf has a cycle face.

Proof. First, assume that G is a subgraph of the graph in Figure 2(a). Then
w(a) + w(B) > ny. Otherwise, w(a) + w(f) = ny — 1 or < ny — 2. In the
first case, the outermost edges in the family of v-edges would be positive level
edges, and in the latter case w(y) > ni/2 + 2. Both are absurd by Lemma
2.1(1) and (5). Hence each label = appears at least once on each of I1(a) U I1(3)
and I(a) U I(3). This means that in G, each vertex u, of Gi has an edge
pointing in and an edge pointing out. Starting at any vertex of G, one can
construct a path through the oriented edges always consistent with orientations.
Ultimately the path hits the same vertex to create a cycle. Among such cycles,
an innermost one bounds a disk face of G and we are done.
Next, assume that G is a subgraph of the graph in Figure 2(b).

Claim. If G} has a sink or source at a vertex u,, then x is a label of an S-cycle
of Gg.

Proof. Suppose for example that G]L has a sink at u,. We first show that wu,
is univalent in G7. If u, were trivalent in G, then u, would have two (say)
a-edges pointing in. This means that label z would appear twice on I («), so
w(a) > ny, contradicting Lemma 2.1(6). Thus u, has valency at most 2 in G .
Suppose 1, is bivalent in G]. Then an a-edge and a (3-edge are incident to wu,
(otherwise, two (say) a-edges would be incident, contradicting Lemma 2.1(6) as
above). Since u, is trivalent in G7, a vy-edge is incident to u, in G;. Orient
v so that its head lies between the tail of o and the head of 3. Then in Gs,
label x appears at the heads of a, 3 and either at the head of v or at the tail
of 7, say, at the head. Then x appears twice at the heads of # and ~, implying
w(B) + w(y) > ny, and = does not appear at the tails of 5 and ~, implying
w(f) + w(y) < ny. Two inequalities give a contradiction. Thus u, is univalent
in G7.

In G1, two vy-edges are incident to u,. In G5, by Lemma 2.1(6), label z
appears at both ends of 4. By Lemma 2.1(7) the y-edge family contains an
S-cycle and x is a label of this S-cycle. U

Suppose G has no cycle face. Then G has a sink or source by [10, Lemma
2.3.1]. The above claim and [19, Lemma 2.3(1)] imply that there are exactly
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two sinks and sources in total. Let u, and u, be vertices of G at which these
sinks and sources occur (then labels x,y form a label pair of an S-cycle in G3).
Then two 7y-edges running from u, to u, divide F} into two disks and each of
them contains neither sink nor source in its interior. The two disks have the
same number of vertices of G in their interiors by [21, Lemma 2.1]. One can
choose a disk whose interior contains no positive edge incident to a sink. Then
there would be a cycle face in the disk. 0

Orient all components of OF; = {Juq,...,uy, } homologously on dyM and
orient OFy = Ov. Let u € {uq,...,up, }. If P and @ are two points in du N Jv,
denote by p1(P,Q) (resp. u2(P,Q)) the arc in Ou (resp. Ov) going from P to
@ with respect to the chosen orientation. As in [6, p.1720] we define 7;(P, Q) =

i (P, Q) N OF;| =1 ({i,5} = {1,2}).

Lemma 3.3. Let u,u’ € {uy,...,un, }. Suppose P,QQ € dun v and R,S €
(9u’ N ov. Ile(P, Q) = Tl(R, S), then TQ(P, Q) = TQ(R, S)

Proof. This follows from [6, Lemma 2.4]. O

Lemma 3.4. Let f be a cycle face with vertices uy,,...,uy, and with corners
i at uy,, i.e. the intervals fNuy, on Ou,,. Let O'\; be one endpoint of \; at the
head of an oriented edge of f and 8*)\; the other endpoint (automatically at the
tail of another edge of f). Then we have To(dI\1,0?M1) = -+ = 2 (0N, 0% \,).

Proof. Since uy,’s are all parallel, an orientation of F; induces orientations
of du,,’s which are mutually homologous on dgM, so 71(0*\1,0°N\;) = -+ =
71(0' M\, 02X,,). By Lemma 3.3 we have 75(0'\1,0%\1) = -+ = 12(0\,, % \n).
U
Proposition 3.5. Gy is a subgraph of the graph in Figure 2(b).

