
Citation: Baik, J.; Lee, J.; Kang, K.

Task Migration and Scheduler for

Mixed-Criticality Systems. Sensors

2022, 22, 1926. https://doi.org/

10.3390/s22051926

Academic Editor: Felipe Jiménez

Received: 5 February 2022

Accepted: 27 February 2022

Published: 1 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Task Migration and Scheduler for Mixed-Criticality Systems
Jeanseong Baik 1 , Jaewoo Lee 2,* and Kyungtae Kang 1,*

1 Department of Computer Science and Engineering, Hanyang University, Seoul 04763, Korea;
jsbaik@hanyang.ac.kr

2 Department of Industrial Security, Chung-Ang University, Seoul 06974, Korea
* Correspondence: jaewoolee@cau.ac.kr (J.L.); ktkang@hanyang.ac.kr (K.K.)

Abstract: The interference between software components is increasing in safety-critical domains,
such as autonomous driving. Low-criticality (LC) tasks, such as vehicle communication, may control
high-criticality (HC) tasks, such as acceleration. In such cases, the LC task should also be considered
as an HC task because the HC tasks relies on the LC task. However, the difficulty in guaranteeing
these LC tasks is the catastrophic cost of computing resources, the electronic control unit in the
domain of vehicles, required for every task. In this paper, we theoretically and practically provide
safety-guaranteed and inexpensive scheduling for LC tasks by borrowing the computational power of
neighbored systems in distributed systems, obviating the need for additional hardware components.
As a result, our approach extended the schedulability of LC tasks without violating the HC tasks.
Based on the deadline test, the compatibility of our approach with the task-level MC scheduler
was higher than that of the system-level MC scheduler, such that the task-level had all dropped LC
tasks recovered while the system-level only had 25.5% recovery. Conversely, from the worst-case
measurement of violated HC tasks, the HC tasks were violated by the task-level MC scheduler more
often than by the system-level MC scheduler, with 70.3% and 15.4% average response time overhead,
respectively. In conclusion, under the condition that the HC task ratio has lower than 47% of the
overall task systems at 80% of total utilization, the task-level approach with task migration has
extensively higher sustainability on LC tasks.

Keywords: real-time systems; vehicle safety; scheduling algorithms; mixed-criticality; task migration;
system implementation; system analysis and design

1. Introduction

Since the rise of autonomous vehicles, automotive systems have comprised multiple
highly functional software components interacting with each other. Based on ISO 26262 [1],
a fault in lower automotive safety-integrity-level (ASIL) components should not inter-
fere with higher ASIL components, as it can be hazardous. Unfortunately, in advanced
driver-assistance systems, an ASIL B communication component might control an ASIL
D cruise-control component while braking or making speed-control decisions. In this
case, the breakdown in the communication component would lead to chain failure in
the cruise-control component and result in injuries or death. Owing to escalating costs,
manufacturers cannot easily assign a higher ASIL to every single vehicle component to
avoid this interference.

Traditionally, to prevent interference from lower ASIL components, automotive in-
dustries have designed vehicles by isolating different levels of safety-critical components,
which is a system design approach called partitioned architecture [2]. Currently, this ap-
proach is becoming more flexible for two reasons. First, vehicle designs are consolidated
based on the standard ISO 26262 and AUTOSAR 2.0 system design [3]. Scheduling diverse
levels of safety functions in single systems are also being considered in future vehicle
designs. Because of the popularity of these standards, electronic control units designing
companies such as Siemens and BlackBerry Limited are considering mixed safety-criticality

Sensors 2022, 22, 1926. https://doi.org/10.3390/s22051926 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22051926
https://doi.org/10.3390/s22051926
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2157-0152
https://orcid.org/0000-0001-5887-2184
https://orcid.org/0000-0002-6587-7044
https://doi.org/10.3390/s22051926
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22051926?type=check_update&version=2

Sensors 2022, 22, 1926 2 of 26

scheduling in their products [4,5]. Second, there is an incredible degree of interaction
between the functions of different levels of ASIL components in autonomous vehicles,
and it is difficult to classify the safety level of each function. In other words, the interference
and dependencies between low and high ASIL components should be considered. State-of-
the-art research addressed this issue using mixed-criticality (MC) scheduling theory [6].
In MC scheduling, each function is classified into different safety criticality levels while
prioritizing high-criticality (HC) tasks and dropping low-criticality (LC) tasks in scheduling
overhead. However, MC scheduling theories do not fully consider the interactions between
the different criticality levels.

In this paper, a safety-guaranteed and inexpensive scheduling are proposed, both
theoretically and practically, for LC tasks that HC tasks rely on. In MC systems, initially, LC
tasks drop their missions when a scheduling overhead leads to insufficient CPU time for all
tasks. This policy also applies to essential LC tasks. The important LC tasks then undergo
task migration from the residing system to the external system. Upon evaluation, it was
observed that the approach taken in this study is more compatible with the task-level MC
scheduler compared with the system-level MC scheduler.

Figure 1 shows an example of our approach in comparison with the role-changing sce-
nario of truck platooning. Truck platooning is a distributed system that includes one driver
and multiple trucks, in which the trucks following the lead truck rely on the communication
tasks of the lead truck over the system. For each following truck, the communication task
controls the acceleration task; therefore, the communication tasks are considered HC tasks.
However, in the lead truck, the acceleration task has no dependency on the communication
task; thus, the task is considered at the LC level. In MC scheduling theory, LC tasks are
dropped whenever the lead truck has computational overhead. An HC task in the lead
truck has no dependency on the dropped LC task. Owing to dependencies, HC tasks
relying on an LC task fail in-chain. Using our approach, the dropped LC tasks are migrated,
and the safety of the distributed system is preserved.

(a) Mixed-criticality Scheduling on Truck Platooning.

(b) Adopting Our Approach

Figure 1. Overcoming the Chain Failure of Mixed-criticality Scheduler by Adopting our Approach.

Sensors 2022, 22, 1926 3 of 26

To guarantee safety, task migration should be carefully positioned without affecting
the predictability of the HC tasks. Therefore, we adopted practical task migration features
that solve the concerns caused by migration latency during state transfer [7], which is one
of the well-known major drawbacks. The following are the contributions that, in real-time,
bind the task migration and prioritize the predictability of HC tasks while rescheduling LC
tasks that were dropped by conventional MC schedulers.

Contributions

• Practical task migration usage: For important LC tasks, task migration was applied,
and global deadlines were established. Compared to other resilient methods, task
migration is fully sustainable; however, the massive amount of context data burdens
timing constraints. However, our system design sets a limit to the time consumed by
task migration and minimizes the amount of context data by restricting the active data.
The timing of the LC task migration was guaranteed using globally synchronized
deadlines between systems as determined by real-time guaranteeing calculations.
For hardware configurations, the Wi-Fi-direct and advanced hardware modules were
approximately 13.3 times faster and 6.3 times more stable than the Wi-Fi-router in
task migration. Based on the results, hardware component upgrades and bandwidth
reservations are suggested to guarantee better task migration timing.

• Theoretical analysis of using task migration: Task migration requires a thorough
utilization guarantee and minimum response time in schedulability analysis and in
practical application. This paper provides a theoretical analysis for scheduling task
migration in worst-case MC scheduling scenarios.

• MC scheduler implementations on Linux Kernel: Conventional MC schedulers are
dedicated to schedulability analysis and simulation-based evaluations because it is
difficult to implement them in operating systems such as Linux. Fortunately, the Linux
Kernel has versions with real-time patches for the earliest deadline first (EDF) sched-
ulers and provides modifications at the source level. The EDF scheduler was updated
from EDF-VD into the MC-scheduler MC-ADAPT with task migration features. Linux
Kernel version 4.14.91-rt49-v7 (ver. PREEMPT_RT) was implemented with configura-
tions on armv7l to port the OS into Raspberry Pi 3B+ with uniprocessor configurations
for detailed results. For the implementation, pre-existing deadline tools, such as
deadline_test and ftrace, were adopted.

• Evaluations of MC schedulers and our approach

Task-level MC scheduler preference: From the experiments, it was observed that
only one task could be handled at a time during the migration. Thus, the task-
level MC scheduler is more compatible compared with the system-level MC
scheduler. The results showed that 25.5% of the dropped LC tasks regenerated
via the system level, while 100% regenerated via LC task utilization of 47%.
Investigating HC task violations: From the deadline test, it was observed that
task systems with a larger HC task ratio would fail task-level MC schedulers
with a high likelihood. By implementing migration, HC task violations at the
system-level and task-level were 11.3% and 69%, respectively, and the average
violation response times were 15.4% and 70.3% under task systems with a higher
HC task utilization. Task systems with a higher LC task utilization had nominal
violation rates, less than 10%, for both system-level and task-level EDF-based MC
schedulers using our approach.

Organization of this paper. The rest of this paper is organized as follows. Section 2
presents the problem statements. Section 3 provides a background on MC scheduling.
Section 4 explains our distributed approach to MC systems, i.e., using task migration and
guaranteeing it by timing constraints, especially at critical instants. Section 5 describes
the distinct features of implementing EDF-VD and MC-ADAPT scheduler in Linux kernel
using the task migration kernel module. Section 6 presents an evaluation of the task
migration in MC systems. The evaluation covers the acceptance of tasks, the deadline miss

Sensors 2022, 22, 1926 4 of 26

ratio, the violation of HC tasks, end-to-end task migration delays determined by different
connections, and scheduling overheads compared to the conventional SCHED_DEADLINE
scheduler. Section 7 presents a comparison with related works, with a particular focus
on other useful, resilient methods in real-time and mixed-criticality systems. Section 8
comprises some discussions on using our approach. Finally, Section 9 provides a summary
of using our distributed approach in MC systems.

