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a b s t r a c t

Measles virus (MV) manipulates host factors to facilitate virus replication. Sphingosine kinase (SK) is an
enzyme catalyzing the formation of sphingosine 1-phosphate and modulates multiple cellular processes
including the host defense system. Here, we determined the role of SK1 in MV replication. Over-
expression of SK1 enhanced MV replication. In contrast, inhibition of SK impaired viral protein
expression and infectious virus production from cells expressing MV receptor, SLAM or Nectin-4. The
inhibition of virus replication was observed when the cells were infected by vaccine strain or wild type
MV or V/C gene-deficient MV. Importantly, SK inhibition suppressed MV-induced activation of NF-κB.
The inhibitors specific to NF-κB signal pathway repressed the synthesis of MV proteins, revealing the
importance of NF-κB activation for efficient MV replication. Therefore, SK inhibition restricts MV
replication and modulates the NF-κB signal pathway, demonstrating that SK is a cellular factor critical
for MV replication.

& 2013 Elsevier Inc. All rights reserved.

Introduction

Measles is a highly contagious disease that remains as one of
the leading causes of pediatric morbidity and mortality worldwide
(CDC, 2013). Despite the availability of a safe vaccine, there were
approximately 158,000 measles-related deaths globally in 2011
(CDC, 2012). In the USA, 222 measles cases, which were associated
with travel/importations, were reported in 2011 (CDC, 2012).

Measles virus (MV), the causative agent for measles, is an
enveloped, negative stranded RNA virus that belongs to the order
Mononegavirales, family Paramyxoviridae, and genus Morbillivirus
(Griffin, 2001). Wild type MV uses the signaling lymphocyte
activation molecule (SLAM)/CD150 (Tatsuo et al., 2000) and
Nectin-4/PVRL4 as cellular receptors (Muhlebach et al., 2011;
Noyce et al., 2011), while the attenuated vaccine strains of MV
can interact with CD46 to enter cells in addition to being able to
use SLAM and Nectin-4 (Dorig et al., 1993; Naniche et al., 1993).
A profound immunosuppression is a hallmark characteristic of MV
infection, however the exact mechanisms of this process are not
clearly understood (Avota et al., 2010; Hahm, 2009). Transgenic
mice bearing human CD46 (Oldstone et al., 1999; Rall et al., 1997;
Sellin and Horvat, 2009) or human SLAM (Hahm et al., 2003;
Hahm et al., 2004; Ohno et al., 2007; Welstead et al., 2005) have

been generated to study MV-induced immune suppression and
measles pathogenesis. These animal models have increased our
understanding of measles biology (Oldstone et al., 2005), although
they did not fully support MV replication to cause clinical
symptoms of measles in the presence of the host immune system.
However, transgenic mice harboring human Nectin-4 have not yet
been established. Furthermore, there are no specific antivirals for
treating measles (Moss and Griffin, 2012). Thus, it is important to
identify cellular factors that are critically involved in MV replica-
tion and to define regulatory pathways of MV–host interaction.

MV is known to modulate host machinery and its signaling
pathways to facilitate its own replication (Gerlier and Valentin,
2009; Kerdiles et al., 2006; Rima and Duprex, 2011). For example,
MV proteins such as the non-structural V and C proteins inhibit
type I interferon (IFN)-mediated anti-viral activity (Ramachandran
and Horvath, 2009; Shaffer et al., 2003). Further, although MV was
shown to induce the activation of NF-κB signaling (Helin et al.,
2001), viral proteins suppress strong activation of NF-κB signaling
pathway (Pfaller and Conzelmann, 2008; Schuhmann et al., 2011;
Yokota et al., 2008).

Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid
mediator and its level is tightly regulated by cellular enzymes
(Gandy and Obeid, 2013; Rosen et al., 2013). Sphingosine kinase
(SK) converts sphingosine to S1P via its kinase activity. SK/S1P
pathway mediates a variety of crucial cellular processes such as
cell growth/survival/differentiation, lymphocyte trafficking, and
host immunity (Maceyka et al., 2012; Spiegel and Milstien,
2011). Intracellular S1P and SK1 bind TNF receptor-associated
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factor 2 (TRAF2) to activate TNF-α-induced NF-κB signaling
(Alvarez et al., 2010), which could be important for regulation of
the inflammatory responses. Recently, SK was reported to affect
virus replication. Bovine viral diarrhea virus inhibited SK1 for
efficient viral replication (Yamane et al., 2009), whereas SK1
increased the propagation of influenza virus (Seo et al., 2010;
Seo et al., 2013) and human cytomegalovirus (Machesky et al.,
2008). Yet, the precise role of the sphingolipid system during virus
replication has not been defined.

