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REDUCING AND TOROIDAL DEHN FILLINGS ON
3-MANIFOLDS BOUNDED BY TWO TORI

Sangyop Lee

Abstract. We show that if M is a simple 3-manifold bounded by two tori such

that M(r1) is reducible and M(r2) is toroidal, then Δ(r1, r2) ≤ 2, answering a
question raised by Gordon. To do this, we first prove that there exists only one

simple 3-manifold having two Dehn fillings of distance 3 apart one of which yields

a reducible manifold and the other yields a 3-manifold containing a Klein bottle.

1. Introduction

Let M be a compact connected orientable 3-manifold with a torus boundary
component ∂0M and r a slope, the isotopy class of an essential simple closed
curve, on ∂0M . The manifold obtained by r-Dehn filling is defined to be M(r) =
M ∪ J , where J is a solid torus glued to M along ∂0M so that r bounds a disk
in J .

Following [22], we say that M is simple if it contains no essential sphere,
torus, disk or annulus. For two slopes r1 and r2 on ∂0M , the distance Δ(r1, r2)
denotes their minimal geometric intersection number. For simple manifolds M ,
if both M(r1) and M(r2) fail to be simple, then the upper bounds for Δ(r1, r2)
have been established in various cases. See [8] for more details.

For example, Oh [18] and independently Wu [23] showed that for a simple
manifold M , if M(r1) is reducible and M(r2) is toroidal then Δ(r1, r2) ≤ 3.
Furthermore, Wu [22] also showed that if one puts an additional condition
H2(M,∂M − ∂0M) �= 0, then Δ(r1, r2) ≤ 1. In particular, this homological
condition holds if M has a boundary component with genus greater than one or
ifM has more than two boundary tori. Note thatM has no boundary sphere, for
M is simple. It is natural then to consider the following question raised by Gor-
don [8, Question 5.1]; if ∂M consists of two tori, is it possible that Δ(r1, r2) = 3?
In this paper we give a negative answer to the question.

Theorem 1.1. Let M be a simple 3-manifold with boundary a union of two
tori. If r1 and r2 are slopes on one boundary component ∂0M such that M(r1)
is reducible and M(r2) is toroidal, then Δ(r1, r2) ≤ 2.
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Our theorem is sharp because Eudave-Muñoz and Wu [5, Theorem 2.6] have
given infinitely many simple manifolds which are bounded by two tori and admit
reducing and toroidal Dehn fillings at distance 2.

Oh [19] showed that if one Dehn filling yields a reducible manifold and another
yields a manifold containing a Klein bottle, then the distance between their filling
slopes is not greater than 3. On the other hand, Boyer and Zhang [1, p.286]
gave an example of a simple manifold showing Oh’s result is sharp. This simple
manifold, which we shall denote by W (6), is obtained from the exterior W of the
Whitehead link by performing Dehn filling on its one boundary component with
slope 6 under the standard meridian-longitude coordinates. In this paper, we
shall show that W (6) is the only simple manifold having two such Dehn fillings
at distance 3.

Theorem 1.2. Let M be a simple manifold. If M(r1) is reducible and M(r2)
contains a Klein bottle with Δ(r1, r2) = 3, then M is homeomorphic to W (6).

Corollary 1.3. Let M be a simple manifold. If M(r1) is reducible and M(r2) is
a Seifert fibered manifold over the 2-sphere with three exceptional fibers of orders
2, 2, n, then Δ(r1, r2) ≤ 2.

It is still unknown whether or not the upper bound 2 is the best possible.

2. The intersection graphs

From now on we assume that M is a simple 3-manifold with a torus boundary
component ∂0M and that r1 and r2 are slopes on ∂0M of distance 3 apart such
that M(r1) is reducible and M(r2) contains an essential torus or a Klein bottle.

Over all reducing spheres in M(r1) which intersect the attached solid torus
J1 in a family of meridian disks, we choose a 2-sphere F̂1 so that F1 = F̂1 ∩M

has the minimal number, say n1, of boundary components. Similarly let F̂2 be
either an essential torus or a Klein bottle in M(r2) which intersects the attached
solid torus J2 in a family of meridian disks, the number of which, say n2, is
minimal over all such surfaces and let F2 = F̂2 ∩M . Let u1, u2, . . . , un1 be the
disks of F̂1 ∩ J1, labelled as they appear along J1. Similarly let v1, v2, . . . , vn2

be the disks of F̂2 ∩ J2. Then F1 is an essential planar surface, and F2 is an
essential punctured torus or a punctured Klein bottle in M . We may assume
that F1 and F2 intersect transversely and the number of components in F1 ∩F2

is minimal over all such surfaces. Then no circle component of F1 ∩F2 bounds a
disk in either F1 or F2 and no arc component is boundary-parallel in either F1

or F2. The components of ∂Fi are numbered 1, 2, . . . , ni according to the labels
of the corresponding disks of F̂i ∩ Ji. We obtain a graph Gi in F̂i by taking
as the (fat) vertices of Gi the disks in F̂i ∩ Ji and as the edges of Gi the arc
components of F1∩F2 in Fi. Each endpoint of an edge of Gi has a label, that is,
the number of the corresponding component of ∂Fj , i �= j. Since each component
of ∂Fi intersects each component of ∂Fj in Δ(= Δ(r1, r2) = 3) points, the labels
1, 2, . . . , nj appear in order around each vertex of Gi repeatedly Δ times.
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For a graph G, the reduced graph G of G is defined to be the graph obtained
from G by amalgamating each family of parallel edges into a single edge. For
an edge α of G, the weight of α, denoted by w(α), is the number of edges of G
represented by α.

Although F2 may be non-orientable, we can establish a parity rule. In fact,
this is a natural generalization of the usual one. First, orient all components of
∂Fi so that they are mutually homologous on ∂0M , i = 1, 2. Let e be an edge in
Gi. Since e is a properly embedded arc in Fi, it has a disk neighborhood D in Fi

with ∂D = a ∪ b ∪ c ∪ d, where a and c are arcs in ∂Fi with induced orientation
from ∂Fi. On D, if a and c have opposite directions, then e is called positive,
otherwise negative. See Figure 1. Then we have the following.

Parity rule. An edge is positive on one graph if and only if it is negative on
the other graph.