2. Problem and Motivation

The objective of this work is to guarantee safety-critical distributed systems from the
perspective of real-time scheduling. Applying dynamic function theory to MC schedulers
and the scheduling overhead in task migration are the challenges that need to be addressed
in safety-critical distributed systems.

Runtime dependencies: The specific interest is to schedule tasks that consider dynamic
critical-level changes. First, a high-to-low criticality change is always safety-guaranteed
because HC tasks are already meant to be guaranteed at the time of system design. Thus,
it can be considered as an overreaction to LC tasks to ensure a safety guarantee, and the
task remains safety-guaranteed. Lowering critical levels may cause the same problem of
overreaction, and the task is safety-guaranteed; however, there is no need to assert this
because the tasks eventually become LC tasks. Second, a high-to-low dynamic change is
the incremental change in critical levels, and because the tasks are scheduled by an LC-
level policy, the tasks are not guaranteed. Our study focused on the dynamic incremental
criticality changes in these tasks.

Theory into practice: Most theoretical studies on MC scheduling conclude their work
by accepting task systems and covering various cases of task scheduling at system runtime,
which are called online schedulability tests. These tests are theoretically acceptable but
require verification in an actual operating system, such as the Linux Kernel.

Task migration overheads: Compared to other resilient methods, task migration can
fully sustain task details and is effective in distributed systems. However, task migration
methods have trade-offs between full sustainability and transfer latency, owing to the exten-
sive memory used by the tasks. Addressing task migration in safety-critical systems with
real-time guarantee, while achieving the sustainability of important tasks, is a challenging
aspect of distributed safety-critical systems. In addition, cases in which the migration target
task also needs a real-time guarantee need to be considered.

3. Mixed-Criticality Scheduling Background

This section, for ease of explanation, provides the basic background of MC scheduling
for both system-level and task-level MC schedulers [8,9].

System Model

The system model of our approach consists of MC-ADAPT [9] task features and
additional specifications particular to our approach. For simplification, dual-criticality
uniprocessor systems are considered for scheduling implicit-deadline sporadic tasks.

Task Model: Here, an implicit deadline sporadic task system for n MC tasks is con-
sidered. In Table 1, the description representing each MC task τi is characterized by
(Ti, CL

i , CH
i ,χi). The tasks are classified according to their criticality levels into sets of HC

and LC tasks. For example, a set of HC tasks are denoted as τH : {τi ∈ τ|χi = H}, and a
set of LC tasks are denoted as τL : {τi ∈ τ|χi = L}.

Utilization: Because the period and worst-case execution time (WCET) are denoted as
Ti and CL

i (or CH
i), respectively, each task has multiple WCETs for each criticality level and

a total of two sets of WCETs for each task for dual criticality. For each task τi, the utilization
of high and low confidences are uH

i = CH
i /Ti and uL

i = CL
i /Ti, respectively. The utilization

of the task system, bounded by criticality levels, is expressed as follows:

UH
H = ∑

τi∈τH

uH
i , UL

H = ∑
τi∈τH

uL
i , (1)

Sensors 2022, 22, 1926 5 of 26

UH
L = ∑

τi∈τL

uH
i , UL

L = ∑
τi∈τL

uL
i . (2)

Table 1. Task model for MC schedulers.

Symbol Definition

χi Criticality level of task i, Li ∈ {L, H}.
CL

i Low-Confidence WCET (LC-WCET).
CH

i High-Confidence WCET (HC-WCET).
Di Relative Deadline of task i.
Ti Period of task i.

Behavior Model: Figure 2 presents the behavioral model of MC tasks. Compared with
conventional MC schedulers, the migrated state is extended to LC tasks [9]. An important
feature of the LC task behavior is that the LC task state is returned to active from dropped.
This resilient behavioral model for the LC task was enabled by exploiting another system
in distributed systems.

Figure 2. Extended behavioral model of tasks.

4. Proposal: The Distributed Approach

A system design is proposed for distributed mixed-criticality (DMC) scheduling,
which is a platform for scheduling LC tasks dropped in distributed systems. To schedule
the dropped LC tasks, DMC assigns the LC tasks to another system using real-time bound
task migration to guarantee the deadline of the LC task. In Figure 3, the temporal overview
of DMC explains the DMC’s features and expected effects. When the HC task requires
more than the given execution time, the HC task exceeds the runtime, and some LC tasks
are sacrificed in conventional MC schedulers. Specifically, the LC task is dropped because
the scheduled task system exceeds the CPU resource limit; however, DMC transfers the LC
task to another available system and guarantees a preset deadline. From the perspective of
the initial task system, the system is scheduled with more than 100% CPU utilization.

Task A

In another system

Task B

Time

Execution flow
of Task B

Execution flow
of Task B

1 2 3

Execution time of
Task migration

Mode switchMode switch

Response time of Task B instance

Task B’

Task A

Task B

Time

Deadline missed

1 2 3

Response time of Task B instance

Execution time at Initial state

Sporadic request at Mode-switch

Missed execution time of tasks

Figure 3. Task Migration at Mode switch.

4.1. Positioning the DMC Task

The schedulability of DMC is analyzed using task migration as a task. First, the worst-
case execution time of the migration task is measured, and then the upper bound of the

Sensors 2022, 22, 1926 6 of 26

migration utilization is calculated. For the proof, some preconditions, which are plausible
based on the probability of the events, have to be satisfied.

• Cond. 1: Only one HC task is mode-switched at an instance.
• Cond. 2: The WCET of task migration is smaller than the WCET of target LC task.

Initially, the system has enough resources to accept additional tasks at approximately
20% utilization owing to the marginal safety-critical system design. In addition, the mode
switch of both source and destination systems in the same instance is unlikely; how-
ever, defining the critical instant of accepting the sporadic task is complex, which is the
topic of sporadic MC scheduling theories [10]. Based on IEC 61508, which ISO 26262 is
derived from, the safety integrity level (SIL) 4 is associated with the probability of the
dangerous failure rate limit of 10−9 per hour; the concurrent failure of SIL 4 would be
10−9 × 10−9 = 10−18 per hour, which might occur once in 117 trillion years.

4.1.1. Measuring Worst-Case Execution Time of Migration

The essential part of addressing migration in practice is measuring the actual task mi-
gration latency and guaranteeing the measured worst-case latency. The measuring method-
ology requires safety margins, which are set by the domain, usually 20% in safety-critical
systems [11]. The measurement is defined by the task migration procedure, the number of
target tasks, and the role of the system in migration. The migration procedure consists of
dump, copy, and restoration tasks. The number of target tasks is approximately one, some,
or all LC tasks, which determines the amount and complexity of data transfer through a
network. The system’s role is to describe the source and destination system to determine
the required migration procedures.

4.1.2. Utilization Upper Bound of Migration Task

When the system is in the HC mode, the DMC task should also be scheduled as an
HC task; therefore, the utilization of task migration with the EDF-VD scheduler can be
expressed as follows:

xUL
L + UH

H + Um ≤ 1. (3)

1: EDF-VD Acceptance at LC-mode

where the coefficient x is a constant that determines the upper bound of the execution time
of the HC tasks. The smaller this coefficient, the larger the upper bound of the HC task
runtime; therefore, x should be as small as possible.

(Because UL
L +

UL
H

x
≤ 1.→ x =

UL
H

1−UL
L

.) (4)

→
UL

H
1−UL

L
·UL

L + UH
H + Um ≤ 1. (5)

There f ore, Um ≤ 1−
UL

H ·UL
L

1−UL
L
−UH

H . (6)

2: Upperbound utilization for task migraiton

After finding the upper bound utilization of the DMC task, the utilization should
be extended to the actual execution limit to identify the feasibility of the migration task.
The calculation of the upper bound utilization on the destination system is deferred based
on the premise that the destination system for task migration should always be available to
accept dropped LC tasks.

Sensors 2022, 22, 1926 7 of 26

4.1.3. Deadline Calculation of Migration Task

Utilization is the CPU usage percentage, but the calculation must be performed with
the actual execution time guaranteed at the instant of the mode switch. Determining the
correct way to put migration execution time into practice without violating any HC task is
the main conflicting goal. After the mode switch, the HC tasks have the same criticality
levels, which means that no additional criticality scheduling can be applied. With the
original EDF scheduler, the tasks were prioritized based on the earliest deadline. To satisfy
the aforementioned conditions, the migration task should be scheduled as soon as possible.
Therefore, we analyzed whether the migration task violates the HC task with the earliest
deadline; granted a violation, the HC task with the next earliest deadline was analyzed.
The process continued while comparing the tasks in ascending order until a task that was
not violated by the migration task was found. At this point, a deadline earlier than that
of this HC task was assigned. Because of real-time synchronization with another system,
splitting the migration task multiple times is not advisable.

The lower bound of the deadline of the DMC task is calculated using the implicit
deadline tasks (D = T). This condition is already satisfied because LC tasks would have
been dropped, and the HC tasks would have abandoned their virtual deadlines and restored
the given deadline, which is equal to the period:

U = C/D →∴ D = C/U. (7)

The deadline (D) can now be derived using the worst-case execution time (C) and
utilization (U). After positioning the migration task, the interference from HC tasks with
higher priorities is calculated.

