REDUCING AND TOROIDAL DEHN FILLINGS ON 3-MANIFOLDS BOUNDED BY TWO TORI

SANGYOP LEE

ABSTRACT. We show that if M is a simple 3-manifold bounded by two tori such that $M(r_1)$ is reducible and $M(r_2)$ is toroidal, then $\Delta(r_1, r_2) \leq 2$, answering a question raised by Gordon. To do this, we first prove that there exists only one simple 3-manifold having two Dehn fillings of distance 3 apart one of which yields a reducible manifold and the other yields a 3-manifold containing a Klein bottle.

1. Introduction

Let M be a compact connected orientable 3-manifold with a torus boundary component $\partial_0 M$ and r a slope, the isotopy class of an essential simple closed curve, on $\partial_0 M$. The manifold obtained by r-Dehn filling is defined to be $M(r) = M \cup J$, where J is a solid torus glued to M along $\partial_0 M$ so that r bounds a disk in J.

Following [22], we say that M is simple if it contains no essential sphere, torus, disk or annulus. For two slopes r_1 and r_2 on $\partial_0 M$, the $distance \ \Delta(r_1, r_2)$ denotes their minimal geometric intersection number. For simple manifolds M, if both $M(r_1)$ and $M(r_2)$ fail to be simple, then the upper bounds for $\Delta(r_1, r_2)$ have been established in various cases. See [8] for more details.

For example, Oh [18] and independently Wu [23] showed that for a simple manifold M, if $M(r_1)$ is reducible and $M(r_2)$ is toroidal then $\Delta(r_1, r_2) \leq 3$. Furthermore, Wu [22] also showed that if one puts an additional condition $H_2(M, \partial M - \partial_0 M) \neq 0$, then $\Delta(r_1, r_2) \leq 1$. In particular, this homological condition holds if M has a boundary component with genus greater than one or if M has more than two boundary tori. Note that M has no boundary sphere, for M is simple. It is natural then to consider the following question raised by Gordon [8, Question 5.1]; if ∂M consists of two tori, is it possible that $\Delta(r_1, r_2) = 3$? In this paper we give a negative answer to the question.

Theorem 1.1. Let M be a simple 3-manifold with boundary a union of two tori. If r_1 and r_2 are slopes on one boundary component $\partial_0 M$ such that $M(r_1)$ is reducible and $M(r_2)$ is toroidal, then $\Delta(r_1, r_2) \leq 2$.

Received by the editors February 21, 2005.

²⁰⁰⁰ Mathematics Subject Classification. 57N10.

Key words and phrases. Reducible manifolds, Toroidal manifolds, Dehn fillings.

Our theorem is sharp because Eudave-Muñoz and Wu [5, Theorem 2.6] have given infinitely many simple manifolds which are bounded by two tori and admit reducing and toroidal Dehn fillings at distance 2.

Oh [19] showed that if one Dehn filling yields a reducible manifold and another yields a manifold containing a Klein bottle, then the distance between their filling slopes is not greater than 3. On the other hand, Boyer and Zhang [1, p.286] gave an example of a simple manifold showing Oh's result is sharp. This simple manifold, which we shall denote by W(6), is obtained from the exterior W of the Whitehead link by performing Dehn filling on its one boundary component with slope 6 under the standard meridian-longitude coordinates. In this paper, we shall show that W(6) is the only simple manifold having two such Dehn fillings at distance 3.

Theorem 1.2. Let M be a simple manifold. If $M(r_1)$ is reducible and $M(r_2)$ contains a Klein bottle with $\Delta(r_1, r_2) = 3$, then M is homeomorphic to W(6).

Corollary 1.3. Let M be a simple manifold. If $M(r_1)$ is reducible and $M(r_2)$ is a Seifert fibered manifold over the 2-sphere with three exceptional fibers of orders 2, 2, n, then $\Delta(r_1, r_2) \leq 2$.

It is still unknown whether or not the upper bound 2 is the best possible.

2. The intersection graphs

From now on we assume that M is a simple 3-manifold with a torus boundary component $\partial_0 M$ and that r_1 and r_2 are slopes on $\partial_0 M$ of distance 3 apart such that $M(r_1)$ is reducible and $M(r_2)$ contains an essential torus or a Klein bottle.

Over all reducing spheres in $M(r_1)$ which intersect the attached solid torus J_1 in a family of meridian disks, we choose a 2-sphere \widehat{F}_1 so that $F_1 = \widehat{F}_1 \cap M$ has the minimal number, say n_1 , of boundary components. Similarly let \hat{F}_2 be either an essential torus or a Klein bottle in $M(r_2)$ which intersects the attached solid torus J_2 in a family of meridian disks, the number of which, say n_2 , is minimal over all such surfaces and let $F_2 = \widehat{F}_2 \cap M$. Let u_1, u_2, \dots, u_{n_1} be the disks of $\widehat{F}_1 \cap J_1$, labelled as they appear along J_1 . Similarly let $v_1, v_2, \ldots, v_{n_2}$ be the disks of $\widehat{F}_2 \cap J_2$. Then F_1 is an essential planar surface, and F_2 is an essential punctured torus or a punctured Klein bottle in M. We may assume that F_1 and F_2 intersect transversely and the number of components in $F_1 \cap F_2$ is minimal over all such surfaces. Then no circle component of $F_1 \cap F_2$ bounds a disk in either F_1 or F_2 and no arc component is boundary-parallel in either F_1 or F_2 . The components of ∂F_i are numbered $1, 2, \ldots, n_i$ according to the labels of the corresponding disks of $\widehat{F}_i \cap J_i$. We obtain a graph G_i in \widehat{F}_i by taking as the (fat) vertices of G_i the disks in $\widehat{F}_i \cap J_i$ and as the edges of G_i the arc components of $F_1 \cap F_2$ in F_i . Each endpoint of an edge of G_i has a label, that is, the number of the corresponding component of ∂F_j , $i \neq j$. Since each component of ∂F_i intersects each component of ∂F_j in $\Delta (= \Delta(r_1, r_2) = 3)$ points, the labels $1, 2, \ldots, n_i$ appear in order around each vertex of G_i repeatedly Δ times.

For a graph G, the reduced graph \overline{G} of G is defined to be the graph obtained from G by amalgamating each family of parallel edges into a single edge. For an edge α of \overline{G} , the weight of α , denoted by $w(\alpha)$, is the number of edges of G represented by α .

Although F_2 may be non-orientable, we can establish a parity rule. In fact, this is a natural generalization of the usual one. First, orient all components of ∂F_i so that they are mutually homologous on $\partial_0 M$, i=1,2. Let e be an edge in G_i . Since e is a properly embedded arc in F_i , it has a disk neighborhood D in F_i with $\partial D = a \cup b \cup c \cup d$, where e and e are arcs in ∂F_i with induced orientation from ∂F_i . On D, if e and e have opposite directions, then e is called positive, otherwise negative. See Figure 1. Then we have the following.

Parity rule. An edge is positive on one graph if and only if it is negative on the other graph.

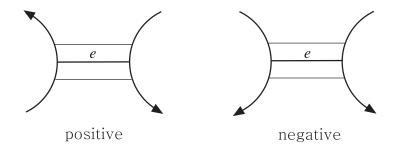


Figure 1

Orient the core of J_i . If \widehat{F}_i is orientable, we can give a sign to each vertex of G_i according to the sign of its intersection with the core of J_i . Two vertices (possibly equal) of G_i are called *parallel* if they have the same sign, otherwise antiparallel. A positive edge connects parallel vertices, while a negative one connects antiparallel vertices. Let G_i^+ denote the subgraph of G_i consisting of all the vertices and all the positive edges of G_i .