Figure 1

Orient the core of Ji. If F̂i is orientable, we can give a sign to each vertex
of Gi according to the sign of its intersection with the core of Ji. Two vertices
(possibly equal) of Gi are called parallel if they have the same sign, otherwise
antiparallel. A positive edge connects parallel vertices, while a negative one
connects antiparallel vertices. Let G+

i denote the subgraph of Gi consisting of
all the vertices and all the positive edges of Gi.

Let G be G1 or G2 and let x be a label of G. An x-edge is an edge of G with
label x at one endpoint. An x-cycle is a cycle of positive x-edges which can be
oriented so that the tail of each edge has label x. A cycle in G is a Scharlemann
cycle if it bounds a disk face, and the edges in the cycle are all positive and
have the same label pair. If the label pair is {x, y}, then we refer to such a
Scharlemann cycle as an (x, y)-Scharlemann cycle. In particular, a Scharlemann
cycle of length 2 is called an S-cycle. An edge in G is called level if its endpoints
have the same label. A set of four parallel edges {e1, e2, e3, e4} of G2 is called an
extended S-cycle if {e2, e3} is an S-cycle and ek is adjacent to ek+1 (k = 1, 2, 3).

Lemma 2.1. (1) G2 has no positive level edge.
(2) G2 has no extended S-cycle.
(3) Suppose F̂j is not a Klein bottle. If Gi has a Scharlemann cycle, F̂j is

separating, i �= j.
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(4) Any two Scharlemann cycles of G2 have the same label set.
(5) Any positive edge α of G2 has w(α) ≤ n1/2 + 1.
(6) Any edge α of G2 has w(α) < n1.
(7) Let {e1, . . . , ek} be a set of parallel positive edges of G2 with el adjacent

to el+1 (l = 1, . . . , k− 1). If the sets of labels at two ends of {e1, . . . , ek}
have a label in common, then either {e1, e2} or {ek−1, ek} forms an S-
cycle. Moreover, the common label belongs to the label set of the S-cycle.

Proof. (1) By the parity rule a positive level edge in G2 is a negative loop in G1,
which has a Möbius band neighborhood in F̂1, contradicting that F̂1 is a sphere.
(2)–(4) follow from [23, Lemma 1.2], (5) and (6) follow from [23, Lemma 1.5],
and (7) follows from (2),(4) and [4, Lemma 2.6.6]. �

Lemma 2.2. n2 = 2 when F̂2 is a torus, and n2 = 1 when F̂2 is a Klein bottle.

Proof. This is a part of the main result in [17]. �

3. Klein bottle

Throughout this section we assume that F̂2 is a Klein bottle. Then G2 has
a single vertex v by Lemma 2.2. The reduced graph G2 is a subgraph of the
graphs shown in Figure 2. Whether G2 is a subgraph of the graph in Figure 2(a)
or (b), there are three edge classes, α, β and γ. An edge in G1 or G2 is called an
α-edge, β-edge or γ-edge according as, being regarded as an edge in G2, it lies
in class α, β or γ. In G2, all γ-edges are positive, while the others are negative.

Figure 2

Lemma 3.1. The weights of the reduced edges α and β in G2 are positive.

Proof. Assume w(α) = 0. By Lemma 2.1(5) and (6), w(β) = n1 − 1 and w(γ) =
n1/2 + 1. If G2 is a subgraph of the graph in Figure 2(a), then G2 has two
positive level edges, contradicting Lemma 2.1(1). If G2 is a subgraph of the
graph in Figure 2(b), then G2 contains an S-cycle, so F̂1 is separating and n1

is even. However, for any β-edge in G2, which is negative, the two labels at
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its endpoints have distinct parities. This contradicts the parity rule. Similarly,
w(β) > 0. �

Thus the edges in G2 cut F2 into one or two disks, so there is no circle
component of F1 ∩ F2.

Orienting the negative edges in G2 as shown in Figure 2, we can think of G+
1

as a directed graph. If a disk face of G+
1 is bounded by a circuit of consistently

oriented edges, we call it a cycle face. Throughout this section, let I1(α) (resp.
I2(α)) denote the shortest interval on ∂v containing α-edge endpoints at the
head of α (resp. at the tail of α). And similarly for I1(β) and I2(β).

Lemma 3.2. G+
1 has a cycle face.

Proof. First, assume that G2 is a subgraph of the graph in Figure 2(a). Then
w(α) + w(β) ≥ n1. Otherwise, w(α) + w(β) = n1 − 1 or ≤ n1 − 2. In the
first case, the outermost edges in the family of γ-edges would be positive level
edges, and in the latter case w(γ) ≥ n1/2 + 2. Both are absurd by Lemma
2.1(1) and (5). Hence each label x appears at least once on each of I1(α)∪ I1(β)
and I2(α) ∪ I2(β). This means that in G+

1 , each vertex ux of G+
1 has an edge

pointing in and an edge pointing out. Starting at any vertex of G+
1 , one can

construct a path through the oriented edges always consistent with orientations.
Ultimately the path hits the same vertex to create a cycle. Among such cycles,
an innermost one bounds a disk face of G+

1 and we are done.
Next, assume that G2 is a subgraph of the graph in Figure 2(b).

Claim. If G+
1 has a sink or source at a vertex ux, then x is a label of an S-cycle

of G2.

Proof. Suppose for example that G+
1 has a sink at ux. We first show that ux

is univalent in G+
1 . If ux were trivalent in G+

1 , then ux would have two (say)
α-edges pointing in. This means that label x would appear twice on I1(α), so
w(α) > n1, contradicting Lemma 2.1(6). Thus ux has valency at most 2 in G+

1 .
Suppose ux is bivalent in G+

1 . Then an α-edge and a β-edge are incident to ux

(otherwise, two (say) α-edges would be incident, contradicting Lemma 2.1(6) as
above). Since ux is trivalent in G1, a γ-edge is incident to ux in G1. Orient
γ so that its head lies between the tail of α and the head of β. Then in G2,
label x appears at the heads of α, β and either at the head of γ or at the tail
of γ, say, at the head. Then x appears twice at the heads of β and γ, implying
w(β) + w(γ) > n1, and x does not appear at the tails of β and γ, implying
w(β) + w(γ) < n1. Two inequalities give a contradiction. Thus ux is univalent
in G+

1 .
In G1, two γ-edges are incident to ux. In G2, by Lemma 2.1(6), label x

appears at both ends of γ. By Lemma 2.1(7) the γ-edge family contains an
S-cycle and x is a label of this S-cycle. �

Suppose G+
1 has no cycle face. Then G+

1 has a sink or source by [10, Lemma
2.3.1]. The above claim and [19, Lemma 2.3(1)] imply that there are exactly



292 S. LEE

two sinks and sources in total. Let ux and uy be vertices of G1 at which these
sinks and sources occur (then labels x, y form a label pair of an S-cycle in G2).
Then two γ-edges running from ux to uy divide F̂1 into two disks and each of
them contains neither sink nor source in its interior. The two disks have the
same number of vertices of G1 in their interiors by [21, Lemma 2.1]. One can
choose a disk whose interior contains no positive edge incident to a sink. Then
there would be a cycle face in the disk. �

Orient all components of ∂F1 = {∂u1, . . . , ∂un1} homologously on ∂0M and
orient ∂F2 = ∂v. Let u ∈ {u1, . . . , un1}. If P and Q are two points in ∂u ∩ ∂v,
denote by μ1(P,Q) (resp. μ2(P,Q)) the arc in ∂u (resp. ∂v) going from P to
Q with respect to the chosen orientation. As in [6, p.1720] we define τi(P,Q) =
|μi(P,Q) ∩ ∂Fj | − 1 ({i, j} = {1, 2}).
Lemma 3.3. Let u, u′ ∈ {u1, . . . , un1}. Suppose P,Q ∈ ∂u ∩ ∂v and R,S ∈
∂u′ ∩ ∂v. If τ1(P,Q) = τ1(R,S), then τ2(P,Q) = τ2(R,S).

Proof. This follows from [6, Lemma 2.4]. �

Lemma 3.4. Let f be a cycle face with vertices ux1 , . . . , uxn
and with corners

λi at uxi
, i.e. the intervals f∩uxi

on ∂uxi
. Let ∂1λi be one endpoint of λi at the

head of an oriented edge of f and ∂2λi the other endpoint (automatically at the
tail of another edge of f). Then we have τ2(∂1λ1, ∂

2λ1) = · · · = τ2(∂1λn, ∂
2λn).

Proof. Since uxi
’s are all parallel, an orientation of F1 induces orientations

of ∂uxi
’s which are mutually homologous on ∂0M , so τ1(∂1λ1, ∂

2λ1) = · · · =
τ1(∂1λn, ∂

2λn). By Lemma 3.3 we have τ2(∂1λ1, ∂
2λ1) = · · · = τ2(∂1λn, ∂

2λn).
�

Proposition 3.5. G2 is a subgraph of the graph in Figure 2(b).

Proof. Assume for contradiction that G2 is a subgraph of the graph in Figure
2(a). Let f be a cycle face of G+

1 guaranteed by Lemma 3.2 and ux1 , . . . , uxn
the

vertices of f . Let λi be the corner of f at uxi
with one endpoint, ∂1λi, at the head

of an oriented edge of f and the other, ∂2λi, at the tail of another edge of f . On
∂v, choose the shortest interval Ij such that {∂jλ1, . . . , ∂

jλn} ⊂ Ij for j = 1, 2.
Since {∂jλ1, . . . , ∂

jλn} ⊂ Ij(α) ∪ Ij(β), I1 ∩ I2 = ∅. Label x1, . . . , xn so that
∂I1 = {∂1λ1, ∂

1λn}. Using Lemma 3.4, one can verify that ∂I2 = {∂2λ1, ∂
2λn}.

Hence I1 ∪ I2 ∪ λ1 ∪ λn bounds a disk D on ∂0M . As below the proof of [11,
Claim 7.5], one can use D and f to construct a new Klein bottle in M(r2), on
which the core of J2 can be isotoped to lie. This implies that M contains a
properly embedded Möbius band and hence fails to be simple. �

By Lemma 3.2, G+
1 has a disk face f bounded by a cycle of consistently

oriented edges e1, . . . , en, labelled so that the head of ei is adjacent to the tail of
ei+1 modulo n. The edges e1, . . . , en do not totally belong to one edge class, α
or β, since otherwise, the argument in [9, Section 5] would show that M contains
a cable space.
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Lemma 3.6. n is even and {e1, . . . , en} is an alternating sequence of α-edges
and β-edges.

Proof. If n = 2, it is obvious, so we assume n > 2. Assume for contradiction
that e1, e2 are α-edges and e3 is a β-edge. Let ux1 be the vertex to which e1
and e2 are incident and let ux2 be the vertex to which e2 and e3 are incident.
Let λi be the corner of f at uxi

with endpoints ∂jλi = ei+j−1 ∩ uxi
(i, j = 1, 2).

Then in G2, the points ∂1λ1, ∂
2λ1, ∂

1λ2, ∂
2λ2 are on I1(α), I2(α), I1(α), I2(β),

respectively.
Orient ∂v clockwise. By Lemma 3.4 τ2(∂1λ1, ∂

2λ1) = τ2(∂1λ2, ∂
2λ2). Recall

that G2 is a subgraph of the graph in Figure 2(b). From the fact that the
points ∂1λ1, ∂

2λ1, ∂
1λ2, ∂

2λ2 are respectively on I1(α), I2(α), I1(α), I2(β), one
can obtain two inequalities τ2(∂1λ1, ∂

2λ1) ≤ 2w(α) < 2n1 and τ2(∂1λ2, ∂
2λ2) >

w(α) +w(β) +w(γ) = 3n1/2. Since ∂1λi, ∂
2λi are labelled xi, τ2(∂1λ1, ∂

2λ1) =
n1 and τ2(∂1λ2, ∂

2λ2) = 2n1, giving a contradiction. �
Lemma 3.7. f is a bigon.

Proof. Assume that n = 2m > 2. Label the vertices of f ux1 , uy1 , . . . , uxm , uym

along ∂f so that an α-edge (resp. β-edge) is incident to uxi (resp. uyi) at its
head. See Figure 3. Then each label xi (resp. yi) appears once on each of I1(α)
and I2(β) (resp. I1(β) and I2(α)). Since w(α), w(β) < n1, any label cannot
occur twice on each interval.