4.2. Task System Example

Table 2 presents an example task system that satisfies the condition of EDF-VD schedu-
lability. There is a total of 10 MC tasks, and the ratio for utilization of the criticality (UL

H :UL
L)

is 34.4%:46.7%. At mode-switch, the utilization of HC tasks is raised to 68.7%. The first step
is to measure the worst-case execution time of the migration task. Supposing that the total
migration latency of the safety margin is 1 ms, the second step is to calculate the upper
bound of the migration task using Equation (6), as follows:

Um = 1−
UL

H ·UL
L

1−UL
L
−UH

H = 1.2%. (8)

Therefore, the utilization upper bound of the DMC task was 1.2%. This indicates that
there is a possibility of the DMC task being executed when the utilization upper bound is
more than 0. Considering that there is approximately 20% slack time in the LC mode and
approximately 30% slack time in the HC mode, the derived upper bound seems pessimistic.
The final step is to derive the shortest deadline from the previous results:

D = C/U → Dm = Cm/Um = 81 ms. (9)

After the final step, the HC tasks with the earliest deadlines were compared. From the
results, it was verified that the DMC task has a priority greater than τ3 and less than τ2.
Therefore, the DMC task is affected by τ1 and τ2. Figure 4 presents the Gantt chart of the
task system example. After the mode switch, the DMC task is scheduled after τ1 and τ2.
The DMC task does not violate the schedulability of HC tasks. Unfortunately, the LC tasks
τ6 cannot satisfy the deadline, as determined by the source system.

Sensors 2022, 22, 1926 8 of 26

Table 2. MC Task System for DMC (time unit: ms).

Task χi CL CH T/D UL
χi

UH
χi

τ1 HC 10 20 50 20.00% 40.00%
τ2 HC 10 20 200 5.00% 10.00%
τ3 HC 10 20 250 4.00% 8.00%
τ4 HC 10 20 350 2.86% 5.71%
τ5 HC 10 20 400 2.50% 5.00%
τ6 LC 10 0 50 20.00% 0%
τ7 LC 10 0 100 10.00% 0%
τ8 LC 10 0 150 6.67% 0%
τ9 LC 10 0 200 5.00% 0%
τ10 LC 10 0 200 5.00% 0%

τm(V) - - 1 81 - 1.2%

τm(A) - - 1 16 - 6.1%

Figure 4. Gantt chart of mode-switch.

4.3. Adaptation to Task-Level

A fatal issue of using the combination of a system-level MC scheduler and task
migration is that a maximum number of LC tasks are dropped, and only a single task can
be migrated at a time. To address this issue, the system-level MC scheduler is differentiated
into a task-level MC scheduler. Conventionally, there are many task-level MC schedulers,
such as MC-ADAPT [9] and AMC [12]. These MC schedulers are adaptive because of
the consecutive LC task drop feature. In the system-level MC scheduler, all LC tasks are
dropped, but task migration can handle only a certain number. The solution at the system
level is limited, and task migration has an obvious sequential weakness because only a
single task can be migrated at a time. By contrast, by dividing the variance of the mode
switch of the system level into a task-level MC scheduler, a single task is dropped and
migrated. This approach optimally increases the schedulability of LC tasks.

Sensors 2022, 22, 1926 9 of 26

Example. Given the same task system presented in Table 2, the result of Us
m using the

MC-ADAPT algorithm is 6.1%. This is higher than the capability of EDF-VD, which is 1.2%.
The offline schedulability analysis of MC-ADAPT is complicated because of conditions
in the preprocessing phase. Proving the upper bound of task migration by EDF-VD is
sufficient for MC-ADAPT in the worst-case scenario that all LC tasks are dropped when all
HC tasks have the same fraction of CH/CL which we provide proofs in Appendix A.

5. Implementation

This section describes the overall architecture of task migration in a Linux MC system.
As a preliminary, to enable MC scheduling in Linux, we converted the existing EDF
scheduler into a system-level MC scheduler, which is EDF-VD, and into a task-level MC
scheduler, which represents the scheduling policy in MC-ADAPT. In this MC scheduling
environment, the proposed task migration is implemented independently as a kernel
module interacting with MC schedulers. To simplify comparisons between schedulers and
strictly observe the dropped state of LC tasks, the implementation on Linux was built to
run in a uni-processor environment.

5.1. Conventional EDF Scheduler in Linux

SCHED_DEADLINE is a CPU scheduler based on the earliest deadline first (EDF)
scheduler and constant bandwidth server (CBS) algorithms [13]. After consuming all its
given execution time, the task suspends itself and reactivates close to the current deadline;
however, the scheduler is designed to delay the execution of tasks with other deadlines as
long as its budget allows. Such scheduling behaviors allow a soft real-time bound on tasks,
introduce unpredictable deadline guarantees on tasks, and are especially fatal to HC tasks.
To prevent unpredictability, we implemented hard real-time features that guarantee even
the worst-case scenario of exceeding the total CPU utilization by adopting MC scheduling
and task migration.

Scheduling Interface: The SCHED_DEADLINE has a simple interface, which can
assign any desired scheduling policy and any schedule attribute to the created task [14].
The task uses sched_setattr() and sched_getattr() to set and read the scheduling
attribute, respectively. However, the task calls the sched_yield() function to end a single
instance to notify the kernel. The kernel cannot decide whether the task has finished
running the single instance; therefore, the task should alert the kernel when it completes
the single instance (or job) within the allotted period. The sched_yield() function causes
the notifying thread to relinquish the CPU; thereafter, the thread is moved to the end of the
queue for static priority, and a new thread is executed.

5.2. Implementation of EDF-VD Scheduler

In the EDF-VD scheduling policy, HC tasks are prioritized compared to LC tasks by
providing a virtual deadline (VD) calculated by scaling down for earlier deadlines. In the
original proposal of Vestal [6], the worst-case execution time for multiple levels is used.
To determine the multiple levels of the tasks, a member variable crit_level is added to
present corresponding multiple execution times for MC tasks.

In lines 3–24 of Algorithm 1, representing the preprocessing phase, the function
__setparam_dl() is called, which is the actual function that fills the real-time and MC
member variables of the scheduling entity struct sched_dl_entity. This function per-
forms an initial build for the EDF-VD scheduler by calculating the overall utilization and
deriving the least value of the coefficient x. If the scheduled MC task has crit_level
HI, the relative deadline dl_deadline is set by the virtual deadline denoted in EDF-VD
while preserving the original deadline in variable init_deadline. For the mode switch,
the original deadline is restored; otherwise, if the crit_level is an LC, the attribute is set
to the original deadline of the tasks, and rb_node is inserted into the task drop list, which
carries all lists associated with the LC task.

Sensors 2022, 22, 1926 10 of 26

Algorithm 1: Linux EDF-VD Scheduler.

1 variable x, util_H, util_H2, util_L, capacity
2 capacity← 1 << BW_SHIFT
/* Preprocessing: New task i */

3 function __setparam_dl(i):
4 if i.crit_level = HI then
5 util_H ← util_H + i.density
6 util_H2 ← util_H2 + i.high_runtime

i.period
7 else
8 util_L← util_L + i.density
9 end

10 x ← (capacity−util_L)
util_H

11 foreach k in list_all do
12 if k.crit_level = HI then
13 rb_erase (k)
14 k.vdeadline← k.dl_deadline ∗ x

capacity
15 k.dl_deadline← k.vdeadline
16 rb_insert (k)
17 end
18 end
19 if (x

capacity ∗ util_L + util_H2) > capacity then
/* Task i is accepted. */

20 enqueue_task_dl(i)
21 else

/* Task i is denied. */
22 rb_erase (i)
23 end
24 end function

/* Runtime phase: Initial state */
/* Applies same to MC-ADAPT */

25 function update_curr_dl(k):
26 if (k.runtime ≤ 0) & (! k.yielded) then
27 mc_mode_switch ()
28 end
29 end function

/* Runtime phase: Mode-switch */
/* Input: Any MC task */
/* → System-mode change */
/* → All MC tasks updated */

30 function mc_mode_switch(· · ·):
31 sched_dl_entity∗ se← null
32 foreach i in list_all do
33 if i.crit_level = HI then
34 i.mc_mode← i.mc_mode + 1
35 i.dl_deadline← i.init_deadline
36 i.dl_runtime← i.high_runtime
37 else
38 mc_drop_task (i) or task_migration (i)
39 end
40 end
41 end function

Sensors 2022, 22, 1926 11 of 26

In lines 25–41 of Algorithm 1, representing the runtime phase, the occurrence of a
runtime exceeding the MC tasks is monitored by the existing function update_curr_dl().
Mode switching occurs whenever the monitored HC task uses the defined execution time
without finishing the job. In lines 30–41, for all HC tasks, the relative deadline is restored
by the initially defined implicit deadline init_deadline instead of the virtual deadline,
and the runtime is expanded by a predefined HC-level runtime high_runtime. The task
drop list is used to drop the indicated LC tasks from the LC task maintaining list at one go.
After these steps, there is still sufficient CPU time for mode-switched HC tasks.

Table 3 presents the worst-case time complexity with each operation cost. A denotable
feature is a preprocessing phase having polynomial time complexity O(n2), which is due
to sequential task invocation at system runtime.

Table 3. Time and space complexity of Algorithm 1.

EDF-VD System-Level Time Complexity Operation Cost

Preprocessing phase O(n2)
Cost of each task i: 8i + 13 (i = 1 . . . N)

Cost of all tasks: 8 N(N−1)
2 + 13N→ 4N2 + 9N

Runtime: Initial state O(1) 4

Runtime: Mode-switch O(n) 6N + 1

5.3. Implementation of MC-ADAPT Scheduler

The fatality at the system level is that the task level MC scheduler seems to be more
efficient. The expectation of combining the task migration solution with a task-level
MC scheduler is larger than that of the system-level MC scheduler because migration
techniques have limitations in dealing with multiple tasks simultaneously. Task migration
may exactly highlight the fewest number of tasks to drop by the task-level MC scheduler,
such as MC-ADAPT, with a fairly high probability. The implementation of MC-ADAPT
differs from EDF-VD in mode-switch targets, lowering the number of tasks to drop to the
fewest possible.