Let G be G_1 or G_2 and let x be a label of G. An x-edge is an edge of G with label x at one endpoint. An x-cycle is a cycle of positive x-edges which can be oriented so that the tail of each edge has label x. A cycle in G is a Scharlemann cycle if it bounds a disk face, and the edges in the cycle are all positive and have the same label pair. If the label pair is $\{x,y\}$, then we refer to such a Scharlemann cycle as an (x,y)-Scharlemann cycle. In particular, a Scharlemann cycle of length 2 is called an S-cycle. An edge in G is called level if its endpoints have the same label. A set of four parallel edges $\{e_1, e_2, e_3, e_4\}$ of G_2 is called an extended S-cycle if $\{e_2, e_3\}$ is an S-cycle and e_k is adjacent to e_{k+1} (k=1,2,3).

Lemma 2.1. (1) G_2 has no positive level edge.

- (2) G_2 has no extended S-cycle.
- (3) Suppose \widehat{F}_j is not a Klein bottle. If G_i has a Scharlemann cycle, \widehat{F}_j is separating, $i \neq j$.

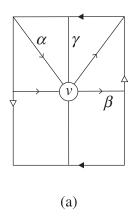
- (4) Any two Scharlemann cycles of G_2 have the same label set.
- (5) Any positive edge α of \overline{G}_2 has $w(\alpha) \leq n_1/2 + 1$.
- (6) Any edge α of \overline{G}_2 has $w(\alpha) < n_1$.
- (7) Let $\{e_1, \ldots, e_k\}$ be a set of parallel positive edges of G_2 with e_l adjacent to e_{l+1} $(l=1,\ldots,k-1)$. If the sets of labels at two ends of $\{e_1,\ldots,e_k\}$ have a label in common, then either $\{e_1,e_2\}$ or $\{e_{k-1},e_k\}$ forms an Scycle. Moreover, the common label belongs to the label set of the S-cycle.

Proof. (1) By the parity rule a positive level edge in G_2 is a negative loop in G_1 , which has a Möbius band neighborhood in \widehat{F}_1 , contradicting that \widehat{F}_1 is a sphere. (2)–(4) follow from [23, Lemma 1.2], (5) and (6) follow from [23, Lemma 1.5], and (7) follows from (2),(4) and [4, Lemma 2.6.6].

Lemma 2.2. $n_2 = 2$ when \widehat{F}_2 is a torus, and $n_2 = 1$ when \widehat{F}_2 is a Klein bottle. *Proof.* This is a part of the main result in [17].

3. Klein bottle

Throughout this section we assume that \widehat{F}_2 is a Klein bottle. Then G_2 has a single vertex v by Lemma 2.2. The reduced graph \overline{G}_2 is a subgraph of the graphs shown in Figure 2. Whether \overline{G}_2 is a subgraph of the graph in Figure 2(a) or (b), there are three *edge classes*, α , β and γ . An edge in G_1 or G_2 is called an α -edge, β -edge or γ -edge according as, being regarded as an edge in G_2 , it lies in class α , β or γ . In G_2 , all γ -edges are positive, while the others are negative.



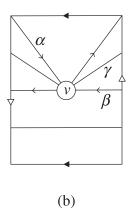


FIGURE 2

Lemma 3.1. The weights of the reduced edges α and β in \overline{G}_2 are positive.

Proof. Assume $w(\alpha) = 0$. By Lemma 2.1(5) and (6), $w(\beta) = n_1 - 1$ and $w(\gamma) = n_1/2 + 1$. If \overline{G}_2 is a subgraph of the graph in Figure 2(a), then G_2 has two positive level edges, contradicting Lemma 2.1(1). If \overline{G}_2 is a subgraph of the graph in Figure 2(b), then G_2 contains an S-cycle, so \widehat{F}_1 is separating and n_1 is even. However, for any β -edge in G_2 , which is negative, the two labels at

its endpoints have distinct parities. This contradicts the parity rule. Similarly, $w(\beta) > 0$.

Thus the edges in \overline{G}_2 cut F_2 into one or two disks, so there is no circle component of $F_1 \cap F_2$.

Orienting the negative edges in G_2 as shown in Figure 2, we can think of G_1^+ as a directed graph. If a disk face of G_1^+ is bounded by a circuit of consistently oriented edges, we call it a *cycle face*. Throughout this section, let $I_1(\alpha)$ (resp. $I_2(\alpha)$) denote the shortest interval on ∂v containing α -edge endpoints at the head of α (resp. at the tail of α). And similarly for $I_1(\beta)$ and $I_2(\beta)$.

Lemma 3.2. G_1^+ has a cycle face.

Proof. First, assume that \overline{G}_2 is a subgraph of the graph in Figure 2(a). Then $w(\alpha) + w(\beta) \geq n_1$. Otherwise, $w(\alpha) + w(\beta) = n_1 - 1$ or $\leq n_1 - 2$. In the first case, the outermost edges in the family of γ -edges would be positive level edges, and in the latter case $w(\gamma) \geq n_1/2 + 2$. Both are absurd by Lemma 2.1(1) and (5). Hence each label x appears at least once on each of $I_1(\alpha) \cup I_1(\beta)$ and $I_2(\alpha) \cup I_2(\beta)$. This means that in G_1^+ , each vertex u_x of G_1^+ has an edge pointing in and an edge pointing out. Starting at any vertex of G_1^+ , one can construct a path through the oriented edges always consistent with orientations. Ultimately the path hits the same vertex to create a cycle. Among such cycles, an innermost one bounds a disk face of G_1^+ and we are done.

Next, assume that \overline{G}_2 is a subgraph of the graph in Figure 2(b).

Claim. If G_1^+ has a sink or source at a vertex u_x , then x is a label of an S-cycle of G_2 .

Proof. Suppose for example that G_1^+ has a sink at u_x . We first show that u_x is univalent in G_1^+ . If u_x were trivalent in G_1^+ , then u_x would have two (say) α -edges pointing in. This means that label x would appear twice on $I_1(\alpha)$, so $w(\alpha) > n_1$, contradicting Lemma 2.1(6). Thus u_x has valency at most 2 in G_1^+ . Suppose u_x is bivalent in G_1^+ . Then an α -edge and a β -edge are incident to u_x (otherwise, two (say) α -edges would be incident, contradicting Lemma 2.1(6) as above). Since u_x is trivalent in G_1 , a γ -edge is incident to u_x in G_1 . Orient γ so that its head lies between the tail of α and the head of β . Then in G_2 , label x appears at the heads of α , β and either at the head of γ or at the tail of γ , say, at the head. Then x appears twice at the heads of β and γ , implying $w(\beta) + w(\gamma) > n_1$, and x does not appear at the tails of β and γ , implying $w(\beta) + w(\gamma) < n_1$. Two inequalities give a contradiction. Thus u_x is univalent in G_1^+ .

In G_1 , two γ -edges are incident to u_x . In G_2 , by Lemma 2.1(6), label x appears at both ends of γ . By Lemma 2.1(7) the γ -edge family contains an S-cycle and x is a label of this S-cycle.

Suppose G_1^+ has no cycle face. Then G_1^+ has a sink or source by [10, Lemma 2.3.1]. The above claim and [19, Lemma 2.3(1)] imply that there are exactly

two sinks and sources in total. Let u_x and u_y be vertices of G_1 at which these sinks and sources occur (then labels x, y form a label pair of an S-cycle in G_2). Then two γ -edges running from u_x to u_y divide \widehat{F}_1 into two disks and each of them contains neither sink nor source in its interior. The two disks have the same number of vertices of G_1 in their interiors by [21, Lemma 2.1]. One can choose a disk whose interior contains no positive edge incident to a sink. Then there would be a cycle face in the disk.

Orient all components of $\partial F_1 = \{\partial u_1, \ldots, \partial u_{n_1}\}$ homologously on $\partial_0 M$ and orient $\partial F_2 = \partial v$. Let $u \in \{u_1, \ldots, u_{n_1}\}$. If P and Q are two points in $\partial u \cap \partial v$, denote by $\mu_1(P,Q)$ (resp. $\mu_2(P,Q)$) the arc in ∂u (resp. ∂v) going from P to Q with respect to the chosen orientation. As in [6, p.1720] we define $\tau_i(P,Q) = |\mu_i(P,Q) \cap \partial F_i| - 1$ ($\{i,j\} = \{1,2\}$).