Figure 3

Orient ∂v clockwise. Relabelling xi’s (and correspondingly yi’s), if necessary,
we may assume that among xi’s, x1 appears first on I1(α) with respect to the
orientation of ∂v. Then x1 precedes other xi’s on I2(β) by Lemma 3.4. The
vertices uxi and uyi are connected by a β-edge for each i. Since β-edges are
negative in G2, y1 also precedes other yi’s on I1(β). Again by Lemma 3.4,
y1 precedes other yi’s on I2(α). In particular, ym follows y1 on I2(α). Since
uym

, ux1 and uy1 , ux2 are connected by α-edges, respectively and since α-edges
are negative in G2, x1 follows x2 on I1(α). This contradicts the choice of x1. �

Without loss of generality we may assume that the labels around v are ordered
in the clockwise direction. Then one can see that if an α-edge (resp. a β-edge)
in G2 has label x at its head, then its tail is labelled x+ w(α) (resp. x+ w(β))
modulo n1.
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By Lemmas 3.6 and 3.7, f has exactly two vertices ux, uy along with two
edges eα, eβ (ei is an i-edge, i = α, β) such that eα and eβ are incident to ux

and uy at their heads, respectively. Then y ≡ x+w(α), x ≡ y+w(β) (mod n1),
so w(α) + w(β) ≡ 0. Since 0 < w(α) + w(β) < 2n1, we get w(α) + w(β) = n1.
Thus w(γ) = n1/2. By Lemma 2.1(7), either the γ-edge family in G2 contains
an S-cycle or the sets of labels at its two ends are disjoint.

Suppose that the γ-edge family contains an S-cycle σ with label pair {1, 2},
say. Then σ consists of either the first two edges or the last two edges of the
family. By examining the labels around the vertex v, one can see that either
w(α) = n1/2−1 or w(β) = n1/2−1 holds. We conclude that the three numbers
w(α), w(β), w(γ) cannot be all even.

We shall rechoose F̂1 to rule out this case. Let f be the disk face bounded
by σ. The edges of σ cut F̂1 − Int(u1 ∪ u2) into two disks, D′ and D′′, say.
Put D = D′ ∪ u1. Then D contains n1/2 fat vertices by [21, Lemma 2.1], and
f ∪D is a Möbius band whose boundary bounds a disk B on ∂H, where H is
the part of J1 between the consecutive vertices u1 and u2. After being slightly
pushed off H, P̂ = f ∪ D ∪ B becomes a projective plane which intersects J1

in n1/2 meridian disks. For a thin I-bundle neighborhood N of P̂ in M(r1), its
boundary is a reducing sphere intersecting J1 in n1 meridian disks. Using ∂N

instead of F̂1, we obtain a new graph pair G1, G2, where each edge of G2 has an
even weight by the I-bundle structure of N . In particular, the above observation
shows that G2 cannot have an S-cycle.

Therefore we may assume that the label sets at two ends of the γ-edge family
are disjoint and hence w(α) = w(β) = w(γ) = n1/2.

Lemma 3.8. n1 = 4 and F̂1 is separating.

Proof. Since Δn1 = 3n1 = 2(w(α) + w(β) + w(γ)), n1 is even. Let n1 = 2m.
We may assume that the labels around v are as shown in Figure 4. Notice that
n1/2 = m is also even, for otherwise the central edge in the γ-edge family would
have the same label pair as the central edge in the α-edge family and they would
form an orientation-reversing loop in F̂1.

Figure 4

Let ei (resp. e′i) be a γ-edge (resp. an α-edge) in G2 with label i at one
endpoint, i = 1, . . . ,m. Let Di be the disk in F2, realizing the parallelism of ei
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and em−i+1 with ∂Di = ei ∪ai ∪em−i+1∪ bi, where ai is an arc on ∂v from label
i to m− i+1. And similarly for D′

i, a
′
i, b

′
i. The four edges ei, em−i+1, e

′
i, e

′
m−i+1

together with vertices ui, um−i+1, um+i, u2m−i+1 form a loop σi on F̂1. These
four vertices divide J1 into four parts. Let Ui (resp. Vi) be the part of J1

between ui and um−i+1 (resp. um+i and u2m−i+1). A regular neighborhood of
F̂1 ∪Um/2 ∪ Vm/2 ∪Dm/2 ∪D′

m/2 in M(r1) is a punctured projective space with

two boundary spheres one of which is parallel to F̂1 and the other intersects J1

in fewer components than F̂1, so bounds a 3-ball. Hence F̂1 is separating.
Now assume that n1 > 4. Among the loops σi’s, choose an innermost one,

say, σk. Then ak and a′k are properly imbedded essential arcs in the annulus
∂Uk− Int(uk∪um−k+1), and I2(β) intersects the annulus in a spanning arc. The
arcs ak and a′k cut the annulus into two disks and one can choose a component
B disjoint from I2(β). Similarly after cutting the annulus ∂Vk − Int(um+k ∪
u2m−k+1) along the arcs bk and b′k, one can choose a component B′ disjoint from
I1(β). Then Dk ∪D′

k ∪B ∪B′ is a Möbius band whose boundary bounds a disk
in F̂1 containing exactly two vertices, either {uk, um+k} or {um−k+1, u2m−k+1}.
Hence we can find a projective plane in M(r1) intersecting the core of J1 in two
points. The boundary of a thin regular neighborhood of this projective plane is
a reducing sphere of M(r1), intersecting J1 in fewer components than F̂1, which
contradicts our choice of F̂1 at the beginning of Section 2. �
Proof of Theorem 1.2. By Lemma 3.8 and the argument just above it, G2 is
uniquely determined as illustrated in Figure 5(a). Let A,B,C,D,E, F be the
edges of G2 as shown in Figure 5(a). The correspondence between the edges of
G1 and G2 uniquely determines G1 up to a homeomorphism of the underlying
sphere F̂1, as shown in Figure 5(b).

Figure 5

The graph G2 has two trigons f1, f2 bounded by A,B,C and D,E, F , re-
spectively. Let g1, g2 be bigons of G2 bounded by A,B and C,D, respectively.
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These trigons and bigons lie on the opposite sides of F̂1. Let X be a regular
neighborhood of ∂0M ∪ F1 ∪ f1 ∪ f2 ∪ g1 ∪ g2 in M . Then one can verify that
∂X consists of two spheres. Capping off these spheres with 3-balls gives M .
This shows that M is uniquely determined by the pair of the graphs in Figure
5. Hence M = W (6). �

Proof of Corollary 1.3. Since M(r2) contains a Klein bottle, Δ(r1, r2) ≤ 3 by
[19, Theorem 1.1]. Assume for contradiction that Δ(r1, r2) = 3. Then M =
W (6) by Theorem 1.2.