Proof. Assume for contradiction that G5 is a subgraph of the graph in Figure
2(a). Let f be a cycle face of G{ guaranteed by Lemma 3.2 and uy,, ..., u,, the
vertices of f. Let \; be the corner of f at u,, with one endpoint, 9! );, at the head
of an oriented edge of f and the other, 9*)\;, at the tail of another edge of f. On
Ov, choose the shortest interval I, such that {07)q,...,07\,} C I for j =1,2.
Since {9 A1,...,0'\,} C Lj(a) UI;(B), [ NIy = 0. Label xq,...,2, so that
Ol = {0*\1,0'\,,}. Using Lemma 3.4, one can verify that Iy = {9?\1, 0%\, }.
Hence I U Io U A\ U A, bounds a disk D on dyM. As below the proof of [11,
Claim 7.5], one can use D and f to construct a new Klein bottle in M (r3), on
which the core of Js can be isotoped to lie. This implies that M contains a
properly embedded Mobius band and hence fails to be simple. O

By Lemma 3.2, Gf’ has a disk face f bounded by a cycle of consistently
oriented edges eq, ..., e,, labelled so that the head of e; is adjacent to the tail of
e;+1 modulo n. The edges ey, ..., e, do not totally belong to one edge class, «
or 3, since otherwise, the argument in [9, Section 5] would show that M contains
a cable space.
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Lemma 3.6. n is even and {e1,...,e,} is an alternating sequence of a-edges
and (3-edges.

Proof. If n = 2, it is obvious, so we assume n > 2. Assume for contradiction
that e;,es are a-edges and es is a (-edge. Let u,, be the vertex to which e;
and ey are incident and let u,, be the vertex to which ey and ez are incident.
Let \; be the corner of f at u,, with endpoints ’\; = e; ;1 Nug, (3,7 =1,2).
Then in GQ, the pOiIltS 81)\1,62)\1,81>\2,62/\2 are on Il(a),Ig(oz),Il(oz),IQ(ﬁ),
respectively.

Orient Ov clockwise. By Lemma 3.4 75(0'\1,0%\1) = 12(01 A2, 0%\2). Recall
that Gy is a subgraph of the graph in Figure 2(b). From the fact that the
points 9* A1, 92X, 0t N2, 0% Ny are respectively on I(a), Ia(a), I1 (), I2(3), one
can obtain two inequalities 75 (0* A1, 9?\1) < 2w(a) < 2ny and 72(0' A, %) >
w(a) +w(B) +w(y) = 3ny /2. Since O \;, ?\; are labelled ;, T2(9'\1,0%\1) =
n1 and 72(0' Ao, 3*X2) = 2ny, giving a contradiction. O

Lemma 3.7. f is a bigon.

Proof. Assume that n = 2m > 2. Label the vertices of f uy,,uy,,. .., Us,, Uy,
along Of so that an a-edge (resp. [-edge) is incident to ug, (resp. wu,,) at its
head. See Figure 3. Then each label z; (resp. y;) appears once on each of I («)
and I»(8) (resp. I;(f) and Iy(a)). Since w(a),w(8) < mq, any label cannot
occur twice on each interval.

FIGURE 3

Orient dv clockwise. Relabelling z;’s (and correspondingly y;’s), if necessary,
we may assume that among x;’s, x1 appears first on I;(«) with respect to the
orientation of dv. Then x; precedes other z;’s on I>(8) by Lemma 3.4. The
vertices u,, and u,, are connected by a (-edge for each i. Since (-edges are
negative in Ga, y; also precedes other y;’s on I;(3). Again by Lemma 3.4,
y1 precedes other y;’s on Iy(«). In particular, y,, follows y; on Iz(«r). Since
Uy, , Uz, and uy,,u,, are connected by a-edges, respectively and since a-edges
are negative in Gg, 1 follows zo on I (). This contradicts the choice of 1. [

Without loss of generality we may assume that the labels around v are ordered
in the clockwise direction. Then one can see that if an a-edge (resp. a (3-edge)
in G5 has label x at its head, then its tail is labelled = + w(«) (resp. x 4+ w(3))
modulo n;.
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By Lemmas 3.6 and 3.7, f has exactly two vertices u,,u, along with two
edges eq, e (e; is an i-edge, i = «, ) such that e, and eg are incident to u
and u, at their heads, respectively. Then y =z +w(a),z = y +w(B) (mod ny),
so w(a) +w(B) = 0. Since 0 < w(a) + w(B) < 2n1, we get w(a) + w(f) = nq.
Thus w(y) = n1/2. By Lemma 2.1(7), either the y-edge family in G5 contains
an S-cycle or the sets of labels at its two ends are disjoint.

Suppose that the y-edge family contains an S-cycle o with label pair {1, 2},
say. Then o consists of either the first two edges or the last two edges of the
family. By examining the labels around the vertex v, one can see that either
w(a) =n1/2—1or w(B) =ny1/2—1 holds. We conclude that the three numbers
w(a),w(B), w(y) cannot be all even.