Lemma 3.3. Let $u, u' \in \{u_1, \ldots, u_{n_1}\}$. Suppose $P, Q \in \partial u \cap \partial v$ and $R, S \in \partial u' \cap \partial v$. If $\tau_1(P,Q) = \tau_1(R,S)$, then $\tau_2(P,Q) = \tau_2(R,S)$.

Proof. This follows from [6, Lemma 2.4].

Lemma 3.4. Let f be a cycle face with vertices u_{x_1}, \ldots, u_{x_n} and with corners λ_i at u_{x_i} , i.e. the intervals $f \cap u_{x_i}$ on ∂u_{x_i} . Let $\partial^1 \lambda_i$ be one endpoint of λ_i at the head of an oriented edge of f and $\partial^2 \lambda_i$ the other endpoint (automatically at the tail of another edge of f). Then we have $\tau_2(\partial^1 \lambda_1, \partial^2 \lambda_1) = \cdots = \tau_2(\partial^1 \lambda_n, \partial^2 \lambda_n)$.

Proof. Since u_{x_i} 's are all parallel, an orientation of F_1 induces orientations of ∂u_{x_i} 's which are mutually homologous on $\partial_0 M$, so $\tau_1(\partial^1 \lambda_1, \partial^2 \lambda_1) = \cdots = \tau_1(\partial^1 \lambda_n, \partial^2 \lambda_n)$. By Lemma 3.3 we have $\tau_2(\partial^1 \lambda_1, \partial^2 \lambda_1) = \cdots = \tau_2(\partial^1 \lambda_n, \partial^2 \lambda_n)$.

Proposition 3.5. \overline{G}_2 is a subgraph of the graph in Figure 2(b).

Proof. Assume for contradiction that \overline{G}_2 is a subgraph of the graph in Figure 2(a). Let f be a cycle face of G_1^+ guaranteed by Lemma 3.2 and u_{x_1}, \ldots, u_{x_n} the vertices of f. Let λ_i be the corner of f at u_{x_i} with one endpoint, $\partial^1 \lambda_i$, at the head of an oriented edge of f and the other, $\partial^2 \lambda_i$, at the tail of another edge of f. On ∂v , choose the shortest interval I_j such that $\{\partial^j \lambda_1, \ldots, \partial^j \lambda_n\} \subset I_j$ for j = 1, 2. Since $\{\partial^j \lambda_1, \ldots, \partial^j \lambda_n\} \subset I_j(\alpha) \cup I_j(\beta)$, $I_1 \cap I_2 = \emptyset$. Label x_1, \ldots, x_n so that $\partial I_1 = \{\partial^1 \lambda_1, \partial^1 \lambda_n\}$. Using Lemma 3.4, one can verify that $\partial I_2 = \{\partial^2 \lambda_1, \partial^2 \lambda_n\}$. Hence $I_1 \cup I_2 \cup \lambda_1 \cup \lambda_n$ bounds a disk D on $\partial_0 M$. As below the proof of [11, Claim 7.5], one can use D and f to construct a new Klein bottle in $M(r_2)$, on which the core of I_2 can be isotoped to lie. This implies that I_1 contains a properly embedded Möbius band and hence fails to be simple.

By Lemma 3.2, G_1^+ has a disk face f bounded by a cycle of consistently oriented edges e_1, \ldots, e_n , labelled so that the head of e_i is adjacent to the tail of e_{i+1} modulo n. The edges e_1, \ldots, e_n do not totally belong to one edge class, α or β , since otherwise, the argument in [9, Section 5] would show that M contains a cable space.

Lemma 3.6. n is even and $\{e_1, \ldots, e_n\}$ is an alternating sequence of α -edges and β -edges.

Proof. If n=2, it is obvious, so we assume n>2. Assume for contradiction that e_1, e_2 are α -edges and e_3 is a β -edge. Let u_{x_1} be the vertex to which e_1 and e_2 are incident and let u_{x_2} be the vertex to which e_2 and e_3 are incident. Let λ_i be the corner of f at u_{x_i} with endpoints $\partial^j \lambda_i = e_{i+j-1} \cap u_{x_i}$ (i, j=1, 2). Then in G_2 , the points $\partial^1 \lambda_1, \partial^2 \lambda_1, \partial^1 \lambda_2, \partial^2 \lambda_2$ are on $I_1(\alpha), I_2(\alpha), I_1(\alpha), I_2(\beta)$, respectively.

Orient ∂v clockwise. By Lemma 3.4 $\tau_2(\partial^1\lambda_1, \partial^2\lambda_1) = \tau_2(\partial^1\lambda_2, \partial^2\lambda_2)$. Recall that \overline{G}_2 is a subgraph of the graph in Figure 2(b). From the fact that the points $\partial^1\lambda_1, \partial^2\lambda_1, \partial^1\lambda_2, \partial^2\lambda_2$ are respectively on $I_1(\alpha), I_2(\alpha), I_1(\alpha), I_2(\beta)$, one can obtain two inequalities $\tau_2(\partial^1\lambda_1, \partial^2\lambda_1) \leq 2w(\alpha) < 2n_1$ and $\tau_2(\partial^1\lambda_2, \partial^2\lambda_2) > w(\alpha) + w(\beta) + w(\gamma) = 3n_1/2$. Since $\partial^1\lambda_i, \partial^2\lambda_i$ are labelled $x_i, \tau_2(\partial^1\lambda_1, \partial^2\lambda_1) = n_1$ and $\tau_2(\partial^1\lambda_2, \partial^2\lambda_2) = 2n_1$, giving a contradiction.

Lemma 3.7. f is a bigon.

Proof. Assume that n = 2m > 2. Label the vertices of $f(u_{x_1}, u_{y_1}, \dots, u_{x_m}, u_{y_m})$ along ∂f so that an α -edge (resp. β -edge) is incident to u_{x_i} (resp. u_{y_i}) at its head. See Figure 3. Then each label x_i (resp. y_i) appears once on each of $I_1(\alpha)$ and $I_2(\beta)$ (resp. $I_1(\beta)$ and $I_2(\alpha)$). Since $w(\alpha), w(\beta) < n_1$, any label cannot occur twice on each interval.

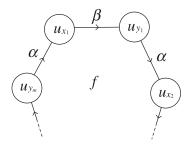


Figure 3

Orient ∂v clockwise. Relabelling x_i 's (and correspondingly y_i 's), if necessary, we may assume that among x_i 's, x_1 appears first on $I_1(\alpha)$ with respect to the orientation of ∂v . Then x_1 precedes other x_i 's on $I_2(\beta)$ by Lemma 3.4. The vertices u_{x_i} and u_{y_i} are connected by a β -edge for each i. Since β -edges are negative in G_2 , y_1 also precedes other y_i 's on $I_1(\beta)$. Again by Lemma 3.4, y_1 precedes other y_i 's on $I_2(\alpha)$. In particular, y_m follows y_1 on $I_2(\alpha)$. Since u_{y_m}, u_{x_1} and u_{y_1}, u_{x_2} are connected by α -edges, respectively and since α -edges are negative in G_2 , x_1 follows x_2 on $I_1(\alpha)$. This contradicts the choice of x_1 . \square

Without loss of generality we may assume that the labels around v are ordered in the clockwise direction. Then one can see that if an α -edge (resp. a β -edge) in G_2 has label x at its head, then its tail is labelled $x + w(\alpha)$ (resp. $x + w(\beta)$) modulo n_1 .

By Lemmas 3.6 and 3.7, f has exactly two vertices u_x, u_y along with two edges e_{α}, e_{β} (e_i is an i-edge, $i = \alpha, \beta$) such that e_{α} and e_{β} are incident to u_x and u_y at their heads, respectively. Then $y \equiv x + w(\alpha), x \equiv y + w(\beta) \pmod{n_1}$, so $w(\alpha) + w(\beta) \equiv 0$. Since $0 < w(\alpha) + w(\beta) < 2n_1$, we get $w(\alpha) + w(\beta) = n_1$. Thus $w(\gamma) = n_1/2$. By Lemma 2.1(7), either the γ -edge family in G_2 contains an S-cycle or the sets of labels at its two ends are disjoint.