Note that M(∞) = L(6, 1) and M(2) is a small Seifert fibered space with
a finite fundamental group. See [3, Example 7.8]. We have Δ(r1,∞) ≤ 1 and
Δ(r1, 1) ≤ 1 by [3, Theorem 1.2(1)] and [12, Theorem 1.2]. Hence r1 = 0, 1
or 2. However, M(2) is irreducible. The slope 0 is a boundary slope of an
essential once-punctured torus in M , which extends to an essential torus in
M(0), and dimH1(M ;Q) = 1. The conclusions (ii), (iii) and (iv) in [4, Theorem
2.0.3] do not hold for M and the slope 0, so M(0) is irreducible. Therefore
r1 = 1. By [2, Theorem 1.5(1)] we have Δ(r2,∞) = 1 and hence the assumption
Δ(r1, r2) = 3 yields r2 = −2 or 4. However, M(−2) is hyperbolic by [7, Example
(5)]. Therefore r2 = 4. �

4. Torus

Throughout this section we assume that F̂2 is a torus. Then G2 has exactly
two vertices, v1 and v2, by Lemma 2.2. We may assume thatM(r2) is irreducible
and boundary-irreducible by [12, 20]. By Lemma 2.1(4), we also assume that
G2 has only (1, 2)-Scharlemann cycles if it has Scharlemann cycles.

Lemma 4.1. The vertices of G2 are antiparallel.

Proof. Assume that v1 and v2 are parallel. Then all the edges of G2 are positive.
For a label x �= 1, 2, consider the subgraph Γ of G2 consisting of all vertices and
all x-edges of G2. Let V,E and F be the number of vertices, edges and disk
faces of Γ, respectively. Since V < E, we have 0 = χ(F̂2) ≤ V −E+F < F , so Γ
contains a disk face, which is an x-face in G2 in terms of [17]. This contradicts
[17, Theorem 4.4]. �

The graph G2 has at most 6 edge classes, which we call α, β, γ, δ, ε, ε′ as
illustrated in Figure 6. See [6, Lemma 5.2]. An edge in G1 or G2 is called an
η-edge if, being regarded as an edge in G2, it lies in class η, η ∈ {α, β, γ, δ, ε, ε′}.
An edge in G1 or G2 is called of type 1 if it is an α-edge or a β-edge, and of type
2 if it is a γ-edge or a δ-edge. The ε-edges and ε′-edges are positive in G2, while
the others are negative by Lemma 4.1. Since v1 and v2 have the same valency,
we have w(ε) = w(ε′). Without loss of generality we assume that the ordering of
the labels around v1 is anticlockwise, while the ordering around v2 is clockwise.

Lemma 4.2. Let x(�= 1, 2) be a label of G2. Then there exist an edge of type 1
and an edge of type 2 incident to vi with label x, i = 1, 2.
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Figure 6

Proof. Let ε = {e1, . . . , ew(ε)}, ε′ = {e′1, . . . , e′w(ε′)} as shown in Figure 7. There
are two cases.

Figure 7

Case I. The sets of labels at two ends of ε have a label in common. By Lemma
2.1(7) we may assume that {e1, e2} is an S-cycle with label pair {1, 2}. Let Ii

be the shortest interval on ∂vi containing the endpoints of the edges of type 1
at vi, i = 1, 2. Since I1 and I2 have the same number of edge endpoints, {e′1, e′2}
is also an S-cycle with label pair {1, 2}. Then w(α) +w(β) = n1 − 2 or 2n1 − 2.
In the first case for any label x �= 1, 2, exactly one edge of type 1 is incident to
vi with label x, i = 1, 2. On the other hand, since w(ε) ≤ n1/2 + 1 by Lemma
2.1(5), w(γ) + w(δ) = 3n1 − w(α) − w(β) − 2w(ε) ≥ n1. This means that for
any label x, an edge of type 2 is incident to vi with label x, i = 1, 2, so we
have the desired result. In the latter case w(α) = w(β) = n1 − 1 by Lemma
2.1(6). Let e be the lowest α-edge as in Figure 7. Since {e1, e2} and {e′1, e′2} are
(1, 2)-S-cycles, the point e∩ ∂v1 is labelled 3, while the point e∩ ∂v2 is labelled
2. Hence e connects vertices u2 and u3 in G1. Since G2 contains S-cycles, F̂1 is
separating by Lemma 2.1(3), so u2 and u3 are antiparallel. Therefore the edge
e is negative in both graphs G1 and G2, which is impossible by the parity rule.

Case II. The sets of labels at two ends of ε are disjoint. Suppose, for example,
that no edge of type 1 is incident to v1 with label x �= 1, 2, that is, the label x does



298 S. LEE

not appear on I1. Since w(γ), w(δ) < n1 by Lemma 2.1(6), w(α)+w(β)+2w(ε) =
3n1 − w(γ) − w(δ) > n1, so x appears at one end of ε, say, at the bottom of
v1 (then x does not appear at the top of v1). Let y be the label of the point
in ∂v1 ∩ ew(ε) at the bottom of v1 (y is possibly equal to x). Then y does not
appear on I1, otherwise x must appear at the end of ε at the top of v1. Since
w(α) +w(β) + 2w(ε) > n1, y must appear at the end of ε at the top of v1. This
contradicts our assumption. �

In particular, we have w(α) +w(β) > 0 and w(γ) +w(δ) > 0. And if w(ε) =
w(ε′) = 0, then we have w(α), w(β), w(γ), w(δ) > 0 by Lemma 2.1(6). Thus the
reduced edges in G2 cut F2 into disks, so F1 ∩ F2 has no circle component.

Proposition 4.3. G+
1 contains a connected subgraph Λ satisfying that

(1) for all vertices ux of Λ but at most one vertex, there are an edge of type
1 and an edge of type 2 in Λ which are incident to ux with label i for
each i = 1, 2;

(2) for the other vertex ux0 , if it exists, there are two edges in Λ incident to
ux0 ; and

(3) there is a disk DΛ ⊂ F̂1 such that DΛ ∩G+
1 = Λ.

The vertex ux0 is called an exceptional vertex of Λ.

Proof. Let Γ be an extremal component of G+
1 . That is, Γ is a component of G+

1

having a disk support D such that D ∩G+
1 = Γ.

Recall that all the Scharlemann cycles in G2 are (1, 2)-Scharlemann cycles. If
G2 contains a Scharlemann cycle, then the vertices u1 and u2 are antiparallel
and hence they belong to distinct components of G+

1 . So, we may assume that
Γ does not contain u2 in this case.