We shall rechoose ﬁl to rule out this case. Let f be the disk face bounded
by o. The edges of o cut Fy — Int(uy U ug) into two disks, D’ and D", say.
Put D = D’ Uw;. Then D contains ny/2 fat vertices by [21, Lemma 2.1], and
f U D is a Md&bius band whose boundary bounds a disk B on 0H, where H is
the part of J; between the consecutive vertices u; and us. After being slightly
pushed off H, P = fUD U B becomes a projective plane which intersects .J;
in ny /2 meridian disks. For a thin I-bundle neighborhood N of Pin M(ry), its
boundary is a reducing sphere intersecting J; in n; meridian disks. Using ON
instead of ﬁl, we obtain a new graph pair G, Ga, where each edge of G5 has an
even weight by the I-bundle structure of N. In particular, the above observation
shows that G5 cannot have an S-cycle.

Therefore we may assume that the label sets at two ends of the vy-edge family
are disjoint and hence w(a) = w(B) = w(vy) = ny/2.

Lemma 3.8. ny =4 and ﬁl 1S separating.

Proof. Since An; = 3n; = 2(w(a) + w(B) + w(y)), n1 is even. Let ny = 2m.
We may assume that the labels around v are as shown in Figure 4. Notice that
n1/2 = m is also even, for otherwise the central edge in the y-edge family would
have the same label pair as the central edge in the a-edge family and they would
form an orientation-reversing loop in F.

FIGURE 4

Let e; (resp. €;) be a y-edge (resp. an a-edge) in Gy with label i at one
endpoint, ¢ = 1,...,m. Let D; be the disk in F3, realizing the parallelism of e;
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and e, ;41 with 0D; = e; Ua; Ue,,—i+1 Ub;, where a; is an arc on dv from label
i tom —i+ 1. And similarly for D}, a},b;. The four edges e;, epm—iy1,€;, €, ;11
together with vertices w;, U —it+1, Um+ti, U2am—i+1 form a loop o; on ﬁl. These
four vertices divide J; into four parts. Let U; (resp. V;) be the part of J;
between u; and U, —;+1 (resp. Um4i and ugm,—i4+1). A regular neighborhood of
FLu Umj2UVins2U Dy, o U D;n/2 in M(ry) is a punctured projective space with

two boundary spheres one of which is parallel to F 1 and the other intersects J;
in fewer components than F 1, so bounds a 3-ball. Hence F 1 is separating.

Now assume that n; > 4. Among the loops o;’s, choose an innermost one,
say, 0x. Then ay and a) are properly imbedded essential arcs in the annulus
OUy, — Int(ug, Uty —g+1), and I2(3) intersects the annulus in a spanning arc. The
arcs ay and aj, cut the annulus into two disks and one can choose a component
B disjoint from I5((3). Similarly after cutting the annulus 0Vj — Int(up4r U
Ugm—k+1) along the arcs by, and b}, one can choose a component B’ disjoint from
I, (). Then Dy U D) UBU B’ is a Mébius band whose boundary bounds a disk

A~

in F} containing exactly two vertices, either {ug, wmx} or {tm—k+1, Uam—k+1}-
Hence we can find a projective plane in M(r;) intersecting the core of J; in two
points. The boundary of a thin regular neighborhood of this projective plane is
a reducing sphere of M (r1), intersecting J; in fewer components than F}, which

A~

contradicts our choice of F} at the beginning of Section 2. O
Proof of Theorem 1.2. By Lemma 3.8 and the argument just above it, G2 is
uniquely determined as illustrated in Figure 5(a). Let A, B,C, D, E, F be the
edges of G5 as shown in Figure 5(a). The correspondence between the edges of
GG1 and G5 uniquely determines G; up to a homeomorphism of the underlying
sphere Fy, as shown in Figure 5(b).

A

(a) (b)

FIGURE 5

The graph G5 has two trigons f1, fo bounded by A, B,C and D, E, F, re-
spectively. Let g1, g2 be bigons of G5 bounded by A, B and C, D, respectively.
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These trigons and bigons lie on the opposite sides of ﬁl. Let X be a regular
neighborhood of dyM U Fy U f1 U fo U gy U ge in M. Then one can verify that
0X consists of two spheres. Capping off these spheres with 3-balls gives M.
This shows that M is uniquely determined by the pair of the graphs in Figure
5. Hence M = W (6). O

Proof of Corollary 1.3. Since M (ry) contains a Klein bottle, A(rq,72) < 3 by
[19, Theorem 1.1]. Assume for contradiction that A(rq,r2) = 3. Then M =
W (6) by Theorem 1.2.