The main update from the system-level scheduler in the preprocessing phase is the
inclusion of LC tasks in the task drop list in descending order of the task utilization,
as presented in lines 17–23 of Algorithm 2. This is one feature specified in MC-ADAPT to
immediately address the HC mode of the HC task. In the runtime phase of MC-ADAPT,
the mc_mode_switch() is generated with a single HC task rather than the entire set of
HC tasks in the system-level MC scheduler. The updated part is listed in lines 36–51 of
Algorithm 2. This adaptively affects the runtime. The HC tasks exceeding the runtime are
measured by the system’s overall exceeded utilization, and the scheduler dumps only the
LC tasks from the task drop list corresponding to the exceeded utilization.

Table 4 presents the worst-case time complexity with each operation costs. In the
preprocessing phase, represented in lines 17–32 of Algorithm 2, an additional operation for
building the task drop list and acceptance test is introduced. Although the time complexity
remains the same as EDF-VD, which is O(n2), the operational overhead at the preprocessing
phase is predictable and addressable. Furthermore, the task-level approach provides better
response time in handling mode-switch situations. The worst-case time complexity is
deemed identical to the system-level approach, but the loop has a conditional break that
completes the operation by the amount of exceeded utilization of one mode-switched
HC task, having pseudo-polynomial time complexity (lines 40, 45–51). Typically, this
on-demand approach is given as constant time complexity. Additionally, the complexity
corresponds to the drop rate of LC tasks and minimizes the deadline miss ratio as a
final outcome.

Sensors 2022, 22, 1926 12 of 26

Algorithm 2: Linux MC-ADAPT Scheduler.

1 variable x, util_H, util_H2, util_L, capacity
2 capacity← 1 << BW_SHIFT
3 function __setparam_dl(i):
4 if i.crit_level = HI then
5 util_H ← util_H + i.density
6 util_H2 ← util_H2 + i.high_runtime

i.period
7 else
8 util_L← util_L + i.density
9 end

10 x ← (capacity−util_L)
util_H

11 foreach k in list_high do
12 rb_erase (k)
13 k.vdeadline← k.dl_deadline ∗ x

capacity
14 k.deadline← k.vdeadline
15 rb_insert (k)
16 end
17 if i.crit_level = LO then
18 foreach j in list_drop do
19 if j.dl_bw ≤ i.dl_bw then
20 list_add(i.list, j.list.prev)
21 end
22 end
23 end
24 acceptance← x

capacity ∗ util_L
25 foreach j in list_high do
26 hi_bw← j.high_runtime

j.period

27 lo_bw← j.dl_density
x

28 max ← hi_bw > lo_bw ? hi_bw : lo_bw
29 acceptance← acceptance + max
30 end
31 if acceptance > capacity then

/* Task i is denied. */
32 end
33 end function
34 function mc_mode_switch(i):
35 variable demand, supply← 0
36 if i.crit_level = HI then
37 i.mc_mode← i.mc_mode + 1
38 i.dl_deadline← i.init_deadline
39 i.dl_runtime← i.high_runtime
40 demand← i.dl_bw ∗ (i.high_runtime

i.dl_runtime − 1) + total_bw− capacity
41 else
42 mc_drop_task (i) or task_migration (i)
43 return
44 end
45 foreach k in list_drop do
46 if supply > demand then
47 break
48 end
49 supply← supply + k.dl_bw
50 mc_drop_task (k) or task_migration (k)
51 end
52 end function

Sensors 2022, 22, 1926 13 of 26

Table 4. Time and space complexity of Algorithm 2.

MC-ADAPT Task-Level Time Complexity Operation Cost

Preprocessing phase O(n2)
Cost of each task i: 20i + 14 (i = 1 . . . N)

Cost of all tasks: 20 N(N−1)
2 + 14N→ 10N2 + 4N

Runtime: Initial state O(1) 4 (Same as EDF-VD)

Runtime: Mode-switch O(n) 5N + 12 (Pseudo-polynomial)

5.4. Implementation of DMC Kernel Module

The proposed DMC is a supplementary kernel module that can be applied to diverse
MC schedulers, as shown in Figure 5. DMC was implemented using the former implemen-
tations of EDF-VD and MC-ADAPT. The main idea of utilizing the task migration kernel
module is to gain more CPU time by using external systems. The LC task is displaced from
the source system, but using the kernel module first dumps the memory of the LC task
and transfers it to a destination system as a network packet. In the destination system,
the initial form of the LC task is forked. The memory transferred from the source system is
restored to the forked LC task in the destination system. In this manner, the method can
obtain the CPU time from the destination system.

Members of struct sched_attr

Extended members

Migration measurement

Read task info

Transfer task to destination system

Listen and run migration worker

Migration worker

Connection at system runtime

Transfer by
network

Kernel Module

Destination

Scheduler Patch

Compute the coefficient

Do acceptance test

Mode switch

deadline period

mc_level
mc_runtime
…

if (dl_se->mc_level) {
 U_H += dl_se->dl_density;
 U_H_H += to_ratio(dl_se->dl_period,
 dl_se->mc_runtime);
} else U_L += dl_se->dl_density;
coefficient =
 to_ratio ((NR_CPUS << BW_SHIFT) - U_L, U_H);
list_for_each_entry(curr, &mc_list, list)
 if (curr->mc_level) /* HC task */
 curr->virtual_deadline = (curr->dl_deadline
 * coefficient) >> BW_SHIFT;

sock = sock_create_kern();
kernel_connect (destination);
tcp_get_info ();
runtime = tcp_info.tcpi_rtt;

vma = find_vma (mm, addr_memory_start);
get_user_pages_remote (vma);

maddr = kmap (page);
copy_to_user_page (vma, maddr);
kunmap (page);

repeat_send:
 kernel_sendmsg ();

socket->ops->bind ();
socket->ops->listen ();
ktcp_service->accept_worker =
 kthread_run (migration_worker);

socket->ops->accept (socket);
sock_recvmsg ();
vma = find_vma (mm, addr_memory_start);
get_user_pages_remote (vma);
maddr = kmap (page);
copy_to_user_page (maddr, vma);
kunmap (page);

if ((((coefficient * U_L) >> BW_SHIFT) + U_H_H)
 > (1 << BW_SHIFT))
 pr_info (“acceptance: success”);
 enqueue_task_dl();
else
 pr_info (“acceptance: fail”);

if (dl_runtime_exceed () && !yielded)
 list_for_each_entry (curr, &list_all, list) {
 if (curr->mc_level) {
 curr->mc_mode++;
 curr->dl_deadline = curr->init_deadline;
 }
 else /* LC task */
 if (undroppable)
 do_migration (curr);
 mc_drop_task (curr);
}

Yes

No

dl_runtime_exceeded ()

update_curr_dl ()

Run Task

dequeue_task_dl ()

__setparm_dl ()

sched_setattr ()

Kernel

Userspace

I. Pre-processing

SCHED_DEADLINE Mixed-Criticality Updates Task Migration

II. Runtime phase

III. Scheduling overhead

Soft Real-Time
Behavior of tasks
Unlimited postponed
deadlines without
real-time guarantee

enqueue_task_dl ()

runtime

Figure 5. Structure of our distributed system-level approach.

To introduce the DMC structure, a more specific implementation of the DMC, based
on DMC strategies, is introduced. To satisfy the need of Kernel authorities and for the
protection of the Kernel, the DMC is programmed in a Kernel-level module. The Kernel-
level module is built with a TCP client and server model, with an interaction with the
SCHED_DEADLINE source of the Linux Kernel. The DMC is designed to bind with any
MC scheduler that can pass the MC packet formats when invoked.

First Stage: Scheduling MC Tasks. MC tasks are known to vary in criticality levels for
each task; it is essential to set a task system with multiple criticality levels in the source
system. In this stage, the tasks should be initially set to the LC mode state regardless of the
criticality level; in addition, in the destination system, a dummy task is forked with a low

Sensors 2022, 22, 1926 14 of 26

criticality level to prepare an immediate update after the task migration. Forking a dummy
task is for ledging the migration latency; however, it is not an essential part of the DMC.

Second Stage: Mode-switch. Initially, the HC tasks are scheduled with virtual dead-
lines, similarly for all tasks in the LC mode. Whenever any HC task exceeds the runtime,
the scheduler switches the task mode to the HC mode with the function mc_mode_switch().
In the task-level approach, the amount of the LC task utilization is calculated when it
exceeds 100% CPU utilization. The dropped number of LC tasks is calculated using the
MC-ADAPT theory. At the mode-switch, in the worst-case, the LC task already performed
is scaled to x, and the remaining amount is scaled to (1− x). If the dropped LC task has an
undroppable flag, the LC task is pushed to the DMC kernel module waiting for migration.

Third Stage: Task Migration. A packet argument that complies with the DMC cus-
tomized format is sent by the scheduler. After receiving the customized format from
the scheduler, the DMC module itself should invoke an MC task with kthread_run() to
perform task migration over time. The invoked Kernel thread reads the memory of the
dropped LC task and packs the information into a TCP packet. The TCP packet contains
a packet called an MC packet with MC features in the header. The TCP server in the
destination system receives and unpacks the packet; immediately thereafter, it restores the
MC and memory information into a dummy task. The dummy task can be forked at the
time the packet is received, but the latency increases. The functional part of the restoration
of the LC task is completed.

Last Stage: Evaluation of The LC task. The migration is completed prior to the last
stage, but the LC task is continuously using information from the source system. The last
stage is to check if the absolute deadline set by the source system is satisfied. This deadline
satisfaction is an important part indicating that the LC task has globally performed the
job seamlessly.