A vertex of Γ is a cut vertex if it splits Γ into more components. If Γ has no
cut vertex, we take Γ as Λ. Then all vertices of Λ, possibly except one (when u1

is contained in Λ), satisfy the property (1) by Lemma 4.2.
Suppose that Γ has a cut vertex. If u1 is a single cut vertex of Γ, cut Γ off

at u1 and take any component as Λ, and then all vertices of Λ but u1 satisfy
the property (1) again by Lemma 4.2. Otherwise, after cutting Γ off at all
cut vertices we can find a component, which does not contain u1, with a single
cut vertex. We take this component as Λ and then the cut vertex may be the
exceptional vertex of Λ, while the other vertices of Λ satisfy the property (1) by
Lemma 4.2. �

Let DΛ be a disk support of Λ as given in Proposition 4.3. A vertex of Λ is a
boundary vertex if there is an arc connecting it to ∂DΛ whose interior is disjoint
from Λ, and an interior vertex otherwise.

Each face of Λ is a disk, for Λ is connected. Since G1 has only two labels,
{1, 2}, each edge of Λ has label 1 at one endpoint and label 2 at the other.
Hence every face of Λ determines a Scharlemann cycle of G1. By Lemma 2.1(3)
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F̂2 divides M(r2) into a black side X and a white side Y . A face of G1 is black
or white according as it lies in X or Y .

From now on we assume that ∂1M = ∂M − ∂0M is a torus and eventually
we will get a contradiction. Assume that Y contains ∂1M . By Theorem 1.2 we
may also assume that M(r2) contains no Klein bottle.

Lemma 4.4. The edges of a face in G+
1 cannot lie in a disk in F̂2.

Proof. At the beginning of this section we assumed that M(r2) is irreducible.
Hence the statement follows from the proof of [11, Lemma 3.1]. �

Let HX = J2 ∩X and HY = J2 ∩ Y .

Lemma 4.5. For any white face of G+
1 , its edges cannot lie in an annulus in

F̂2.

Proof. Suppose to the contrary that G+
1 contains a white face f whose edges lie

in an annulus A in F̂2. By Lemma 4.4, A is essential in F̂2. Let N be a regular
neighborhood of A∪HY ∪ f in Y . Then ∂N is a torus, and T = (∂N − IntA)∪
(F̂2−A) is a torus disjoint from J2, so it must be inessential in M(r2). If T were
compressible, a compression would result in a sphere separating F̂2 and ∂1M ,
and hence a reducing sphere of M(r2). This contradicts our assumption that
M(r2) is irreducible. Suppose T is parallel to ∂1M . Then there is an annulus
A′ in the region between the two tori T and ∂1M such that one component of
∂A′ lies in F̂2 −A and the other component lies in ∂1M . The circle A′ ∩ ∂1M is
an essential curve on ∂1M , otherwise F̂2 would be compressible. Surgering F̂2

along A′ gives a properly embedded annulus A′′ in M(r2). Since F̂2 is essential
in M(r2), so is A′′. Our assumption Δ(r1, r2) = 3 contradicts [22, Theorem
5.1]. �
Lemma 4.6. Λ contains a face bounded only by edges of type 1 or only by edges
of type 2.

Proof. Let ux be the exceptional vertex of Λ, if it exists, and any vertex of Λ
otherwise. Without loss of generality we may assume that an edge e of type 1
is incident to ux with label 1. Orient every edge of type 1 from the endpoint
with label 1 to the other. Then by Proposition 4.3 any non-exceptional vertex
of Λ has an edge pointing in and an edge pointing out. Starting with e, one can
construct a path through the oriented edges of type 1 always consistent with
orientations. Ultimately the path hits the same vertex to create a cycle. This
shows that Λ contains cycles of oriented edges of type 1. Choose an innermost
cycle σ. Then σ bounds a disk D in F̂1 with no vertex in its interior. If D has
no edge of Λ in its interior, then we are done. Otherwise, all the edge in IntD
are of type 2. Since σ is a 1-cycle, some of these edges bound a desired face of
Λ. �
Lemma 4.7. Let f be an n-sided face of G+

1 , n = 2 or 3. Then the edges of f
lie in an essential annulus, A, in F̂2, f is black, and X is a Seifert fibered space
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over the disk with two exceptional fibers one of which has order n. The core of
A is a Seifert fiber.

Proof. This follows from [11, Lemma 3.7 and Theorem 3.8] and Lemma 4.5. �
Note that each of non-exceptional boundary vertices of Λ has valency at least

4 in Λ by the property (1) of Proposition 4.3.

Lemma 4.8. Λ contains a black bigon.

Proof. Let V,E and F be the number of vertices, edges and faces of Λ, re-
spectively. Let Vb, Vi and Ve denote the number of boundary vertices, interior
vertices and exceptional vertex of Λ, respectively. Then V = Vb +Vi and Ve = 0
or 1. Now suppose that Λ contains no bigon. Then each face has at least 3 sides
and hence 3F + Vb ≤ 2E. Combining with 1 = χ(disk) = V − E + F , we get
E ≤ 3V − Vb − 3 = 3Vi + 2Vb − 3.

Since all boundary vertices but the exceptional vertex have valency at least
4 and all interior vertices have valency 6, we have 4(Vb − Ve) + 2Ve + 6Vi ≤ 2E.
These two inequalities give 3 ≤ Ve, a contradiction. Hence Λ contains a black
bigon by Lemma 4.7. �

As in [13], we may label an edge e of G1 by class of the corresponding edge
of G2. We refer to this label as the edge class label of e. Then an edge of type 1
has edge class label α or β, and an edge of type 2 has edge class label γ or δ.

Let MX = M ∩X and MY = M ∩ Y .

Lemma 4.9. Any two bigons in G+
1 have the same pair of edge class labels.

Furthermore the pair is either {α, β} or {γ, δ}.
Proof. If there are two bigons of G+

1 with distinct pairs of edge class labels, the
argument in the proof of [13, Lemma 5.2] shows that M(r2) contains a Klein
bottle. This contradicts our assumption just above Lemma 4.4.

Now we shall show that the pair is either {α, β} or {γ, δ}. By Lemma 4.6
there is a face f of Λ bounded only by edges of type 1, say. Thus the edges of f
lie in an essential annulus on F̂2, so f is black by Lemma 4.5. Let ux1 , . . . , uxn

be the vertices of f and let λi be the corner of f at uxi . As illustrated in in
Figure 7, let Ij be the shortest interval on ∂vj containing the endpoints of edges
of type 1 at vj for j = 1, 2.