Note that M(o0) = L(6,1) and M (2) is a small Seifert fibered space with
a finite fundamental group. See [3, Example 7.8]. We have A(r1,00) < 1 and
A(r1,1) < 1 by [3, Theorem 1.2(1)] and [12, Theorem 1.2]. Hence r; = 0,1
or 2. However, M(2) is irreducible. The slope 0 is a boundary slope of an
essential once-punctured torus in M, which extends to an essential torus in
M(0), and dimH; (M;Q) = 1. The conclusions (ii), (iii) and (iv) in [4, Theorem
2.0.3] do not hold for M and the slope 0, so M(0) is irreducible. Therefore
r1 = 1. By [2, Theorem 1.5(1)] we have A(rz,00) = 1 and hence the assumption
A(ry,re) = 3 yields r = —2 or 4. However, M (—2) is hyperbolic by [7, Example
(5)]. Therefore ro = 4. O

4. Torus

Throughout this section we assume that ﬁQ is a torus. Then G4 has exactly
two vertices, v1 and vy, by Lemma 2.2. We may assume that M (ry) is irreducible
and boundary-irreducible by [12, 20]. By Lemma 2.1(4), we also assume that
G4 has only (1,2)-Scharlemann cycles if it has Scharlemann cycles.

Lemma 4.1. The vertices of Gy are antiparallel.

Proof. Assume that v; and vy are parallel. Then all the edges of G5 are positive.
For a label x # 1, 2, consider the subgraph I' of G2 consisting of all vertices and
all x-edges of G3. Let V, E and F be the number of vertices, edges and disk
faces of T, respectively. Since V < E, we have 0 = X(ﬁQ) <V—-FE+F<F,sol
contains a disk face, which is an z-face in Go in terms of [17]. This contradicts
[17, Theorem 4.4]. O

The graph G5 has at most 6 edge classes, which we call «,3,7,0,¢,&" as
illustrated in Figure 6. See [6, Lemma 5.2]. An edge in G; or G is called an
n-edge if, being regarded as an edge in G, it lies in class n, n € {«, 3,7, ,¢,¢’}.
An edge in G or Gy is called of type 1 if it is an a-edge or a B-edge, and of type
2 if it is a y-edge or a d-edge. The e-edges and &’-edges are positive in Gg, while
the others are negative by Lemma 4.1. Since v; and vy have the same valency,
we have w(e) = w(e’). Without loss of generality we assume that the ordering of
the labels around v; is anticlockwise, while the ordering around vy is clockwise.

Lemma 4.2. Let x(# 1,2) be a label of Go. Then there exist an edge of type 1
and an edge of type 2 incident to v; with label x, i =1,2.
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FIGURE 6

Proof. Let e ={e1,... ey}, & ={€},..., €} as shown in Figure 7. There

) Fw(e
are two cases.

FIGURE 7

Case 1. The sets of labels at two ends of € have a label in common. By Lemma
2.1(7) we may assume that {ej,es} is an S-cycle with label pair {1,2}. Let I;
be the shortest interval on dv; containing the endpoints of the edges of type 1
at v;, i = 1,2. Since I; and I3 have the same number of edge endpoints, {e}, e}
is also an S-cycle with label pair {1,2}. Then w(«a) + w(8) =n1 —2 or 2ny — 2.
In the first case for any label x # 1,2, exactly one edge of type 1 is incident to
v; with label z, i = 1,2. On the other hand, since w(e) < n;/2 + 1 by Lemma
2.1(5), w(vy) + w(d) = 3n; — w(a) — w(B) — 2w(e) > ny. This means that for
any label z, an edge of type 2 is incident to v; with label z, ¢ = 1,2, so we
have the desired result. In the latter case w(a) = w(f) = n1 — 1 by Lemma
2.1(6). Let e be the lowest a-edge as in Figure 7. Since {e1, e2} and {e}, e, } are
(1,2)-S-cycles, the point e N Juvy is labelled 3, while the point e N dvs is labelled
2. Hence e connects vertices us and us in GG;. Since G2 contains S-cycles, ]31 is
separating by Lemma 2.1(3), so us and ug are antiparallel. Therefore the edge
e is negative in both graphs GG; and G4, which is impossible by the parity rule.

Case II. The sets of labels at two ends of € are disjoint. Suppose, for example,
that no edge of type 1 is incident to vy with label x # 1,2, that is, the label x does
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not appear on I;. Since w(v),w(d) < ny by Lemma 2.1(6), w(a)+w(8)+2w(e) =
3ny — w(y) — w(d) > ny, so x appears at one end of ¢, say, at the bottom of
vy (then x does not appear at the top of v1). Let y be the label of the point
in Ov1 N ey(e) at the bottom of vy (y is possibly equal to x). Then y does not
appear on [, otherwise x must appear at the end of € at the top of v;. Since
w(a) +w(f) + 2w(e) > ny, y must appear at the end of ¢ at the top of v;. This
contradicts our assumption. [

In particular, we have w(a) + w(8) > 0 and w(y) +w(d) > 0. And if w(e) =
w(e’') = 0, then we have w(a), w(B), w(y),w(d) > 0 by Lemma 2.1(6). Thus the

reduced edges in GGo cut F5 into disks, so F; N F5 has no circle component.