6. Evaluation

For extensive evaluation, a more specific subset defined in MC-ADAPT was used
to investigate testing on five different schedulers, namely SCHED_DEADLINE, EDF-VD,
MC-ADAPT, EDF-VD with DMC, and MC-ADAPT with DMC, under the same conditions.
The subset was varied in the task-level mode switch with the conjunction of the criticality
level of the tasks themselves. Task-level evaluation is effective because it implies a system-
level evaluation. The mode-switch test was triggered by injecting more than twice the
number of jobs for a task in the subset UH2 after some time had elapsed from the beginning
of the test. The subset UL2 can be expected from the task selection policy of MC-ADAPT.
The test was designed to show that the MC schedulers and the DMC module do not violate
the HC tasks and that the performances of system-level and task-level MC schedulers differ.

The proposed DMC should also be thoroughly verified by the conventional deadline
test used in the SCHED_DEADLINE Linux Kernel. The deadline miss ratio (DMR) test
is suitable for evaluating the SCHED_DEADLINE Linux Kernel, but because the number
of deadline misses is a chain reaction of the first deadline miss of a task, the test should
measure if a deadline miss has occurred (deadline miss more than once or no deadline
misses) to achieve our goal of measuring the tasks dropped. Hence, a DMR test was
conducted to verify the MC schedulability of each Linux real-time scheduler.

The DMC-patched scheduler works as intended with proven dependability at the
Linux Kernel level usage in Raspberry Pi 3B+. In this subsection, we describe the mea-
surement of the scheduling overhead and compare the result to that of the existing
SCHED_DEADLINE scheduler.

In summary, we conducted these tests because, first, it is necessary to evaluate the
quality of our MC Linux scheduler implementations in a traditional way, such as acceptance
ratio, deadline miss ratio, and the scheduling overhead. In the context of MC theories,
the HC tasks should not be violated in any case but require observation in an excessive
test. Last but not least, some conditions need to be satisfied using the task migration
methods such as timing synchronizations between the distributed systems and timing

Sensors 2022, 22, 1926 15 of 26

predictability through the network and wireless networks in the case of mobility systems
such as autonomous vehicles.

6.1. Acceptance in Pre-Processing Phase

To investigate the suitable HC task ratio for task migration, the schedulers were tested
using task systems varying in total utilization according to the ratio of HC tasks. Each task
had a high-criticality runtime that was twice or a random number of times that of the low-
criticality runtime. All tasks with low-criticality runtimes were set to 10 ms, and the periods
were set randomly. The task system had 20 tasks, and the test was performed more than
300 times for each case. In Figure 6a, the results of the system-level MC scheduler (EDF-VD)
are displayed. The results are compared with the task-level MC scheduler (MC-ADAPT),
which is shown in Figure 6b. The acceptance results are similar when the high criticality
runtime is fixed to twice that of the low criticality runtime. Both results approximately
have a maximum HC ratio of 0.5 on 0.8 total utilization.

(a) System-level, Fixed (b) Task-level, Fixed

(c) Task-level, Random

Figure 6. Distribution of acceptance test on (a) system-level MC scheduler (EDF-VD) and (b,c) task-
level MC scheduler (MC-ADAPT) with fixed (2.0 times) and random (average 2.0 times) replen-
ishment of low criticality runtime. The result with the (c) random task-level MC scheduler has
approximately 0.4 maximum HC ratio on 0.8 total utilization, which is approximately 20% of the HC
ratio loss compared to the (a,b) fixed conditions having 0.5 HC ratio acceptance. In the figures, total
utilization starts at 0.3, and an acceptance less than 1.0 is considered as failure.

Testing the task-level MC scheduler using a task system having a random high-
criticality runtime sacrificed the acceptance of task systems. In Figure 6c, the maximum

Sensors 2022, 22, 1926 16 of 26

HC ratio is approximately 0.4 for a total utilization of 0.8, which is an approximately 20%
HC ratio loss compared to the fixed conditions with a 0.5 HC ratio acceptance. The main
difference between theory and practice is in the scheduling order. In practice, the task
system handles each task using a sporadic scheduling policy; therefore, it is necessary to
rerun and observe the acceptance test for the implemented Linux schedulers.

6.2. Deadline Miss Ratio

An existing test tool, called deadline_test, was modified by adding MC attributes.
The time mode switch was triggered 300 times for each scheduler. As depicted in Figure 7,
five real-time MC schedulers were evaluated using the DMR test. To represent the compa-
rable behavior of each scheduler, we categorized the tasks into four main groups and put
them into an affected order starting from the mode-switch triggered HC-task group HI2.
These are the explanations for the four task groups:

• HI2: HC tasks exceeded their given LC-WCET and changed to HC-mode;
• HI1: HC tasks sustaining their given LC-WCET and still in LC-mode;
• LO2: LC tasks dropped by the mode-switched HC tasks (HI2) decisions;
• LO1: LC tasks remaining schedulable after mode-switch only if the scheduling policies

support maintaining the tasks (e.g., MC-ADAPT).

In Figure 7, the conventional SCHED_DEADELINE scheduler (noted as EDF+CBS)
dropped the HC task, which was triggered to overdo the initially given LC-WCET and im-
plies that no criticality levels were considered and eventually leads to the worst-case
scenario. None of the MC schedulers violated the high-level tasks, and all the MC
schedulers performed their jobs in case of mode-switch. For the LC tasks, because the
SCHED_DEADELINE scheduler already dropped the forced HC task, there were no more
tasks to drop; however, the MC schedulers varied in the drop ratio of the LC tasks. Accord-
ing to the task dropping policy of EDF-VD, all LC tasks are dropped, while MC-ADAPT
drops only 25.53%. Regarding the DMC module for each MC scheduler, the drop ratio was
improved by 25.53%. The total drop rate of MC-ADAPT was eliminated from the results
using the DMC task. The most important aspect is to observe whether the undroppable task
has been dropped. Undroppable tasks can be defined as a combination of HC tasks and
escalated LC tasks. As observed, the escalated LC task was always dropped without the
DMC module, while no tasks were dropped with the DMC module. Through the deadline
test, it was demonstrated that the compatibility with the task-level MC scheduler was
higher than the system-level MC scheduler. The task-level had O(1), while the system-level
had O(n) deadline miss ratios when tested on n tasks.

(a) System-level MC scheduler (b) Task-level MC scheduler

Figure 7. Accumulative result of mode-switch-triggered DMR test on (a) system-level and (b) task-
level MC schedulers under task-level scheduling order.

HC Task Violation Test

Figure 8a shows the execution load of each real-time scheduler. The scheduling
overhead after applying the MC scheduling patch and the DMC patch were compared on

Sensors 2022, 22, 1926 17 of 26

LO-mode HC tasks, while other tasks were dropped in at least one scheduler. Complicated
task-level MC schedulers, such as MC-ADAPT, seem to have no more overhead than using
the system-level scheduler EDF-VD. However, HI-mode LC tasks seem to have a 25.4%
scheduling overhead in MC-ADAPT compared to the original EDF+CBS scheduler. This
overhead is tolerable because the deadline is satisfied during the test period.

(a) LC superior task system (b) HC superior task system

Figure 8. Violation test result of LC mode HC tasks with mode-switch triggered deadline test on
(a) LC superior task system (HC:LC = 35:47) and (b) HC superior task system (HC:LC = 47:35).

Figure 8b shows the testing result using this HC superior task system, where it can be
observed that the existing EDF scheduler also incurs a large overhead. This is regarded
as an unstable operation as the number of tasks tested is the same, but the gap between
the testing cycles is larger. First, similar to previous results, the existing EDF scheduler
is significantly affected by the scheduling order. In particular, LC tasks are significantly
affected, but another LC task, which has a longer cycle, is directly affected and reversed.
In contrast to existing EDF, EDF-VD is very stable and can obtain scheduling results
within the expected range; however, with MC-ADAPT, the HC task which should have
been in LO-mode has been severely violated. Theoretically, because MC-ADAPT initially
ran for a set of unacceptable tasks, it can be viewed as a failure in the acceptance test.
In particular, MC-ADAPT had a smaller acceptance ratio than EDF-VD owing to the
implementation. In conclusion, because the DMC module is eventually implemented as a
module independent of the scheduler, the schedulers are not affected by the supplementary
DMC module.

The results of the violation test suggest that schedulability analysis at the design time
is not sufficient to guarantee the actual schedulability of HC tasks. HC superior task system
configurations should be avoided by both system-level and task-level MC schedulers; in
particular, they are fatal for task-level MC schedulers.

6.3. Global Deadline with Real-Time Guarantee

To guarantee the migrated LC task in other systems, the preset deadline must be
transformed into a global time between the systems. The transformation of the LC task
deadline into a global deadline is shown in Figure 9. In the Linux Kernel, the deadline
schedulers handle the deadlines in their own system time, which may differ from the
system boot time, known to rq_clock(). To address this time gap between systems,
the time of the system background was eliminated, leaving the remaining time until
the deadline. The measured network latency was then decreased by a safety margin
of 20%, which provided the worst-case remaining time for LC task execution. Both the
deadline and remaining runtime should be considered; however, the runtime of the task
is independent of the system time and is considered to be the same as the global runtime
between the systems. In this study, the focus was on the real-time bound of the utilization
and synchronization methods. For reference, our migration features are displayed in

Sensors 2022, 22, 1926 18 of 26

Table 5. Network latency was measured using the ping command. From the results, it
can be observed that using WiFi-direct provides a more stable network latency than the
router, which enables bandwidth reservation only for connected systems. It is also better
to use a combination of WiFi-direct and a network module. In our experiment, the NEXT-
1302WBTA network module was used, resulting in a 1.8 times faster communication on
average. In total, network responsiveness highly depends on the specifications of the
hardware devices and bandwidth reservations. Real-time bounds can be extended through
network bandwidth. Some previous studies bind network latency, such as TTEthernet [15],
to TSN [16].