Suppose that the γ -edge family contains an S-cycle σ with label pair $\{1,2\}$, say. Then σ consists of either the first two edges or the last two edges of the family. By examining the labels around the vertex v, one can see that either $w(\alpha) = n_1/2 - 1$ or $w(\beta) = n_1/2 - 1$ holds. We conclude that the three numbers $w(\alpha), w(\beta), w(\gamma)$ cannot be all even.

We shall rechoose \widehat{F}_1 to rule out this case. Let f be the disk face bounded by σ . The edges of σ cut $\widehat{F}_1 - \operatorname{Int}(u_1 \cup u_2)$ into two disks, D' and D'', say. Put $D = D' \cup u_1$. Then D contains $n_1/2$ fat vertices by [21, Lemma 2.1], and $f \cup D$ is a Möbius band whose boundary bounds a disk B on ∂H , where H is the part of J_1 between the consecutive vertices u_1 and u_2 . After being slightly pushed off H, $\widehat{P} = f \cup D \cup B$ becomes a projective plane which intersects J_1 in $n_1/2$ meridian disks. For a thin I-bundle neighborhood N of \widehat{P} in $M(r_1)$, its boundary is a reducing sphere intersecting J_1 in n_1 meridian disks. Using ∂N instead of \widehat{F}_1 , we obtain a new graph pair G_1, G_2 , where each edge of \overline{G}_2 has an even weight by the I-bundle structure of N. In particular, the above observation shows that G_2 cannot have an S-cycle.

Therefore we may assume that the label sets at two ends of the γ -edge family are disjoint and hence $w(\alpha) = w(\beta) = w(\gamma) = n_1/2$.

Lemma 3.8. $n_1 = 4$ and \widehat{F}_1 is separating.

Proof. Since $\Delta n_1 = 3n_1 = 2(w(\alpha) + w(\beta) + w(\gamma))$, n_1 is even. Let $n_1 = 2m$. We may assume that the labels around v are as shown in Figure 4. Notice that $n_1/2 = m$ is also even, for otherwise the central edge in the γ -edge family would have the same label pair as the central edge in the α -edge family and they would form an orientation-reversing loop in \widehat{F}_1 .

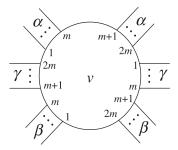


Figure 4

Let e_i (resp. e'_i) be a γ -edge (resp. an α -edge) in G_2 with label i at one endpoint, $i = 1, \ldots, m$. Let D_i be the disk in F_2 , realizing the parallelism of e_i

and e_{m-i+1} with $\partial D_i = e_i \cup a_i \cup e_{m-i+1} \cup b_i$, where a_i is an arc on ∂v from label i to m-i+1. And similarly for D'_i, a'_i, b'_i . The four edges $e_i, e_{m-i+1}, e'_i, e'_{m-i+1}$ together with vertices $u_i, u_{m-i+1}, u_{m+i}, u_{2m-i+1}$ form a loop σ_i on \widehat{F}_1 . These four vertices divide J_1 into four parts. Let U_i (resp. V_i) be the part of J_1 between u_i and u_{m-i+1} (resp. u_{m+i} and u_{2m-i+1}). A regular neighborhood of $\widehat{F}_1 \cup U_{m/2} \cup V_{m/2} \cup D_{m/2} \cup D'_{m/2}$ in $M(r_1)$ is a punctured projective space with two boundary spheres one of which is parallel to \widehat{F}_1 and the other intersects J_1 in fewer components than \widehat{F}_1 , so bounds a 3-ball. Hence \widehat{F}_1 is separating.

Now assume that $n_1 > 4$. Among the loops σ_i 's, choose an innermost one, say, σ_k . Then a_k and a'_k are properly imbedded essential arcs in the annulus $\partial U_k - \operatorname{Int}(u_k \cup u_{m-k+1})$, and $I_2(\beta)$ intersects the annulus in a spanning arc. The arcs a_k and a'_k cut the annulus into two disks and one can choose a component B disjoint from $I_2(\beta)$. Similarly after cutting the annulus $\partial V_k - \operatorname{Int}(u_{m+k} \cup u_{2m-k+1})$ along the arcs b_k and b'_k , one can choose a component B' disjoint from $I_1(\beta)$. Then $D_k \cup D'_k \cup B \cup B'$ is a Möbius band whose boundary bounds a disk in \widehat{F}_1 containing exactly two vertices, either $\{u_k, u_{m+k}\}$ or $\{u_{m-k+1}, u_{2m-k+1}\}$. Hence we can find a projective plane in $M(r_1)$ intersecting the core of I_1 in two points. The boundary of a thin regular neighborhood of this projective plane is a reducing sphere of $M(r_1)$, intersecting I_1 in fewer components than \widehat{F}_1 , which contradicts our choice of \widehat{F}_1 at the beginning of Section 2.

Proof of Theorem 1.2. By Lemma 3.8 and the argument just above it, G_2 is uniquely determined as illustrated in Figure 5(a). Let A, B, C, D, E, F be the edges of G_2 as shown in Figure 5(a). The correspondence between the edges of G_1 and G_2 uniquely determines G_1 up to a homeomorphism of the underlying sphere \widehat{F}_1 , as shown in Figure 5(b).

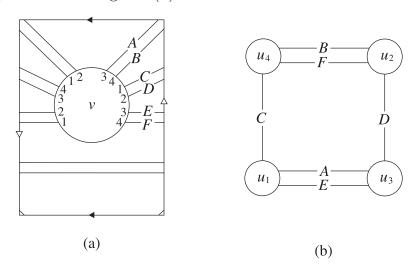


Figure 5

The graph G_2 has two trigons f_1, f_2 bounded by A, B, C and D, E, F, respectively. Let g_1, g_2 be bigons of G_2 bounded by A, B and C, D, respectively.

These trigons and bigons lie on the opposite sides of \widehat{F}_1 . Let X be a regular neighborhood of $\partial_0 M \cup F_1 \cup f_1 \cup f_2 \cup g_1 \cup g_2$ in M. Then one can verify that ∂X consists of two spheres. Capping off these spheres with 3-balls gives M. This shows that M is uniquely determined by the pair of the graphs in Figure 5. Hence M = W(6).

Proof of Corollary 1.3. Since $M(r_2)$ contains a Klein bottle, $\Delta(r_1, r_2) \leq 3$ by [19, Theorem 1.1]. Assume for contradiction that $\Delta(r_1, r_2) = 3$. Then M = W(6) by Theorem 1.2.

Note that $M(\infty) = L(6,1)$ and M(2) is a small Seifert fibered space with a finite fundamental group. See [3, Example 7.8]. We have $\Delta(r_1, \infty) \leq 1$ and $\Delta(r_1, 1) \leq 1$ by [3, Theorem 1.2(1)] and [12, Theorem 1.2]. Hence $r_1 = 0, 1$ or 2. However, M(2) is irreducible. The slope 0 is a boundary slope of an essential once-punctured torus in M, which extends to an essential torus in M(0), and $\dim H_1(M; \mathbb{Q}) = 1$. The conclusions (ii), (iii) and (iv) in [4, Theorem 2.0.3] do not hold for M and the slope 0, so M(0) is irreducible. Therefore $r_1 = 1$. By [2, Theorem 1.5(1)] we have $\Delta(r_2, \infty) = 1$ and hence the assumption $\Delta(r_1, r_2) = 3$ yields $r_2 = -2$ or 4. However, M(-2) is hyperbolic by [7, Example (5)]. Therefore $r_2 = 4$.

4. Torus

Throughout this section we assume that \widehat{F}_2 is a torus. Then G_2 has exactly two vertices, v_1 and v_2 , by Lemma 2.2. We may assume that $M(r_2)$ is irreducible and boundary-irreducible by [12, 20]. By Lemma 2.1(4), we also assume that G_2 has only (1, 2)-Scharlemann cycles if it has Scharlemann cycles.