Proposition 4.3. G contains a connected subgraph A satisfying that

(1) for all vertices u, of A but at most one vertex, there are an edge of type
1 and an edge of type 2 in A which are incident to u, with label i for
each i =1,2;

(2) for the other vertex u,,, if it exists, there are two edges in A incident to
Ug,; and

(3) there is a disk Dy C ﬁl such that Dy NG = A.

The vertex u,, is called an exceptional vertex of A.

Proof. Let T" be an extremal component of Gf. That is, I' is a component of Gf
having a disk support D such that DN G} =T.

Recall that all the Scharlemann cycles in G2 are (1, 2)-Scharlemann cycles. If
(G5 contains a Scharlemann cycle, then the vertices u; and uo are antiparallel
and hence they belong to distinct components of G7. So, we may assume that
I" does not contain uo in this case.

A vertex of I' is a cut vertex if it splits I' into more components. If I' has no
cut vertex, we take I' as A. Then all vertices of A, possibly except one (when u;
is contained in A), satisfy the property (1) by Lemma 4.2.

Suppose that I" has a cut vertex. If u; is a single cut vertex of I', cut I' off
at u; and take any component as A, and then all vertices of A but u; satisfy
the property (1) again by Lemma 4.2. Otherwise, after cutting I' off at all
cut vertices we can find a component, which does not contain u;, with a single
cut vertex. We take this component as A and then the cut vertex may be the
exceptional vertex of A, while the other vertices of A satisfy the property (1) by
Lemma 4.2. U

Let D be a disk support of A as given in Proposition 4.3. A vertex of A is a
boundary vertex if there is an arc connecting it to 0D, whose interior is disjoint
from A, and an interior vertex otherwise.

Each face of A is a disk, for A is connected. Since G has only two labels,
{1,2}, each edge of A has label 1 at one endpoint and label 2 at the other.
Hence every face of A determines a Scharlemann cycle of G;. By Lemma 2.1(3)
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F divides M(r3) into a black side X and a white side Y. A face of Gy is black
or white according as it lies in X or Y.

From now on we assume that 04 M = OM — JyM is a torus and eventually
we will get a contradiction. Assume that Y contains 9; M. By Theorem 1.2 we
may also assume that M (ry) contains no Klein bottle.

Lemma 4.4. The edges of a face in GT cannot lie in a disk in ﬁg.

Proof. At the beginning of this section we assumed that M (r3) is irreducible.
Hence the statement follows from the proof of [11, Lemma 3.1]. O

Let HX:JQHX andHy:JgﬂY.

Lemma 4.5. For any white face of G , its edges cannot lie in an annulus in
.

Proof. Suppose to the contrary that G} contains a white face f whose edges lie
in an annulus A in ﬁg. By Lemma 4.4, A is essential in ﬁz. Let N be a regular
neighborhood of AU Hy U f in Y. Then 9N is a torus, and 7' = (ON — IntA) U
(ﬁg — A) is a torus disjoint from Jo, so it must be inessential in M (r2). If T" were
compressible, a compression would result in a sphere separating F\g and 01 M
and hence a reducing sphere of M(ry). This contradicts our assumption that
M (rq) is irreducible. Suppose T is parallel to d; M. Then there is an annulus
A’ in the region between the two tori 7" and 01 M such that one component of
0A’ lies in F2 — A and the other component lies in 91 M. The circle A’ N 81M is
an essential curve on 0y M, otherwise F, would be compressible. Surgering B
along A’ gives a properly embedded annulus A” in M (r3). Since F, is essential

in M(rg), so is A”. Our assumption A(rq,r3) = 3 contradicts [22, Theorem
5.1]. O

Lemma 4.6. A contains a face bounded only by edges of type 1 or only by edges
of type 2

Proof. Let u, be the exceptional vertex of A, if it exists, and any vertex of A
otherwise. Without loss of generality we may assume that an edge e of type 1
is incident to u, with label 1. Orient every edge of type 1 from the endpoint
with label 1 to the other. Then by Proposition 4.3 any non-exceptional vertex
of A has an edge pointing in and an edge pointing out. Starting with e, one can
construct a path through the oriented edges of type 1 always consistent with
orientations. Ultimately the path hits the same vertex to create a cycle. This
shows that A contains cycles of oriented edges of type 1. Choose an innermost
cycle 0. Then o bounds a disk D in F\l with no vertex in its interior. If D has
no edge of A in its interior, then we are done. Otherwise, all the edge in IntD

are of type 2. Since o is a 1-cycle, some of these edges bound a desired face of
A. OJ

Lemma 4.7. Let f be an n-sided face of G{, n =2 or 3. Then the edges of f
lie in an essential annulus, A, in Fg, f s black, and X s a Seifert fibered space
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over the disk with two exceptional fibers one of which has order n. The core of
A is a Seifert fiber.