Figure 9. Transformation into global deadline.

Table 5. Network latency on different connections.

Network Settings Avg. (Stdev.) (ms)

Wi-Fi router 25.83 (±29.43)
Wi-Fi-direct 3.43 (±2.66)

Wi-Fi-direct+module 1.94 (±0.35)

6.4. Scheduling Overhead

To analyze the latencies and performance of real-time related functions, the Linux
Kernel function-tracing interface called Ftrace [17] was used. Ftrace is typically a func-
tion tracer that examines the occurrence between disabled and enabled interrupts and
schedules the preemption task. The lists of real-time related functions are presented in
Figure 10. These functions can be featured as indirect calls or affected mode switches.
Considering that most real-time functions call update_curr_dl() functions, they are the
most essential functions among them. The caller functions of update_curr_dl() are usu-
ally task_tick_dl() and __dequeue_dl_entity(). The indirect functions are not directly
affected by MC patches but are sometimes affected by updating the virtual deadlines (VD).
The VD performs a constrained deadline in Linux scheduler implementations, which is
considered to be complicated both theoretically and in terms of implementation.

In Figure 10, the results of ftrace on real-time functions are presented. The test run
at every mode-switch instance also represents the scheduling overload. The overhead of
an essential function update_curr_dl() shows that all implemented MC schedulers have
a mean overhead of more than 143%. The scheduling overhead level can be considered
critical; however, the least frequency call can be defined by the function task_tick_dl(),
which is set to 1000 Hz (1 ms cyclic), and this frequency is the maximum in Raspberry Pi
3B+ configurations. By referencing the frequency of scheduling overheads, the worst-case
effect on the entire system can be derived as:

Sensors 2022, 22, 1926 19 of 26

overhead (update_curr_dl())
scheduling cycle

=
1.908 µs

1 ms
= 0.19%, (10)

overhead (task_tick_dl())
scheduling cycle

=
3.971 µs

1 ms
= 0.39%. (11)

From the calculations, we conclude that a scheduling overhead of less than 1% hardly
violates the system. For the DMR test, the MC schedulers are already proven to be functional
for real-time guarantees.

Figure 10. Ftrace: scheduling overhead comparison in graphs.

The runtime scheduling overhead for each scheduler is displayed in Figure 11. It can
be observed that the runtime phase overheads of system-level and task-level MC schedulers
are twice that of the vanilla EDF scheduler as observed in MC lists, based on structure type.
However, the additional structure is immune to the number of tasks because referencing
each scheduling entity has a cost of O(1) for each function.

Figure 11. Runtime scheduling overhead by number of tasks.

DMC Patch Overhead

In previous experiments, it was observed that the DMC module was independent and
did not significantly affect the scheduler. The effect of each real-time function on the MC
scheduler was 2.15% at the system level and 7.39% at the task level. This is because of the
independent modular design of the DMC features of the scheduler.

Sensors 2022, 22, 1926 20 of 26

7. Related Works

From the perspective of task scheduling, the integration of different levels of safety
components can be handled by MC scheduling, which was first proposed by Vestal [6].
Recent trends towards gaining more schedulability for LC tasks in MC systems are adaptive
scheduling [8,9] and multiprocessing [18–20] approaches. Adaptive schedulers include
EDF-based [9] and RM-based [8] schedulers. Our approach focuses on EDF-based sched-
ulers, the proofs, and implementations. Multiprocessing solutions include partitioned
scheduling and simplex architecture scheduling, and these solutions have been adapted to
actual products by manufacturers because of the need for MC domains [21]. A summary
of previous studies related to our approach is presented in Table 6 for varying scheduling
domains, LC task considerations, implementation, and costs. To the best of our knowledge,
our approach is the first to implement extended schedulable features for LC tasks in the
Linux Kernel, for distributed MC systems.

In this section, we describe in detail how our approach differs under the following
considerations. First, the selected works vary in target scope. Hot-patching [22,23] provides
seamless updates on tasks at runtime, but the task should stay in a single system that is not
a direct solution for scheduling overheads. Redundancy [24,25], multiprocessing [18–20],
and heterogeneous global scheduling [26] comprise hardware configurations and are mainly
targeted to perform a singular concrete system, which may cause a single point of failure
(SPOF) in system failure. Mobile agent- [27–30] and communication-based [31,32] works
are helpful in the scope of distributed systems, but the objective is not task preservation.
Second, some works must consider shared resources during system design. Hot-patching,
redundancy, and multiprocessing are bound to a singular system or exist to compose a
single system, which results in a robust singular system; however, these solutions have the
same memory-sharing requirement, which may cause the single point of failure in system
failures. Third, the cost of each solution is important in the decision stage of production.
In this context, hardware-based solutions such as redundancy and multiprocessing are
considered to be expensive compared with other software approaches. Finally, considering
the worst-case schedulability of all MC tasks is critical in safety-critical systems. In the
domain of MC policies and some important LC tasks considerations, adaptive MC schedul-
ing is regarded as the optimal solution among the selected works. In other words, in the
case of scheduling overheads, using the adaptive MC scheduling enables maximum MC,
HC, and LC tasks to be accepted. This acceptance is quantified as the schedulability or
acceptance of a given task system. Beyond adaptive MC, our approach extends the schedu-
lability by supplementing the dismissed tasks of the scheduler and achieving a greater
probability of accepting the task systems. Among the comparable works, our approach
enables the achievement of a higher acceptance of tasks and practical usage in Linux Kernel
while saving hardware costs.

Sensors 2022, 22, 1926 21 of 26

Table 6. Comparison of a selection of previous studies.

Prior Works Scope of
the Solution

Shared Resource
Requirements

Mixed-Criticality
Considered

Low-Criticality
Tasks Considered

System Implementation
and Evaluation

Cost-Effective

Hot patching
[22,23]

A task bound in
a single system

Yes, shared memory No No Yes Yes

Mobile agent
[27–30,33]

Portable program in
Distributed system No No No Yes Yes

Redundancy
[24,25]

Multiple systems
for a single purpose

Yes, redundant
system and

connections for
mission take-over

No No Yes
No, because of
the additional
system costs

Communication
[31,32]

Portable data in
distributed system

No, using existing
communications

Yes, by applying
MC policies

in network protocol
No

No, only in
network route Yes

Task migration
[34]

Portable task in
distributed system

No Yes No No, mainly
theoretical proofs

Yes

Heterogeneous
Global Scheduling

[26]

Overall quality
in heterogeneous

distributed system
Yes No Overall QoS

ATmega328p
and

ATmega2560
Yes

Multiprocessing
[18–20]

Multi-core for
a single system Yes, shared memory Yes No

No, mainly
theoretical proofs

No, because of
the additional

processing units

Adaptive MC
[8,9]

All MC-tasks in
a single system

Yes, shared memory
and CPU

Yes Yes No, mainly
theoretical proofs

Yes

Elastic MC
[35]

All MC-tasks in
a single system

Yes, shared memory
and CPU

Yes Overall QoS
of LC-tasks

No, mainly
theoretical proofs

Yes

Our approach
(DMC)

All MC-tasks in
distributed system

No Yes Yes Yes Yes

Sensors 2022, 22, 1926 22 of 26

8. Discussion

With the constraint that task migration latency is relatively negligible in any MC task
utilization, using DMC with the EDF-based MC schedulers offers overwhelmingly im-
proved important LC task schedulability. For the EDF-VD scheduler, the deadline miss ratio
of LC tasks improved by 25.53% from 0.47% to 0.35%, and for the MC-ADAPT scheduler,
the improvement in the deadline miss ratio was 100%, from 0.12% to 0%. The proposed
method’s approach of gaining more CPU time also worked well in the test case. The results
showed that the schedulability of our DMC scheduler and task migration was predictable
in the case of a mode switch. There are, however, some limitations to our approach.

• Real-Time guarantee on scheduler: To guarantee real-time assurance for both the tasks
and scheduler, the latter was designed to always have the earliest deadline among
tasks to be scheduled on a first-priority basis.

• Scheduling overhead: For the Linux scheduler function measurement, the MC schedul-
ing had up to 2.3 times scheduling overhead; however, it did not violate the schedula-
bility of the task system and remained feasible. As future work, we intend to arrange
the HC-WCET of the HC task adaptively by measuring the system runtime to lower
the total utilization and scheduling overhead; however, the focus of this study was on
the worst-case schedulability under a fixed HC-WCET of tasks.

• Preconditions: The time or task migration should be smaller than the WCET of the
important LC task and should be schedulable in the HC-mode source system. The des-
tination system must be able to schedule migrated tasks, and there is a constraint that
only one task can be migrated at a time.

• Hardware dependency: Task migration comprises network transfers, and the success
of task migration mainly depends on the hardware devices that determine the speed
of communications. In Section 6.3, we introduced the latency of task migration, which
is mainly concerned with the hardware connection type and bandwidth reservations.
To bind task migration in hard real-time, a predictable hardware design should be
discussed for stabilizing the network latency.