Lemma 4.1. The vertices of G_2 are antiparallel.

Proof. Assume that v_1 and v_2 are parallel. Then all the edges of G_2 are positive. For a label $x \neq 1, 2$, consider the subgraph Γ of G_2 consisting of all vertices and all x-edges of G_2 . Let V, E and F be the number of vertices, edges and disk faces of Γ , respectively. Since V < E, we have $0 = \chi(\widehat{F}_2) \leq V - E + F < F$, so Γ contains a disk face, which is an x-face in G_2 in terms of [17]. This contradicts [17, Theorem 4.4].

The graph G_2 has at most 6 edge classes, which we call $\alpha, \beta, \gamma, \delta, \varepsilon, \varepsilon'$ as illustrated in Figure 6. See [6, Lemma 5.2]. An edge in G_1 or G_2 is called an η -edge if, being regarded as an edge in G_2 , it lies in class $\eta, \eta \in \{\alpha, \beta, \gamma, \delta, \varepsilon, \varepsilon'\}$. An edge in G_1 or G_2 is called of type 1 if it is an α -edge or a β -edge, and of type 2 if it is a γ -edge or a δ -edge. The ε -edges and ε' -edges are positive in G_2 , while the others are negative by Lemma 4.1. Since v_1 and v_2 have the same valency, we have $w(\varepsilon) = w(\varepsilon')$. Without loss of generality we assume that the ordering of the labels around v_1 is anticlockwise, while the ordering around v_2 is clockwise.

Lemma 4.2. Let $x(\neq 1,2)$ be a label of G_2 . Then there exist an edge of type 1 and an edge of type 2 incident to v_i with label x, i = 1, 2.

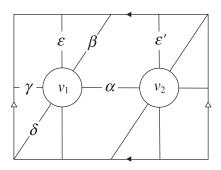


FIGURE 6

Proof. Let $\varepsilon = \{e_1, \dots, e_{w(\varepsilon)}\}$, $\varepsilon' = \{e'_1, \dots, e'_{w(\varepsilon')}\}$ as shown in Figure 7. There are two cases.

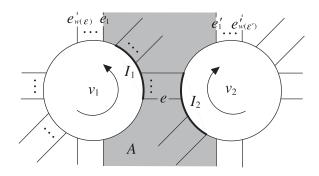


FIGURE 7

Case I. The sets of labels at two ends of ε have a label in common. By Lemma 2.1(7) we may assume that $\{e_1, e_2\}$ is an S-cycle with label pair $\{1, 2\}$. Let I_i be the shortest interval on ∂v_i containing the endpoints of the edges of type 1 at v_i , i=1,2. Since I_1 and I_2 have the same number of edge endpoints, $\{e'_1, e'_2\}$ is also an S-cycle with label pair $\{1,2\}$. Then $w(\alpha) + w(\beta) = n_1 - 2$ or $2n_1 - 2$. In the first case for any label $x \neq 1, 2$, exactly one edge of type 1 is incident to v_i with label x, i=1,2. On the other hand, since $w(\varepsilon) \leq n_1/2 + 1$ by Lemma 2.1(5), $w(\gamma) + w(\delta) = 3n_1 - w(\alpha) - w(\beta) - 2w(\varepsilon) \geq n_1$. This means that for any label x, an edge of type 2 is incident to v_i with label x, i=1,2, so we have the desired result. In the latter case $w(\alpha) = w(\beta) = n_1 - 1$ by Lemma 2.1(6). Let e be the lowest α -edge as in Figure 7. Since $\{e_1, e_2\}$ and $\{e'_1, e'_2\}$ are $\{1, 2\}$ -S-cycles, the point $e \cap \partial v_1$ is labelled 3, while the point $e \cap \partial v_2$ is labelled 2. Hence e connects vertices u_2 and u_3 in G_1 . Since G_2 contains S-cycles, \widehat{F}_1 is separating by Lemma 2.1(3), so u_2 and u_3 are antiparallel. Therefore the edge e is negative in both graphs G_1 and G_2 , which is impossible by the parity rule.

Case II. The sets of labels at two ends of ε are disjoint. Suppose, for example, that no edge of type 1 is incident to v_1 with label $x \neq 1, 2$, that is, the label x does

not appear on I_1 . Since $w(\gamma), w(\delta) < n_1$ by Lemma 2.1(6), $w(\alpha) + w(\beta) + 2w(\varepsilon) = 3n_1 - w(\gamma) - w(\delta) > n_1$, so x appears at one end of ε , say, at the bottom of v_1 (then x does not appear at the top of v_1). Let y be the label of the point in $\partial v_1 \cap e_{w(\varepsilon)}$ at the bottom of v_1 (y is possibly equal to x). Then y does not appear on I_1 , otherwise x must appear at the end of ε at the top of v_1 . Since $w(\alpha) + w(\beta) + 2w(\varepsilon) > n_1$, y must appear at the end of ε at the top of v_1 . This contradicts our assumption.

In particular, we have $w(\alpha) + w(\beta) > 0$ and $w(\gamma) + w(\delta) > 0$. And if $w(\varepsilon) = w(\varepsilon') = 0$, then we have $w(\alpha), w(\beta), w(\gamma), w(\delta) > 0$ by Lemma 2.1(6). Thus the reduced edges in \overline{G}_2 cut F_2 into disks, so $F_1 \cap F_2$ has no circle component.

Proposition 4.3. G_1^+ contains a connected subgraph Λ satisfying that

- (1) for all vertices u_x of Λ but at most one vertex, there are an edge of type 1 and an edge of type 2 in Λ which are incident to u_x with label i for each i = 1, 2;
- (2) for the other vertex u_{x_0} , if it exists, there are two edges in Λ incident to u_{x_0} ; and
- (3) there is a disk $D_{\Lambda} \subset \widehat{F}_1$ such that $D_{\Lambda} \cap G_1^+ = \Lambda$.

The vertex u_{x_0} is called an exceptional vertex of Λ .

Proof. Let Γ be an extremal component of G_1^+ . That is, Γ is a component of G_1^+ having a disk support D such that $D \cap G_1^+ = \Gamma$.

Recall that all the Scharlemann cycles in G_2 are (1,2)-Scharlemann cycles. If G_2 contains a Scharlemann cycle, then the vertices u_1 and u_2 are antiparallel and hence they belong to distinct components of G_1^+ . So, we may assume that Γ does not contain u_2 in this case.

A vertex of Γ is a *cut vertex* if it splits Γ into more components. If Γ has no cut vertex, we take Γ as Λ . Then all vertices of Λ , possibly except one (when u_1 is contained in Λ), satisfy the property (1) by Lemma 4.2.

Suppose that Γ has a cut vertex. If u_1 is a single cut vertex of Γ , cut Γ off at u_1 and take any component as Λ , and then all vertices of Λ but u_1 satisfy the property (1) again by Lemma 4.2. Otherwise, after cutting Γ off at all cut vertices we can find a component, which does not contain u_1 , with a single cut vertex. We take this component as Λ and then the cut vertex may be the exceptional vertex of Λ , while the other vertices of Λ satisfy the property (1) by Lemma 4.2.

Let D_{Λ} be a disk support of Λ as given in Proposition 4.3. A vertex of Λ is a boundary vertex if there is an arc connecting it to ∂D_{Λ} whose interior is disjoint from Λ , and an interior vertex otherwise.

Each face of Λ is a disk, for Λ is connected. Since G_1 has only two labels, $\{1,2\}$, each edge of Λ has label 1 at one endpoint and label 2 at the other. Hence every face of Λ determines a Scharlemann cycle of G_1 . By Lemma 2.1(3)

 \widehat{F}_2 divides $M(r_2)$ into a black side X and a white side Y. A face of G_1 is black or white according as it lies in X or Y.

From now on we assume that $\partial_1 M = \partial M - \partial_0 M$ is a torus and eventually we will get a contradiction. Assume that Y contains $\partial_1 M$. By Theorem 1.2 we may also assume that $M(r_2)$ contains no Klein bottle.