Proof. This follows from [11, Lemma 3.7 and Theorem 3.8] and Lemma 4.5. O

Note that each of non-exceptional boundary vertices of A has valency at least
4 in A by the property (1) of Proposition 4.3.

Lemma 4.8. A contains a black bigon.

Proof. Let V. E and F be the number of vertices, edges and faces of A, re-
spectively. Let V;,V; and V. denote the number of boundary vertices, interior
vertices and exceptional vertex of A, respectively. Then V =V, +V; and V, =0
or 1. Now suppose that A contains no bigon. Then each face has at least 3 sides
and hence 3F + V, < 2E. Combining with 1 = x(disk) =V — E + F, we get
E<3V-V,—-3=3V;,+2V, - 3.

Since all boundary vertices but the exceptional vertex have valency at least
4 and all interior vertices have valency 6, we have 4(V;, — V.) + 2V, + 6V; < 2F.
These two inequalities give 3 < V., a contradiction. Hence A contains a black
bigon by Lemma 4.7. 0

As in [13], we may label an edge e of G; by class of the corresponding edge
of Go. We refer to this label as the edge class label of e. Then an edge of type 1
has edge class label a or (3, and an edge of type 2 has edge class label v or 4.

Let Mx =MNX and My =MnNY.

Lemma 4.9. Any two bigons in G{ have the same pair of edge class labels.
Furthermore the pair is either {«, 3} or {v,0}.

Proof. If there are two bigons of G| with distinct pairs of edge class labels, the
argument in the proof of [13, Lemma 5.2] shows that M (ry) contains a Klein
bottle. This contradicts our assumption just above Lemma 4.4.

Now we shall show that the pair is either {«, 3} or {7,0}. By Lemma 4.6
there is a face f of A bounded only by edges of type 1, say. Thus the edges of f
lie in an essential annulus on ﬁg, so f is black by Lemma 4.5. Let ug,,..., us,
be the vertices of f and let A; be the corner of f at u,,. As illustrated in in
Figure 7, let I; be the shortest interval on dv; containing the endpoints of edges
of type 1 at v; for j =1,2.

As in the proof of Proposition 3.5, one can find a disk D on the annulus
OHx — Int(v; Uwg) such that D D A\ U--- U\, and D = aUbU cUd, where
a and c are respectively subarcs of I; and I3, and b and d are essential arcs in
the annulus OH x — Int(v; U wy), parallel to each of A;. Let A be the annulus in
F5 bounded by the edges e; and €] in Figure 7 along with subarcs on dv; and
Ovy containing Iy and Is. Then A U D is a once punctured torus. Enlarging
D slightly in 0Hx — Int(v; U vy) we may assume that Of lies in Int(A U D).
Notice that df is a non-separating curve on A U D, since the vertices of f are
all parallel. Surgering A U D along f gives a disk B. Pushing IntB into the
interior of Mx rel. boundary gives a properly embedded disk B’ in Mx. Here



REDUCING AND TOROIDAL DEHN FILLINGS 301

OB'NOHx =bUd and 9B’ — Int(bU d) consists of two arcs in 0A. Notice that
an orientation of 9B’ induces orientations of b and d which are opposite in the
annulus OH x — Int(v; Uvy). Now by shrinking Hx to its core, Hx U B’ becomes
a properly embedded annulus A’ in X.

The annulus A’ divides X into two regions Z; and Z. We claim that both
Z1 and Zy are solid tori. Since the core of Hx lies on A’, we can isotope the
core of Jy slightly so that it is disjoint from the torus 0Z;. Then the minimality
of |ﬁ2 N Ja| guarantees that Z; is a solid torus. Similarly so is Zs. Thus X is
a Seifert fibered space over the disk with the core of A’ (and hence that of A)
a Seifert fiber. Since M (r2) (and hence X) contains no Klein bottle, the Seifert
fibration of X is unique by [15, Theorem VI.18|. Therefore the pair of edge class
labels of any bigon in G is either {a, 3} or {,d} by Lemma 4.7. O

Lemma 4.10. (1) All interior vertices of A have valency at least 4 in A.
(2) All boundary vertices of A but the exceptional vertex have valency at
least 3 in A.

Proof. (1) If A had a set of three parallel edges, the set would contain a white
bigon, contradicting Lemma 4.7. Since any interior vertex has valency 6 in A, it
has valency at least 3 in A. Suppose that an interior vertex has valency exactly 3
in A. Then the vertex is incident to three pairs of parallel edges in A, which have
the same pair of edge class labels, say, {«, 5} by Lemma 4.9. This contradicts
the property (1) of Proposition 4.3.

(2) Suppose that a non-exceptional boundary vertex of A has valency 2 in
A. Then the vertex is incident to two pairs of parallel positive edges and two
negative edges in G;. Then we get a contradiction as above. 0

Lemma 4.11. A contains a black trigon.