• Dual-criticality consideration: As mentioned in EDF-VD theory, the dual-criticality
model is easily generalized to more than two criticality levels [10]. In this context,
there are two motivations for considering two levels of criticalities. The first is ex-
plicitness, which provides easy and sufficient understanding for the critical instant of
MC scheduling. The second motivation is the implication of proving more than two
criticality levels. For example, in automotive systems, there are five safety-criticality
levels, which can be denoted in the ascending order of criticality as A, B, C, D, and E (E
is the highest criticality). Considering that critical instants rarely occur simultaneously,
we can categorize the criticality groups at critical instants in two levels (in most studies
on MC, two criticalities are defined as HI and LO). For example, suppose a function
having criticality level C had the critical instant exceeding its initial worst-case execu-
tion time. In this situation, lower criticality levels (A and B) can be considered as LO
criticality levels (conversely, C, D, and E as HI levels).

• Certification of the overall distributed system: Certification is an important aspect
of safety-criticality systems representing the reliability of target systems; however,
in distributed systems, a higher-level certification is required for an overall distributed
system rather than considering every single system. The certification is measured as a
worst-case upper bound; therefore, the overall certification should have a higher rate
if one of the systems requires higher certifications. This results in the relationship of
certification between each system and the overall distributed system as disjunction
in logics as denoted in Table 7. The LC task τ3 requires a higher overall certification
than the certification of system A. More than two systems complicate the overall
certification process.

Sensors 2022, 22, 1926 23 of 26

Table 7. Certification of overall distributed system.

Certification on Tasks
Each Systems

Overall System
System A System B

CERT(τ1) HI HI HI

CERT(τ2) HI LO HI

CERT(τ3) LO HI HI

CERT(τ4) LO LO LO

9. Conclusions

The resiliency of LC tasks was evaluated from the perspective of schedulability.
The feasibility of task migration in the MC scheduler was verified by offline and on-
line schedulability analyses. The results showed that task migration was feasible using
the EDF-based MC scheduler. An MC scheduler with task migration features was im-
plemented on the SCHED_DEADLINE Linux Kernel. Compared with conventional MC
schedulers, the deadline miss ratio decreased significantly for the task-level MC sched-
uler without violating the schedulability of the HC tasks. The results of the deadline test
showed that the compatibility with the task-level MC scheduler was higher than that of the
system-level MC scheduler, where the task-level had O(1), deadline miss ratios compared
with O(n) for the system-level on n tasks. In addition, based on the violation test on HC
tasks, the distributed approach proposed in this study was more stable on system-level
MC schedulers. In conclusion, under the condition that the HC task ratio has lower than
47% of overall task systems with 80% of total utilization, the task-level approach with
task migration has extensively higher sustainability on LC tasks. In the future, our work
will be applied to more detailed and realistic mixed-criticality case studies, such as truck
platooning, autonomous/connected cars, and aerial/aerospace systems.

Author Contributions: Conceptualization, J.B., J.L. and K.K.; Formal analysis, J.B. and J.L.; Funding
acquisition, K.K.; Investigation, J.B. and K.K.; Methodology, J.B. and J.L.; Project administration, J.L.;
Software, J.B.; Supervision, J.L.; Writing—original draft, J.B. and K.K.; Writing—review & editing, J.L.
and K.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Institute of Information & Communications Tech-
nology Planning & Evaluation (IITP) grant funded by the Korean government (Ministry of Science,
ICT) (2014-3-00065/Resilient Cyber-Physical Systems Research, 2020-0-01343/Artificial Intelligence
Convergence Research Center (Hanyang University ERICA), 2021-0-01547/High-Potential Individ-
uals Global Training Program) and in part by the BK21 FOUR program (Education and Research
Center for Securing Cyber-Physical Space) through the National Research Foundation (NRF) funded
by the Ministry of Education of Korea (5199990314137)).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicalbe.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proof of Adaptation from System-Level to Task-Level MC Scheduler

In the system-level MC scheduler, all LC tasks are dropped, but task migration can
handle only a certain number of them. The solution at the system level is limited, and task
migration has an obvious limitation in sequential operations, handling only a single task at
a time. By contrast, by dividing the variance of the mode switch at the system level into
task-level MC scheduling, a single task is dropped and migrated. This approach optimally
increases the schedulability of LC tasks.

EDF-VD is defined as (A1)

Sensors 2022, 22, 1926 24 of 26

xUL
L + UH

H ≤ 1. (A1)

3: EDF-VD Acceptance at HC-mode

MC-ADAPT is defined as (A2):

xUL
L2 + UH

H2 + UL
L1 +

UL
H1
x
≤ 1. (A2)

4: MC-ADAPT Acceptance at HC-mode

Theorem A1 (Adaptation theorem). A sporadic task τs is schedulable by MC-ADAPT when τs
is schedulable with EDF-VD for all HC tasks with the same fraction of CH/CL.

The theorem in Equation can be denoted by:

xUL
L + UH

H > xUL
L2 + UL

L1 + UH
H2 +

UL
H1
x

.

Proof. In determining the bounds for the worst-case scenario of dropping all LC tasks at
the task-level mode-switch, all LC tasks are assumed to be dropped, as follows:

UL
L → xUL

L .

In the proof, the worst-case LC task drops of MC-ADAPT are compared to EDF-
VD with less utilization. The proof of schedulability of sporadic tasks in EDF-VD is the
implication of the proof of schedulability of sporadic tasks in MC-ADAPT. The equation
for the worst-case schedulability of MC-ADAPT is as follows:

xUL
L + UH

H2 +
UL

H1
x

Under the premise of mode switch

UH
H > 1−UL

L .

The coefficient bound at LC-mode is

UL
H

x
≤ 1−UL

L .

These premises can be combined as follows:

∴ UH
H >

UL
H

x
.

For ease of proof, all HC tasks have the same k = CH/CL. Then, k is denoted as follows:

CH
τi
= kCL

τi
(τi ∈ τH).

Factorizing the utilization of HC tasks in HC-mode

(τH = τi + τi+1 + . . . + τn.)

UH
H = UH

τi
+ UH

τi+1
+ . . . + UH

τn

→
CH

τi

Ti
+

CH
τi+1

Ti+1
+ . . . +

CH
τn

Tn

By using the defined k:

Sensors 2022, 22, 1926 25 of 26

→
kCL

τi

Ti
+

kCL
τi+1

Ti+1
+ . . . +

kCL
τn

Tn

→ kUL
τi
+ kUL

τi+1
+ . . . + kUL

τn

→ kUL
H >

UL
H

x
.

∴ k >
1
x

. (A3)

5: Ratio of
HC−WCET
LC−WCET

(k) and coefficient (x)

From condition (A3), the task system has a value k that is always larger than the
inverse of the coefficient x, assuming that all HC tasks have the same fraction of CH/CL.

Now, to prove that the worst-case of MC-ADAPT is an implication of the system-level
mode-switch algorithm EDF-VD under the same conditions:

xUL
L + UH

H > xUL
L + UH

H2 +
UL

H1
x

(∵ UH
H = UH

H1 + UH
H2)

→ xUL
L + UH

H1 + UH
H2 > xUL

L + UH
H2 +

UL
H1
x

by eliminating the identical factors on both sides:

→ UH
H1 >

UL
H1
x

(∵ UH
H1 = kUL

H1)

→ kUL
H1 >

UL
H1
x

→ k >
1
x

.

Therefore, by condition (A3), the proof of Theorem A1 follows.

References
1. ISO26262-9:2018; Road Vehicles—Functional Safety—Part 9: Automotive Safety Integrity Level (ASIL)-Oriented and Safety-

Oriented Analyses. International Standardization Organization: London, UK, 2018. Available online: https://www.iso.org/
standard/68391.html (accessed on 9 November 2021).

2. Selicean, D.T. Design of Mixed-Criticality Applications on Distributed Real-Time Systems. Ph.D. Dissertation, Technical
University of Denmark, Lyngby, Denmark, 2014.

3. AUTOSAR. AUTOSAR Official Website. Available online: https://www.autosar.org/ (accessed on 9 November 2021).
4. SIEMENS. Enablement of Heterogeneous OSes and Mixed-Criticality System. Available online: https://resources.sw.siemens.

com/en-US/white-paper-heterogeneous-oses-and-mixed-criticality (accessed on 9 November 2021).
5. BlackBerry Limited. QNX: How to Safely Consolidate Mixed Criticality Functions on a Single Soc. Available online: https://

blackberry.qnx.com/en/forms/how-to-safely-consolidate-mixed-criticality-functions-on-a-single-soc (accessed on 9 November
2021).

6. Vestal, S. Preemptive scheduling of multi-criticality systems with varying degrees of execution time assurance. In Proceedings of
the IEEE Real-Time Systems Symposium (RTSS), Tucson, AZ, USA, 3–6 December 2007; pp. 239–243. [CrossRef]

7. Shivaratri, N.G.; Krueger, P.; Singhal, M. Load distributing for locally distributed systems. Computer 1992, 25, 33–44. [CrossRef]
8. Baruah, S.; Bonifaci, V.; D’Angelo, G.; Li, H.; Marchetti-Spaccamela, A.; Ster, S.V.D.; Stougie, L. The preemptive uniprocessor

scheduling of mixed-criticality implicit-deadline sporadic task systems. In Proceedings of the Euromicro Conference on Real-Time
Systems (ECRTS), Pisa, Italy, 11–13 July 2012. [CrossRef]

https://www.iso.org/standard/68391.html
https://www.iso.org/standard/68391.html
https://www.autosar.org/
https://resources.sw.siemens.com/en-US/white-paper-heterogeneous-oses-and-mixed-criticality
https://resources.sw.siemens.com/en-US/white-paper-heterogeneous-oses-and-mixed-criticality
https://blackberry.qnx.com/en/forms/how-to-safely-consolidate-mixed-criticality-functions-on-a-single-soc
https://blackberry.qnx.com/en/forms/how-to-safely-consolidate-mixed-criticality-functions-on-a-single-soc
http://doi.org/10.1109/RTSS.2007.47
http://dx.doi.org/10.1109/2.179115
http://dx.doi.org/10.1109/ECRTS.2012.42

Sensors 2022, 22, 1926 26 of 26

9. Lee, J.; Chwa, H.S.; Phan, L.T.; Shin, I.; Lee, I. MC-ADAPT: Adaptive task dropping in mixed-criticality scheduling. ACM Trans.
Embed. Comput. Syst. (TECS). 2017, 16, 1–21. [CrossRef]

10. Baruah, S.K.; Bonifaci, V.; D’Angelo, G.; Marchetti-Spaccamela, A.; van der Ster, S.; Stougie, L. Mixed-Criticality Scheduling
of Sporadic Task Systems. In Algorithms—ESA 2011; Demetrescu, C., Halldórsson, M.M., Eds.; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 555–566.