Lemma 4.4. The edges of a face in G_1^+ cannot lie in a disk in \widehat{F}_2 .

Proof. At the beginning of this section we assumed that $M(r_2)$ is irreducible. Hence the statement follows from the proof of [11, Lemma 3.1].

Let $H_X = J_2 \cap X$ and $H_Y = J_2 \cap Y$.

Lemma 4.5. For any white face of G_1^+ , its edges cannot lie in an annulus in \widehat{F}_2 .

Proof. Suppose to the contrary that G_1^+ contains a white face f whose edges lie in an annulus A in \widehat{F}_2 . By Lemma 4.4, A is essential in \widehat{F}_2 . Let N be a regular neighborhood of $A \cup H_Y \cup f$ in Y. Then ∂N is a torus, and $T = (\partial N - \text{Int}A) \cup (\widehat{F}_2 - A)$ is a torus disjoint from J_2 , so it must be inessential in $M(r_2)$. If T were compressible, a compression would result in a sphere separating \widehat{F}_2 and $\partial_1 M$, and hence a reducing sphere of $M(r_2)$. This contradicts our assumption that $M(r_2)$ is irreducible. Suppose T is parallel to $\partial_1 M$. Then there is an annulus A' in the region between the two tori T and $\partial_1 M$ such that one component of $\partial A'$ lies in $\widehat{F}_2 - A$ and the other component lies in $\partial_1 M$. The circle $A' \cap \partial_1 M$ is an essential curve on $\partial_1 M$, otherwise \widehat{F}_2 would be compressible. Surgering \widehat{F}_2 along A' gives a properly embedded annulus A'' in $M(r_2)$. Since \widehat{F}_2 is essential in $M(r_2)$, so is A''. Our assumption $\Delta(r_1, r_2) = 3$ contradicts [22, Theorem 5.1].

Lemma 4.6. A contains a face bounded only by edges of type 1 or only by edges of type 2.

Proof. Let u_x be the exceptional vertex of Λ , if it exists, and any vertex of Λ otherwise. Without loss of generality we may assume that an edge e of type 1 is incident to u_x with label 1. Orient every edge of type 1 from the endpoint with label 1 to the other. Then by Proposition 4.3 any non-exceptional vertex of Λ has an edge pointing in and an edge pointing out. Starting with e, one can construct a path through the oriented edges of type 1 always consistent with orientations. Ultimately the path hits the same vertex to create a cycle. This shows that Λ contains cycles of oriented edges of type 1. Choose an innermost cycle σ . Then σ bounds a disk D in \widehat{F}_1 with no vertex in its interior. If D has no edge of Λ in its interior, then we are done. Otherwise, all the edge in IntD are of type 2. Since σ is a 1-cycle, some of these edges bound a desired face of Λ .

Lemma 4.7. Let f be an n-sided face of G_1^+ , n=2 or 3. Then the edges of f lie in an essential annulus, A, in \widehat{F}_2 , f is black, and X is a Seifert fibered space

over the disk with two exceptional fibers one of which has order n. The core of A is a Seifert fiber.

Proof. This follows from [11, Lemma 3.7 and Theorem 3.8] and Lemma 4.5. \square

Note that each of non-exceptional boundary vertices of Λ has valency at least 4 in Λ by the property (1) of Proposition 4.3.

Lemma 4.8. Λ contains a black bigon.

Proof. Let V, E and F be the number of vertices, edges and faces of Λ , respectively. Let V_b, V_i and V_e denote the number of boundary vertices, interior vertices and exceptional vertex of Λ , respectively. Then $V = V_b + V_i$ and $V_e = 0$ or 1. Now suppose that Λ contains no bigon. Then each face has at least 3 sides and hence $3F + V_b \leq 2E$. Combining with $1 = \chi(\text{disk}) = V - E + F$, we get $E \leq 3V - V_b - 3 = 3V_i + 2V_b - 3$.

Since all boundary vertices but the exceptional vertex have valency at least 4 and all interior vertices have valency 6, we have $4(V_b - V_e) + 2V_e + 6V_i \le 2E$. These two inequalities give $3 \le V_e$, a contradiction. Hence Λ contains a black bigon by Lemma 4.7.

As in [13], we may label an edge e of G_1 by class of the corresponding edge of G_2 . We refer to this label as the *edge class label* of e. Then an edge of type 1 has edge class label α or β , and an edge of type 2 has edge class label γ or δ .

Let $M_X = M \cap X$ and $M_Y = M \cap Y$.

Lemma 4.9. Any two bigons in G_1^+ have the same pair of edge class labels. Furthermore the pair is either $\{\alpha, \beta\}$ or $\{\gamma, \delta\}$.

Proof. If there are two bigons of G_1^+ with distinct pairs of edge class labels, the argument in the proof of [13, Lemma 5.2] shows that $M(r_2)$ contains a Klein bottle. This contradicts our assumption just above Lemma 4.4.

Now we shall show that the pair is either $\{\alpha, \beta\}$ or $\{\gamma, \delta\}$. By Lemma 4.6 there is a face f of Λ bounded only by edges of type 1, say. Thus the edges of f lie in an essential annulus on \widehat{F}_2 , so f is black by Lemma 4.5. Let u_{x_1}, \ldots, u_{x_n} be the vertices of f and let λ_i be the corner of f at u_{x_i} . As illustrated in in Figure 7, let I_j be the shortest interval on ∂v_j containing the endpoints of edges of type 1 at v_j for j = 1, 2.

As in the proof of Proposition 3.5, one can find a disk D on the annulus $\partial H_X - \operatorname{Int}(v_1 \cup v_2)$ such that $D \supset \lambda_1 \cup \cdots \cup \lambda_n$ and $\partial D = a \cup b \cup c \cup d$, where a and c are respectively subarcs of I_1 and I_2 , and b and d are essential arcs in the annulus $\partial H_X - \operatorname{Int}(v_1 \cup v_2)$, parallel to each of λ_i . Let A be the annulus in F_2 bounded by the edges e_1 and e'_1 in Figure 7 along with subarcs on ∂v_1 and ∂v_2 containing I_1 and I_2 . Then $A \cup D$ is a once punctured torus. Enlarging D slightly in $\partial H_X - \operatorname{Int}(v_1 \cup v_2)$ we may assume that ∂f lies in $\operatorname{Int}(A \cup D)$. Notice that ∂f is a non-separating curve on $A \cup D$, since the vertices of f are all parallel. Surgering $A \cup D$ along f gives a disk B. Pushing $\operatorname{Int} B$ into the interior of M_X rel. boundary gives a properly embedded disk B' in M_X . Here

 $\partial B' \cap \partial H_X = b \cup d$ and $\partial B' - \operatorname{Int}(b \cup d)$ consists of two arcs in ∂A . Notice that an orientation of $\partial B'$ induces orientations of b and d which are opposite in the annulus $\partial H_X - \operatorname{Int}(v_1 \cup v_2)$. Now by shrinking H_X to its core, $H_X \cup B'$ becomes a properly embedded annulus A' in X.

The annulus A' divides X into two regions Z_1 and Z_2 . We claim that both Z_1 and Z_2 are solid tori. Since the core of H_X lies on A', we can isotope the core of J_2 slightly so that it is disjoint from the torus ∂Z_1 . Then the minimality of $|\widehat{F}_2 \cap J_2|$ guarantees that Z_1 is a solid torus. Similarly so is Z_2 . Thus X is a Seifert fibered space over the disk with the core of A' (and hence that of A) a Seifert fiber. Since $M(r_2)$ (and hence X) contains no Klein bottle, the Seifert fibration of X is unique by [15, Theorem VI.18]. Therefore the pair of edge class labels of any bigon in G_1^+ is either $\{\alpha, \beta\}$ or $\{\gamma, \delta\}$ by Lemma 4.7.