As in the proof of Proposition 3.5, one can find a disk D on the annulus
∂HX − Int(v1 ∪ v2) such that D ⊃ λ1 ∪ · · · ∪ λn and ∂D = a ∪ b ∪ c ∪ d, where
a and c are respectively subarcs of I1 and I2, and b and d are essential arcs in
the annulus ∂HX − Int(v1 ∪ v2), parallel to each of λi. Let A be the annulus in
F2 bounded by the edges e1 and e′1 in Figure 7 along with subarcs on ∂v1 and
∂v2 containing I1 and I2. Then A ∪ D is a once punctured torus. Enlarging
D slightly in ∂HX − Int(v1 ∪ v2) we may assume that ∂f lies in Int(A ∪ D).
Notice that ∂f is a non-separating curve on A ∪ D, since the vertices of f are
all parallel. Surgering A ∪ D along f gives a disk B. Pushing IntB into the
interior of MX rel. boundary gives a properly embedded disk B′ in MX . Here
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∂B′ ∩ ∂HX = b ∪ d and ∂B′ − Int(b ∪ d) consists of two arcs in ∂A. Notice that
an orientation of ∂B′ induces orientations of b and d which are opposite in the
annulus ∂HX − Int(v1∪v2). Now by shrinking HX to its core, HX ∪B′ becomes
a properly embedded annulus A′ in X.

The annulus A′ divides X into two regions Z1 and Z2. We claim that both
Z1 and Z2 are solid tori. Since the core of HX lies on A′, we can isotope the
core of J2 slightly so that it is disjoint from the torus ∂Z1. Then the minimality
of |F̂2 ∩ J2| guarantees that Z1 is a solid torus. Similarly so is Z2. Thus X is
a Seifert fibered space over the disk with the core of A′ (and hence that of A)
a Seifert fiber. Since M(r2) (and hence X) contains no Klein bottle, the Seifert
fibration of X is unique by [15, Theorem VI.18]. Therefore the pair of edge class
labels of any bigon in G+

1 is either {α, β} or {γ, δ} by Lemma 4.7. �

Lemma 4.10. (1) All interior vertices of Λ have valency at least 4 in Λ.
(2) All boundary vertices of Λ but the exceptional vertex have valency at

least 3 in Λ.

Proof. (1) If Λ had a set of three parallel edges, the set would contain a white
bigon, contradicting Lemma 4.7. Since any interior vertex has valency 6 in Λ, it
has valency at least 3 in Λ. Suppose that an interior vertex has valency exactly 3
in Λ. Then the vertex is incident to three pairs of parallel edges in Λ, which have
the same pair of edge class labels, say, {α, β} by Lemma 4.9. This contradicts
the property (1) of Proposition 4.3.

(2) Suppose that a non-exceptional boundary vertex of Λ has valency 2 in
Λ. Then the vertex is incident to two pairs of parallel positive edges and two
negative edges in G1. Then we get a contradiction as above. �

Lemma 4.11. Λ contains a black trigon.

Proof. Let V,E and F be the number of vertices, edges and faces of Λ, respec-
tively. Let Vb, Vi and Ve denote the number of boundary vertices, interior vertices
and the exceptional vertex of Λ, respectively. Now suppose that Λ contains no
3-sided face. Then each face of Λ has at least 4 sides and hence 4F + Vb ≤ 2E.
Combining 1 = V − E + F , we get 2E ≤ 4Vi + 3Vb − 4.

By Lemma 4.10 we have 3(Vb − Ve) + 2Ve +4Vi ≤ 2E. These two inequalities
give 4 ≤ Ve, a contradiction. Thus Λ (and hence Λ) has a 3-sided face, which
must be black by Lemma 4.7. �

Lemma 4.12. MX is a handlebody of genus 2 and MY is a compression body
with the boundary a union of a genus 2 surface and ∂1M .

Proof. Since F2 is a twice punctured torus, both ∂MX and ∂MY − ∂1M are
surfaces of genus 2. By Lemma 4.10(2) one easily sees that Λ contains black
and white faces simultaneously. A black face compresses ∂MX to result in a
torus in MX , which bounds a solid torus since MX contains no incompressible
torus. Hence MX is a handlebody of genus 2. Similarly a white face compresses
∂MY − ∂1M to result in a torus parallel to ∂1M . �
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Travelling around the boundary of a disk face of G+
1 gives rise to a cyclic

sequence of edge class labels. We shall say that two disk faces of G+
1 of the

same color are isomorphic if the cyclic sequences obtained by travelling in some
directions are equal.

Let AX = HX ∩ MX and AY = HY ∩ MY . Then ∂MX = AX ∪ F2 and
∂MY −∂1M = AY ∪F2. Since all the vertices of Λ are parallel, each face of Λ is
a non-separating disk in MX or MY . Note that any two faces of Λ of the same
color are disjoint.

Lemma 4.13. If two disk faces of G+
1 are parallel in MX or MY , then they are

isomorphic.

Proof. Suppose, for example, that two disk faces f and g of G+
1 are parallel in

MX . The curves ∂f and ∂g cobound an annulus A in ∂MX . Note that each
component of ∂A− IntAX is an edge of G2 in ∂f or ∂g, while each component
of ∂A ∩ AX is a corner of f or g. The boundary circles of AX must intersect
A in spanning arcs, otherwise some edge of G2 in ∂f or ∂g would be a trivial
loop in G2. Thus A− IntAX is a union of disjoint rectangles R1, . . . , Rn. Each
Ri realizes a parallelism between two edges ∂f ∩Ri and ∂g ∩Ri, so these edges
have the same edge class label. �

By Lemmas 4.8 and 4.11, G+
1 contains black bigons and trigons. Without

loss of generality we may assume that all bigons of G+
1 have the edge class label

pair, {α, β}, by Lemma 4.9. Then we have the following.

Lemma 4.14. All trigons of G+
1 have the same pair of edge class labels {γ, δ},

i.e. they are bounded by edges of type 2.

Proof. Let f and g be a bigon and a trigon of G+
1 , respectively. Let A be the

annulus in F2 bounded by e1 and e′1 along with two subarcs in ∂F2 as shown
in Figure 7. Then f is bounded by an α-edge and a β-edge, and X is a Seifert
fibered space over the disk with two exceptional fibers, whose Seifert fibration
is unique because X does not contain a Klein bottle. Here, the core of A is a
Seifert fiber.