Proof. Let V, E and F be the number of vertices, edges and faces of A, respec-
tively. Let Vj,, V; and V. denote the number of boundary vertices, interior vertices
and the exceptional vertex of A, respectively. Now suppose that A contains no
3-sided face. Then each face of A has at least 4 sides and hence 4F + V;, < 2FE.
Combining 1 =V — E+ F, we get 2FE < 4V; + 3V, — 4.

By Lemma 4.10 we have 3(V, — V.) + 2V, +4V; < 2E. These two inequalities
give 4 < V., a contradiction. Thus A (and hence A) has a 3-sided face, which
must be black by Lemma 4.7. O

Lemma 4.12. Mx is a handlebody of genus 2 and My is a compression body
with the boundary a union of a genus 2 surface and 04 M.

Proof. Since F5 is a twice punctured torus, both OMx and OMy — 01 M are
surfaces of genus 2. By Lemma 4.10(2) one easily sees that A contains black
and white faces simultaneously. A black face compresses M x to result in a
torus in My, which bounds a solid torus since My contains no incompressible
torus. Hence Mx is a handlebody of genus 2. Similarly a white face compresses
OMy — 01 M to result in a torus parallel to 01 M. O
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Travelling around the boundary of a disk face of G} gives rise to a cyclic
sequence of edge class labels. We shall say that two disk faces of G} of the
same color are isomorphic if the cyclic sequences obtained by travelling in some
directions are equal.

Let Ax = Hx N Mx and Ay = Hy N My. Then OMx = Ax U Fy and
OMy — 01 M = Ay U F5. Since all the vertices of A are parallel, each face of A is
a non-separating disk in Mx or My. Note that any two faces of A of the same
color are disjoint.

Lemma 4.13. If two disk faces of G{ are parallel in Mx or My, then they are
isomorphic.

Proof. Suppose, for example, that two disk faces f and g of G are parallel in
Mx. The curves 0f and dg cobound an annulus A in dMyx. Note that each
component of 0A — IntAx is an edge of G5 in df or dg, while each component
of 0A N Ax is a corner of f or g. The boundary circles of Ax must intersect
A in spanning arcs, otherwise some edge of G5 in df or dg would be a trivial
loop in G3. Thus A — IntAx is a union of disjoint rectangles Ry, ..., R,. Each
R; realizes a parallelism between two edges 0f N R; and dg N R;, so these edges
have the same edge class label. U

By Lemmas 4.8 and 4.11, G| contains black bigons and trigons. Without
loss of generality we may assume that all bigons of G;’ have the edge class label
pair, {«, 8}, by Lemma 4.9. Then we have the following.

Lemma 4.14. All trigons of Gi have the same pair of edge class labels {7, 6},
i.e. they are bounded by edges of type 2.

Proof. Let f and g be a bigon and a trigon of G, respectively. Let A be the
annulus in F» bounded by e; and €] along with two subarcs in dF; as shown
in Figure 7. Then f is bounded by an a-edge and a (-edge, and X is a Seifert
fibered space over the disk with two exceptional fibers, whose Seifert fibration
is unique because X does not contain a Klein bottle. Here, the core of A is a
Seifert fiber.

By Lemma 4.7, g is bounded either by edges of type 1 or by edges of type 2.
In the first case, surgering a twice punctured torus AU Ax using f and g gives
two disks in X, since df and dg are non-separating and not mutually parallel in
the surface. The boundary circles of the disks lie in ﬁg and are isotopic to the
core of A. This implies that F is compressible in M (r2), a contradiction. Thus
g is bounded by edges of type 2. O

We will assume that each trigon has two y-edges and a §-edge.

Lemma 4.15. If two edges ey, es of GT are incident to a vertexr with the same
label, then they have distinct edge class labels.

Proof. If e; and e; have the same edge class labels, then the corresponding edge
class in G2 contains more than ny edges, contradicting Lemma 2.1(6). U
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Lemma 4.16. There is no triple of mutually non-isomorphic black disk faces
of G .

Proof. Suppose that GT has such a triple (f1, f2, f3). Then these faces cut Mx
into two 3-balls by Lemma 4.13.

Claim. G = GT and it is connected.