- Lemma 4.10. (1) All interior vertices of Λ have valency at least 4 in Λ̄.
 (2) All boundary vertices of Λ but the exceptional vertex have valency at least 3 in Λ̄.
- *Proof.* (1) If Λ had a set of three parallel edges, the set would contain a white bigon, contradicting Lemma 4.7. Since any interior vertex has valency 6 in Λ , it has valency at least 3 in $\overline{\Lambda}$. Suppose that an interior vertex has valency exactly 3 in $\overline{\Lambda}$. Then the vertex is incident to three pairs of parallel edges in Λ , which have the same pair of edge class labels, say, $\{\alpha, \beta\}$ by Lemma 4.9. This contradicts the property (1) of Proposition 4.3.
- (2) Suppose that a non-exceptional boundary vertex of Λ has valency 2 in $\overline{\Lambda}$. Then the vertex is incident to two pairs of parallel positive edges and two negative edges in G_1 . Then we get a contradiction as above.

Lemma 4.11. Λ contains a black trigon.

Proof. Let V, E and F be the number of vertices, edges and faces of $\overline{\Lambda}$, respectively. Let V_b, V_i and V_e denote the number of boundary vertices, interior vertices and the exceptional vertex of Λ , respectively. Now suppose that $\overline{\Lambda}$ contains no 3-sided face. Then each face of $\overline{\Lambda}$ has at least 4 sides and hence $4F + V_b \leq 2E$. Combining 1 = V - E + F, we get $2E \leq 4V_i + 3V_b - 4$.

By Lemma 4.10 we have $3(V_b - V_e) + 2V_e + 4V_i \le 2E$. These two inequalities give $4 \le V_e$, a contradiction. Thus $\overline{\Lambda}$ (and hence Λ) has a 3-sided face, which must be black by Lemma 4.7.

Lemma 4.12. M_X is a handlebody of genus 2 and M_Y is a compression body with the boundary a union of a genus 2 surface and $\partial_1 M$.

Proof. Since F_2 is a twice punctured torus, both ∂M_X and $\partial M_Y - \partial_1 M$ are surfaces of genus 2. By Lemma 4.10(2) one easily sees that Λ contains black and white faces simultaneously. A black face compresses ∂M_X to result in a torus in M_X , which bounds a solid torus since M_X contains no incompressible torus. Hence M_X is a handlebody of genus 2. Similarly a white face compresses $\partial M_Y - \partial_1 M$ to result in a torus parallel to $\partial_1 M$.

Travelling around the boundary of a disk face of G_1^+ gives rise to a cyclic sequence of edge class labels. We shall say that two disk faces of G_1^+ of the same color are *isomorphic* if the cyclic sequences obtained by travelling in some directions are equal.

Let $A_X = H_X \cap M_X$ and $A_Y = H_Y \cap M_Y$. Then $\partial M_X = A_X \cup F_2$ and $\partial M_Y - \partial_1 M = A_Y \cup F_2$. Since all the vertices of Λ are parallel, each face of Λ is a non-separating disk in M_X or M_Y . Note that any two faces of Λ of the same color are disjoint.

Lemma 4.13. If two disk faces of G_1^+ are parallel in M_X or M_Y , then they are isomorphic.

Proof. Suppose, for example, that two disk faces f and g of G_1^+ are parallel in M_X . The curves ∂f and ∂g cobound an annulus A in ∂M_X . Note that each component of $\partial A - \operatorname{Int} A_X$ is an edge of G_2 in ∂f or ∂g , while each component of $\partial A \cap A_X$ is a corner of f or g. The boundary circles of A_X must intersect A in spanning arcs, otherwise some edge of G_2 in ∂f or ∂g would be a trivial loop in G_2 . Thus $A - \operatorname{Int} A_X$ is a union of disjoint rectangles R_1, \ldots, R_n . Each R_i realizes a parallelism between two edges $\partial f \cap R_i$ and $\partial g \cap R_i$, so these edges have the same edge class label.

By Lemmas 4.8 and 4.11, G_1^+ contains black bigons and trigons. Without loss of generality we may assume that all bigons of G_1^+ have the edge class label pair, $\{\alpha, \beta\}$, by Lemma 4.9. Then we have the following.

Lemma 4.14. All trigons of G_1^+ have the same pair of edge class labels $\{\gamma, \delta\}$, i.e. they are bounded by edges of type 2.

Proof. Let f and g be a bigon and a trigon of G_1^+ , respectively. Let A be the annulus in F_2 bounded by e_1 and e'_1 along with two subarcs in ∂F_2 as shown in Figure 7. Then f is bounded by an α -edge and a β -edge, and X is a Seifert fibered space over the disk with two exceptional fibers, whose Seifert fibration is unique because X does not contain a Klein bottle. Here, the core of A is a Seifert fiber.

By Lemma 4.7, g is bounded either by edges of type 1 or by edges of type 2. In the first case, surgering a twice punctured torus $A \cup A_X$ using f and g gives two disks in X, since ∂f and ∂g are non-separating and not mutually parallel in the surface. The boundary circles of the disks lie in \widehat{F}_2 and are isotopic to the core of A. This implies that \widehat{F}_2 is compressible in $M(r_2)$, a contradiction. Thus g is bounded by edges of type 2.

We will assume that each trigon has two γ -edges and a δ -edge.

Lemma 4.15. If two edges e_1, e_2 of G_1^+ are incident to a vertex with the same label, then they have distinct edge class labels.

Proof. If e_1 and e_2 have the same edge class labels, then the corresponding edge class in G_2 contains more than n_1 edges, contradicting Lemma 2.1(6).

Lemma 4.16. There is no triple of mutually non-isomorphic black disk faces of G_1^+ .

Proof. Suppose that G_1^+ has such a triple (f_1, f_2, f_3) . Then these faces cut M_X into two 3-balls by Lemma 4.13.

Claim. $G_1 = G_1^+$ and it is connected.

Proof. Note that G_1 is connected if and only if every face of G_1 is a disk. Let f be a black face of G_1 other than f_1, f_2, f_3 . Then f lies in the complement of $f_1 \cup f_2 \cup f_3$ in M_X , so f must be a disk, otherwise it would be compressible in M_X , so F_1 would be compressible in M and one could find a new essential sphere in $M(r_1)$ which meets J_1 in fewer components than \widehat{F}_1 . Each component of $\partial f \cap F_2$ is an edge of G_2 . The circle ∂f must be an essential curve in $\partial M_X = F_2 \cup A_X$, otherwise some component of $\partial f \cap F_2$ would be a trivial loop in G_2 . Hence f is an essential disk in M_X , which must be parallel to one of the faces f_1, f_2 and f_3 . Therefore any black face of G_1 is a disk face isomorphic to one of f_1, f_2 and f_3 by Lemma 4.13. It follows that all the edges of G_1 are positive, i.e. $G_1 = G_1^+$.

It remains to show that any white face of G_1 is a disk. Suppose to the contrary that a white face g of G_1 is not a disk. Then g is incompressible in M_Y as above. Recall that Λ contains a white disk face and that M_Y is a compression body with the outer boundary a surface of genus 2 and the inner boundary a torus, $\partial_1 M$. Let g_1 be a white disk face of Λ . Cutting M_Y along g_1 gives rise to a manifold V, homeomorphic to $S^1 \times S^1 \times I$, with $\partial_1 M$ one component of ∂V . Here, g lies in V and $\partial g \subset \partial V - \partial_1 M$. Since g is incompressible in M_Y , g is also incompressible in V. Hence g must be an annulus parallel to $\partial V - \partial_1 M$. Thus V contains an annulus A such that one component of ∂A is the core curve of g and the other lies in $\partial_1 M$, where $\partial A \cap \partial_1 M$ is an essential curve, otherwise g would be compressible in M_Y . Surgering \widehat{F}_1 along A gives two compressing disks for $\partial_1 M$ in $M(r_1)$. This shows $M(r_1)$ is boundary-reducible. The assumption $\Delta = 3$ contradicts [13, Theorem 1.1].