By Lemma 4.7, g is bounded either by edges of type 1 or by edges of type 2.
In the first case, surgering a twice punctured torus A ∪AX using f and g gives
two disks in X, since ∂f and ∂g are non-separating and not mutually parallel in
the surface. The boundary circles of the disks lie in F̂2 and are isotopic to the
core of A. This implies that F̂2 is compressible in M(r2), a contradiction. Thus
g is bounded by edges of type 2. �

We will assume that each trigon has two γ-edges and a δ-edge.

Lemma 4.15. If two edges e1, e2 of G+
1 are incident to a vertex with the same

label, then they have distinct edge class labels.

Proof. If e1 and e2 have the same edge class labels, then the corresponding edge
class in G2 contains more than n1 edges, contradicting Lemma 2.1(6). �
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Lemma 4.16. There is no triple of mutually non-isomorphic black disk faces
of G+

1 .

Proof. Suppose that G+
1 has such a triple (f1, f2, f3). Then these faces cut MX

into two 3-balls by Lemma 4.13.

Claim. G1 = G+
1 and it is connected.

Proof. Note that G1 is connected if and only if every face of G1 is a disk. Let
f be a black face of G1 other than f1, f2, f3. Then f lies in the complement of
f1∪f2∪f3 inMX , so f must be a disk, otherwise it would be compressible inMX ,
so F1 would be compressible in M and one could find a new essential sphere in
M(r1) which meets J1 in fewer components than F̂1. Each component of ∂f ∩F2

is an edge of G2. The circle ∂f must be an essential curve in ∂MX = F2 ∪AX ,
otherwise some component of ∂f ∩ F2 would be a trivial loop in G2. Hence f is
an essential disk in MX , which must be parallel to one of the faces f1, f2 and f3.
Therefore any black face of G1 is a disk face isomorphic to one of f1, f2 and f3

by Lemma 4.13. It follows that all the edges of G1 are positive, i.e. G1 = G+
1 .

It remains to show that any white face of G1 is a disk. Suppose to the contrary
that a white face g of G1 is not a disk. Then g is incompressible in MY as above.
Recall that Λ contains a white disk face and that MY is a compression body
with the outer boundary a surface of genus 2 and the inner boundary a torus,
∂1M . Let g1 be a white disk face of Λ. Cutting MY along g1 gives rise to a
manifold V , homeomorphic to S1 × S1 × I, with ∂1M one component of ∂V .
Here, g lies in V and ∂g ⊂ ∂V −∂1M . Since g is incompressible in MY , g is also
incompressible in V . Hence g must be an annulus parallel to ∂V − ∂1M . Thus
V contains an annulus A such that one component of ∂A is the core curve of g
and the other lies in ∂1M , where ∂A ∩ ∂1M is an essential curve, otherwise g

would be compressible in MY . Surgering F̂1 along A gives two compressing disks
for ∂1M in M(r1). This shows M(r1) is boundary-reducible. The assumption
Δ = 3 contradicts [13, Theorem 1.1]. �

Hence, F̂1 is a non-separating sphere inM(r1). This contradicts [16, Theorem
1.1]. �

Proof of Theorem 1.1. Orient the edges of G1 as shown in Figure 8 so that G1

becomes a directed graph in the 2-sphere F̂1. (For example, all α-edges are
oriented so that their left hand sides are black.)

Figure 8

Note that any disk face of G1 has the same number of ε-edges and ε′-edges.
Hence if there were a cycle face in G1, then it would be a face of G+

1 , since the
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ε-edges and ε′-edges are oppositely oriented. Moreover, it would be bounded
either by α-edges and γ-edges or by β-edges and δ-edges and hence it would be
white by Lemma 4.16. This contradicts Lemma 4.5.

Therefore it is enough to show thatG1 has neither a sink nor a source. Assume
for contradiction that G1 has a source at a vertex ux. The local view at ux must
be like one of the pictures in Figure 9 by Lemma 4.15. We shall show that any
of them is impossible.

Figure 9

In G2, the label x appears three times around the vertex v1 at ends of α-, γ-,
and ε-edge families and three times around the vertex v2 at ends of β-, δ-, and
ε′-edge families.

Claim. In G2, the label x appears at the northern (resp. southern) end of ε-edge
family if and only if it appears at the southern (resp. northern) end of ε′-edge
family.

Proof. Assume, for example, that x appears at the northern ends of ε- and
ε′-edge families. See Figure 10. Around the vertex v1, x does not appear at
an end of δ-edge family and at the southern end of ε-edge family, implying
w(δ) + w(ε) < n1. Around the vertex v2, x appears once at an end of δ-edge
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family and once at the northern end of ε′-edge family, implying w(δ)+w(ε′) > n1.
Since w(ε) = w(ε′), these two inequalities conflict. �

Figure 10

Let f be a black bigon of Λ with vertices uy, uz and g a black trigon with
vertices up, uq, ur, as shown in Figure 11. Let C1 be the corner of f at the vertex
uz and C2 the corner of g at the vertex uq.

Figure 11

Assume the source at ux looks like Figure 9(a), (b), (c) or (d). Let C be the
black corner in ∂ux running from an ε-edge endpoint to an ε′-edge endpoint.
Then C,C1, C2 contradict [14, Lemma 3.2] by the above claim.

Assume the source at ux looks like Figure 9(e) or (f). Let C be the black
corner in ∂ux running from a γ-edge endpoint to a β-edge endpoint. Then
C,C1, C2 contradict [14, Lemma 3.2].

Assume the source at ux looks like Figure 9(g) or (h). Let C be the black
corner in ∂ux running from an α-edge endpoint to a δ-edge endpoint. Then
C,C1, C2 contradict [14, Lemma 3.2].

Assume the source at ux looks like Figure 9(i) or (j). Let C be the black
corner in ∂ux running from a γ-edge endpoint to an ε′-edge endpoint and C ′

the black corner running from an ε-edge endpoint to a δ-edge endpoint. Then
C,C ′, C2 contradict [14, Lemma 3.2] by the above claim.

Assume the source at ux looks like Figure 9(k) or (l). Let C be the black
corner in ∂ux running from an ε-edge endpoint to a β-edge endpoint and C ′

the black corner running from an α-edge endpoint to an ε′-edge endpoint. Then
C,C ′, C1 contradict [14, Lemma 3.2] by the above claim.

Using the same argument as above, we can see that G1 has no sink. �
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