Proof. Note that Gy is connected if and only if every face of GG is a disk. Let
f be a black face of G; other than fi, fo, f3. Then f lies in the complement of
fiUfaUfs in Mx, so f must be a disk, otherwise it would be compressible in My,
so I would be compressible in M and one could find a new essential sphere in
M (r1) which meets J; in fewer components than F 1. Each component of 9f N Fy
is an edge of G5. The circle 0f must be an essential curve in OMx = F> U Ax,
otherwise some component of 0f N F, would be a trivial loop in G5. Hence f is
an essential disk in Mx, which must be parallel to one of the faces fi, fo and fs.
Therefore any black face of G is a disk face isomorphic to one of fi, fo and f3
by Lemma 4.13. It follows that all the edges of G are positive, i.e. G; = G .
It remains to show that any white face of GG; is a disk. Suppose to the contrary
that a white face g of (G is not a disk. Then g is incompressible in My as above.
Recall that A contains a white disk face and that My is a compression body
with the outer boundary a surface of genus 2 and the inner boundary a torus,
01M. Let g; be a white disk face of A. Cutting My along g, gives rise to a
manifold V', homeomorphic to S x S' x I, with ;M one component of V.
Here, g lies in V and 0g C 9V — 91 M. Since g is incompressible in My, g is also
incompressible in V. Hence g must be an annulus parallel to 0V — 0; M. Thus
V' contains an annulus A such that one component of 0A is the core curve of g
and the other lies in 9y M, where A N 01 M is an essential curve, otherwise g
would be compressible in My-. Surgering 2 along A gives two compressing disks
for Oy M in M (r1). This shows M(ry) is boundary-reducible. The assumption
A = 3 contradicts [13, Theorem 1.1]. O

Hence, F is a non-separating sphere in M (r1). This contradicts [16, Theorem
1.1]. O

Proof of Theorem 1.1. Orient the edges of (G; as shown in Figure 8 so that G
becomes a directed graph in the 2-sphere Fj. (For example, all a-edges are
oriented so that their left hand sides are black.)

Blole’
> >
olyle

FIGURE 8

Note that any disk face of G has the same number of e-edges and &’-edges.
Hence if there were a cycle face in G, then it would be a face of Gf, since the
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e-edges and ¢’-edges are oppositely oriented. Moreover, it would be bounded
either by a-edges and y-edges or by [-edges and d-edges and hence it would be
white by Lemma 4.16. This contradicts Lemma 4.5.

Therefore it is enough to show that (G; has neither a sink nor a source. Assume
for contradiction that GG; has a source at a vertex u,. The local view at u, must
be like one of the pictures in Figure 9 by Lemma 4.15. We shall show that any
of them is impossible.

4 B € ) Y ) € B
£ &' 4 Yij & &' Y 1)

(a) (b) (c) (d
Y g £ g Y 1) £ 1)
€ 5 14 B 3 B Y €

(e) () (2 (h)
Y B € B 4 & £ &
£ ) Y &' & B Y S

(1) Q) (k) )

FIGURE 9

In G, the label z appears three times around the vertex vy at ends of a-, y-,
and e-edge families and three times around the vertex v, at ends of -, §-, and
¢’-edge families.

Claim. In G5, the label z appears at the northern (resp. southern) end of e-edge
family if and only if it appears at the southern (resp. northern) end of ¢’-edge
family.

Proof. Assume, for example, that x appears at the northern ends of e- and
¢’-edge families. See Figure 10. Around the vertex vy, x does not appear at
an end of d-edge family and at the southern end of e-edge family, implying
w(d) + w(e) < ny. Around the vertex ve, z appears once at an end of d-edge
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family and once at the northern end of ¢’-edge family, implying w(d)+w(g’) > ny.
Since w(e) = w(e’), these two inequalities conflict. O

FiGure 10

Let f be a black bigon of A with vertices u,,u, and g a black trigon with
vertices u,, Uq, Uy, as shown in Figure 11. Let C; be the corner of f at the vertex
u, and C5 the corner of g at the vertex u,.

FIGURE 11

Assume the source at u, looks like Figure 9(a), (b), (c) or (d). Let C be the
black corner in Qu, running from an e-edge endpoint to an ¢’-edge endpoint.
Then C, Cy, Cy contradict [14, Lemma 3.2] by the above claim.

Assume the source at u, looks like Figure 9(e) or (f). Let C be the black
corner in Ou, running from a 7y-edge endpoint to a [(-edge endpoint. Then
C, Cy,Cy contradict [14, Lemma 3.2].

Assume the source at u, looks like Figure 9(g) or (h). Let C' be the black
corner in Ju, running from an a-edge endpoint to a d-edge endpoint. Then
C,C1,Cy contradict [14, Lemma 3.2].

Assume the source at u, looks like Figure 9(i) or (j). Let C be the black
corner in Ju, running from a y-edge endpoint to an &’-edge endpoint and C’
the black corner running from an e-edge endpoint to a d-edge endpoint. Then
C,C", Cy contradict [14, Lemma 3.2] by the above claim.

Assume the source at u, looks like Figure 9(k) or (1). Let C be the black
corner in Ou, running from an e-edge endpoint to a (-edge endpoint and C’
the black corner running from an a-edge endpoint to an &’-edge endpoint. Then
C,C’,Cy contradict [14, Lemma 3.2] by the above claim.

Using the same argument as above, we can see that G; has no sink. 0
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