Hence, \widehat{F}_1 is a non-separating sphere in $M(r_1)$. This contradicts [16, Theorem 1.1].

Proof of Theorem 1.1. Orient the edges of G_1 as shown in Figure 8 so that G_1 becomes a directed graph in the 2-sphere \widehat{F}_1 . (For example, all α -edges are oriented so that their left hand sides are black.)

Figure 8

Note that any disk face of G_1 has the same number of ε -edges and ε' -edges. Hence if there were a cycle face in G_1 , then it would be a face of G_1^+ , since the

 ε -edges and ε' -edges are oppositely oriented. Moreover, it would be bounded either by α -edges and γ -edges or by β -edges and δ -edges and hence it would be white by Lemma 4.16. This contradicts Lemma 4.5.

Therefore it is enough to show that G_1 has neither a sink nor a source. Assume for contradiction that G_1 has a source at a vertex u_x . The local view at u_x must be like one of the pictures in Figure 9 by Lemma 4.15. We shall show that any of them is impossible.

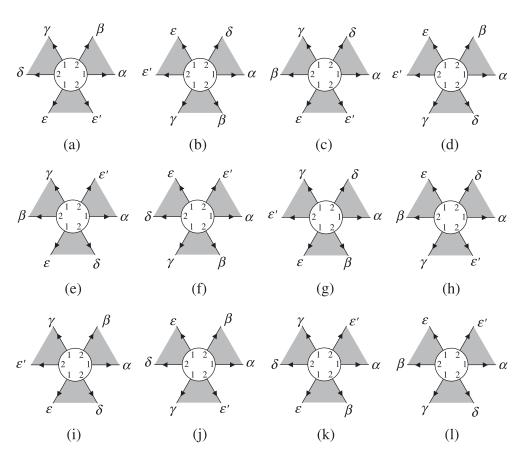


Figure 9

In G_2 , the label x appears three times around the vertex v_1 at ends of α -, γ -, and ε -edge families and three times around the vertex v_2 at ends of β -, δ -, and ε' -edge families.

Claim. In G_2 , the label x appears at the northern (resp. southern) end of ε -edge family if and only if it appears at the southern (resp. northern) end of ε' -edge family.

Proof. Assume, for example, that x appears at the northern ends of ε - and ε' -edge families. See Figure 10. Around the vertex v_1 , x does not appear at an end of δ -edge family and at the southern end of ε -edge family, implying $w(\delta) + w(\varepsilon) < n_1$. Around the vertex v_2 , x appears once at an end of δ -edge

family and once at the northern end of ε' -edge family, implying $w(\delta)+w(\varepsilon')>n_1$. Since $w(\varepsilon)=w(\varepsilon')$, these two inequalities conflict.

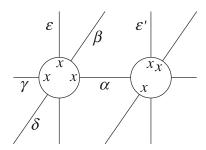


Figure 10

Let f be a black bigon of Λ with vertices u_y, u_z and g a black trigon with vertices u_p, u_q, u_r , as shown in Figure 11. Let C_1 be the corner of f at the vertex u_z and C_2 the corner of g at the vertex u_g .

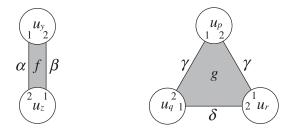


Figure 11

Assume the source at u_x looks like Figure 9(a), (b), (c) or (d). Let C be the black corner in ∂u_x running from an ε -edge endpoint to an ε' -edge endpoint. Then C, C_1, C_2 contradict [14, Lemma 3.2] by the above claim.

Assume the source at u_x looks like Figure 9(e) or (f). Let C be the black corner in ∂u_x running from a γ -edge endpoint to a β -edge endpoint. Then C, C_1, C_2 contradict [14, Lemma 3.2].

Assume the source at u_x looks like Figure 9(g) or (h). Let C be the black corner in ∂u_x running from an α -edge endpoint to a δ -edge endpoint. Then C, C_1, C_2 contradict [14, Lemma 3.2].

Assume the source at u_x looks like Figure 9(i) or (j). Let C be the black corner in ∂u_x running from a γ -edge endpoint to an ε' -edge endpoint and C' the black corner running from an ε -edge endpoint to a δ -edge endpoint. Then C, C', C_2 contradict [14, Lemma 3.2] by the above claim.

Assume the source at u_x looks like Figure 9(k) or (l). Let C be the black corner in ∂u_x running from an ε -edge endpoint to a β -edge endpoint and C' the black corner running from an α -edge endpoint to an ε' -edge endpoint. Then C, C', C_1 contradict [14, Lemma 3.2] by the above claim.

Using the same argument as above, we can see that G_1 has no sink.

I would like to thank the referee and Sungmo Kang for pointing out errors in the original texts and helpful comments.

References

- [1] S. Boyer and X. Zhang, Reducing Dehn filling and toroidal Dehn filling, Topology Appl. **68** (1996) 285–303.
- [2] _____, Finite Dehn surgery on knots, J. Amer. Math. Soc. 9 (1996) 1005–1050.
- [3] _____, On Culler-Shalen seminorms and Dehn filling, Ann. of Math. (2) 148 (1998) 737–801.
- [4] M. Culler, C. McA. Gordon, J. Luecke, and P.B. Shalen, Dehn surgery on knots, Ann. of Math. (2) 125 (1987), 237–300.
- [5] M. Eudave-Muñoz and Y. Q. Wu, Nonhyperbolic Dehn fillings on hyperbolic 3-manifolds, Pacific J.Math. 190 (1999), 261–275.
- [6] C. McA. Gordon, Boundary slopes on punctured tori in 3-manifolds, Trans. Amer. Math. Soc. **350** (1998), 1713–1790.
- [7] ______, Dehn filling: a survey, Knot theory (Warsaw, 1995), 129–144, Banach Center Publ., 42, Polish Acad. Sci., Warsaw, 1998.
- [8] _____, Small surfaces and Dehn fillings, Geom. and Topol. Mono. 2 (1999), 177–199.
- [9] C. McA. Gordon and R. Litherland, *Incompressible planar surfaces in 3-manifolds*, Topology Appl. **18** (1984), 121–144.
- [10] C. McA. Gordon and J. Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989), 371–415.
- [11] _____, Dehn surgeries on knots creating essential tori, I, Comm. Anal. and Geom. 3 (1995), 597–644.
- [12] _____, Reducible manifolds and Dehn surgery, Topology 35 (1996), 385–409.
- [13] ______, Toroidal and boundary-reducing Dehn fillings, Topology Appl. 93 (1999), 77–90.
- [14] ______, Non-integral toroidal Dehn surgeries, Comm. Anal. and Geom. 12 (2004) 417–485.
- [15] W. Jaco, Lectures on three-manifold topology, Regional Conf. Series in Math. 43 (1997).
- [16] S. Lee, Toroidal Dehn surgeries on knots in $S^1 \times S^2$, J. Knot Theory Ramifications 14 (2005), 657–664.
- [17] S. Lee, S. Oh and M. Teragaito, *Reducing Dehn fillings and small surfaces*, to apper in Proc. London Math. Soc.
- [18] S. Oh, Reducible and toroidal manifolds obtained by Dehn fillings, Topology Appl. **75** (1997), 93–104.
- [19] _____, Dehn filling, reducible 3-manifolds and Klein bottles, Proc. Amer. Math. Soc. 126 (1998), 289–296.
- [20] M. Scharlemann, Producing reducible 3-manifolds by surgery on a knot, Topology 29 (1990), 481–500.
- [21] Y.Q. Wu, The reducibility of surgered 3-manifolds, Topology Appl. 43 (1992), 213–218.
- [22] _____, Sutured manifold hierarchies, essential laminations, and Dehn surgery, J. Diff. Geom. 48 (1998), 407–437.
- [23] _____, Dehn fillings producing reducible manifolds and toroidal manifolds, Topology 37 (1998), 95–108.

School of Mathematics, Korea Institute for Advanced Study 207-43 Cheongryangri-dong, Dongdaemun-gu Seoul 130-722, Korea

E-mail address: slee@kias.re.kr