11. Daigle, M.; Roychoudhury, I.; Spirkovska, L.; Goebel, K.; Sankararaman, S.; Ossenfort, J.; Kulkarni, C. Real-time prediction of
safety margins in the national airspace. In Proceedings of the AIAA Aviation Technology, Integration, and Operations Conference,
Denver, CO, USA, 5–9 June 2017. [CrossRef]

12. Baruah, S.K.; Burns, A.; Davis, R.I. Response-time analysis for mixed criticality systems. In Proceedings of the IEEE Real-Time
Systems Symposium (RTSS), Vienna, Austria, 29 November–2 December 2011. [CrossRef]

13. Faggioli, D.; Trimarchi, M.; Checchoni, F.; Bertogna, M.; Mancina, A. An implementation of the earliest deadline first algorithm
in Linux. In Proceedings of the ACM Symposium on Applied Computing (SAC), Honolulu, HI, USA, 8–12 March 2009;
pp. 1984–1989. [CrossRef]

14. Lelli, J.; Scordino, C.; Abeni, L.; Faggioli, D. Deadline scheduling in the Linux kernel. Softw. Pract. Exp. 2016, 46, 821–839.
[CrossRef]

15. Tămaş–Selicean, D.; Pop, P.; Steiner, W. Design optimization of TTEthernet-based distributed real-time systems. Real-Time Syst.
2015, 51, 1–35. [CrossRef]

16. Zhao, L.; He, F.; Li, E.; Lu, J. Comparison of Time Sensitive Networking (TSN) and TTEthernet. In Proceedings of the 2018
IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), London, UK, 23–27 September 2018; pp. 1–7. [CrossRef]

17. Ftrace: Function Tracing Framework for the Linux Kernel. Available online: https://sites.google.com/site/cis115textbook/
safety-critical-systems (accessed on 9 November 2021).

18. Davis, R.I.; Burns, A. Improved priority assignment for global fixed priority pre-emptive scheduling in multiprocessor real-time
systems. Real-Time Syst. 2011, 47, 1–40. [CrossRef]

19. Lee, J.; Ramanathan, S.; Phan, K.M.; Easwaran, A.; Shin, I.; Lee, I. MC-Fluid: Multi-Core Fluid-Based Mixed-Criticality Scheduling.
IEEE Trans. Comput. 2018, 67, 469–483. [CrossRef]

20. Burns, A.; Davis, R.I. Mixed criticality on controller area network. In Proceedings of the Euromicro Conference on Real-Time
Systems (ECRTS), Los Alamitos, CA, USA, 9–12 July 2013; pp. 125–134. [CrossRef]

21. ARM: Safety-Critical System Design in Automotive Vehicles. Available online: https://community.arm.com/arm-community-
blogs/b/embedded-blog/posts/a-starters-guide-to-arm-processing-power-in-automotive (accessed on 9 November 2021).

22. Jeong, H.; Baik, J.; Kang, K. Functional level hot-patching platform for executable and linkable format binaries. In Proceedings of
the IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017. [CrossRef]

23. Niesler, C.; Surminski, S.; Davi, L. HERA: Hotpatching of Embedded Real-time Applications. In Proceedings of the Network and
Distributed Systems Security (NDSS) Symposium, Virtual, 21–25 February 2021. [CrossRef]

24. Frigerio, A.; Vermeulen, B.; Goossens, K. Component-level ASIL decomposition for automotive architectures. In Proceedings of
the IEEE/IFIP International Conference on Dependable Systems and Networks Workshop (DSN-W), Portland, OR, USA, 24–27
June 2019. [CrossRef]

25. Frigerio, A.; Vermeulen, B.; Goossens, K.G. Automotive Architecture Topologies: Analysis for Safety-Critical Autonomous
Vehicle Applications. IEEE Access 2021, 9, 62837–62846. [CrossRef]

26. Roy, S.K.; Devaraj, R.; Sarkar, A.; Senapati, D. SLAQA: Quality-Level Aware Scheduling of Task Graphs on Heterogeneous
Distributed Systems. ACM Trans. Embed. Comput. Syst. 2021, 20, 1–31. [CrossRef]

27. Savaglio, C.; Ganzha, M.; Paprzycki, M.; Bădică, C.; Ivanović, M.; Fortino, G. Agent-based Internet of Things: State-of-the-art and
research challenges. Future Gener. Comput. Syst. 2020, 102, 1038–1053. [CrossRef]

28. Chabrol, M.; Sarramia, D.; Tchernev, N. Urban traffic systems modelling methodology. Int. J. Prod. Econ. 2006, 99, 156–176.
[CrossRef]

29. Tomás, V.R.; García, L.A. Agent-based management of non urban road meteorological incidents. In Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg,
Germany, 2005; Volume 3690, pp. 213–222. [CrossRef]

30. Chen, B.; Cheng, H.H.; Palen, J. Mobile-C: A mobile agent platform for mobile C/C++ agents. Softw. Pract. Exp. 2006,
36, 1711–1733. [CrossRef]

31. Delgado, R.; You, B.J.; Choi, B.W. Real-time control architecture based on Xenomai using ROS packages for a service robot. J. Syst.
Softw. 2019, 151, 8–19. [CrossRef]

32. Lee, K.; Kim, M.; Park, T.; Chwa, H.S.; Lee, J.; Shin, S.; Shin, I. MC-SDN: Supporting Mixed-Criticality Real-Time Communication
Using Software-Defined Networking. IEEE Internet Things J. 2019, 6, 6325–6344. [CrossRef]

33. Adler, J.L.; Blue, V.J. A cooperative multi-agent transportation management and route guidance system. Transp. Res. Part C
Emerg. Technol. 2002, 10, 433–454. [CrossRef]

34. Saraswat, P.K.; Pop, P.; Madsen, J. Task migration for fault-tolerance in mixed-criticality embedded systems. ACM Sigbed Rev.
2009, 6, 1. [CrossRef]

35. Su, H.; Zhu, D. An Elastic Mixed-Criticality task model and its scheduling algorithm. In Proceedings of the 2013 Design,
Automation Test in Europe Conference Exhibition (DATE), Grenoble, France, 18–22 March 2013; pp. 147–152. [CrossRef]

http://dx.doi.org/10.1145/3126498
http://dx.doi.org/10.2514/6.2017-4388
http://dx.doi.org/10.1109/RTSS.2011.12
http://dx.doi.org/10.1145/1529282.1529723
http://dx.doi.org/10.1002/spe.2335
http://dx.doi.org/10.1007/s11241-014-9214-8
http://dx.doi.org/10.1109/DASC.2018.8569454
https://sites.google.com/site/cis115textbook/safety-critical-systems
https://sites.google.com/site/cis115textbook/safety-critical-systems
http://dx.doi.org/10.1007/s11241-010-9106-5
http://dx.doi.org/10.1109/TC.2017.2759765
http://dx.doi.org/10.1109/ECRTS.2013.23
https://community.arm.com/arm-community-blogs/b/embedded-blog/posts/a-starters-guide-to-arm-processing-power-in-automotive
https://community.arm.com/arm-community-blogs/b/embedded-blog/posts/a-starters-guide-to-arm-processing-power-in-automotive
http://dx.doi.org/10.1109/SMC.2017.8122653
http://dx.doi.org/10.14722/ndss.2021.24159
http://dx.doi.org/10.1109/DSN-W.2019.00021
http://dx.doi.org/10.1109/ACCESS.2021.3074813
http://dx.doi.org/10.1145/3462776
http://dx.doi.org/10.1016/j.future.2019.09.016
http://dx.doi.org/10.1016/j.ijpe.2004.12.018
http://dx.doi.org/10.1007/11559221_22
http://dx.doi.org/10.1002/spe.742
http://dx.doi.org/10.1016/j.jss.2019.01.052
http://dx.doi.org/10.1109/JIOT.2019.2915921
http://dx.doi.org/10.1016/S0968-090X(02)00030-X
http://dx.doi.org/10.1145/1851340.1851348
http://dx.doi.org/10.7873/DATE.2013.043

	Introduction
	Problem and Motivation
	Mixed-Criticality Scheduling Background
	Proposal: The Distributed Approach
	Positioning the DMC Task
	Measuring Worst-Case Execution Time of Migration
	Utilization Upper Bound of Migration Task
	Deadline Calculation of Migration Task

	Task System Example
	Adaptation to Task-Level

	Implementation
	Conventional EDF Scheduler in Linux
	Implementation of EDF-VD Scheduler
	Implementation of MC-ADAPT Scheduler
	Implementation of DMC Kernel Module

	Evaluation
	Acceptance in Pre-Processing Phase
	Deadline Miss Ratio
	Global Deadline with Real-Time Guarantee
	Scheduling Overhead

	Related Works
	Discussion
	Conclusions
	Appendix A. Proof of Adaptation from System-Level to Task-Level MC Scheduler
	References