In this study, we determined if SK1 regulates MV replication.
Our data demonstrate that SK1 exhibits a pro-viral function to
enhance MV amplification. Further, MV activates NF-κB in an SK-
dependent manner to promote virus replication.

Results

Overexpression of SK1, but not exogenous S1P addition, enhances
MV replication

In order to investigate whether SK1 affects the replication of MV,
we used HEK 293 cells (HEK cells) that were engineered to over-
express SK1 (SK1 cells) (Min et al., 2007). SK1 cells or HEK cells were
infected with the Edmonston strain of MV (MV-Ed) and at 1 day post-
infection (dpi), the expression levels of measles viral nucleoprotein
(N) and matrix (M) protein were compared between SK1 cells and
HEK cells. As indicated by the Western blot result in Fig. 1A, the
amounts of both N and M proteins were clearly increased in SK1 cells
compared to HEK cells at both 0.1 and 0.5 multiplicity of infection
(MOI) conditions, indicating that SK1 overexpression promotes the

expression of MV proteins upon infection. This result directly corre-
lated with the extent of viral cytopathic effect (CPE) that was observed
on these cells by visual inspection under a phase contrast microscope,
i.e., MV-infected SK1 cells exhibited more CPE compared to the
infected HEK cells (data not shown). Since the enzymatic function of
SK1 is to catalyze the formation of S1P, we determined if exogenously
supplied S1P enhances MV protein synthesis in a manner similar to
the effect of SK1 overexpression. However, exogenous addition of S1P
did not alter the level of MV N protein (Fig. 1B). Collectively, these
results indicate that overexpression of intracellular SK1 enhances MV
replication, whereas exogenously added S1P that is known to trigger
S1P receptor signaling (Rosen et al., 2013) does not alter MV
replication.

Inhibition of SK impairs the replication of MV

To further investigate the role of SK in MV replication, we
employed a pharmacological approach by using inhibitors that are
known to impair SK activity such as N,N-dimethylsphingosine
(DMS) (Edsall et al., 1998; Orr Gandy and Obeid, 2013; Yatomi
et al., 1997) and 4-[[4-(4-chlorophenyl)-2-thiazolyl]amino]phenol
(SKI-II) (French et al., 2003; Orr Gandy and Obeid, 2013). As shown
in Fig. 2A, inhibition of SK with these inhibitors led to a marked
decrease in the expression level of MV N protein in H358 cells,
which express Nectin-4, the epithelial cell receptor for MV
(Muhlebach et al., 2011; Noyce et al., 2011). To exclude the
possibility that SK inhibitors exhibit cytotoxic effects, which would
eventually interfere with virus propagation, we performed a
trypan blue exclusion assay to compare the percentage of viable
cells between SKI-II-treated and untreated cells in the presence or
absence of MV infection. As shown by the percentage of viability of
H358 cells in Fig. S1, SKI-II did not exhibit any significant
cytotoxicity in our experimental condition, indicating that the
impaired virus replication is not due to the altered cell viability.
Since MV is able to use SLAM as well as Nectin-4 as a receptor to
infect cells, SLAM-expressing B95-8 cells were infected with MV
and incubated with the inhibitor SKI-II. The SK inhibitor displayed
a similar inhibitory effect on virus replication in B95-8 cells
(Fig. 2B). This result suggests that SK acts as a pro-viral factor in
MV replication and importantly, this phenomenon occurs irre-
spective of the cellular receptor usage by MV, as we observed the
SKI-II-mediated inhibition of viral replication in cells expressing
either SLAM or Nectin-4. Next, we performed flow cytometric
analysis to assess the level of MV proteins expressed on the surface
of infected cells on a single cell basis. SKI-II treatment decreased
the expression level of MV proteins on the surface of infected cells
compared to the untreated cells (Fig. 2C), as indicated by the
decrease of mean fluorescence intensity (MFI) (309–193). Also, SK
inhibition suppressed the replication of JW strain of wild type MV
(Fig. 2D), demonstrating the importance of SK in promoting the
replication of both wild type and the attenuated strains of MV.

MV non-structural proteins such as V and C proteins are
involved in modulating host defense mechanisms including type
I IFN response (Ramachandran and Horvath, 2009; Shaffer et al.,
2003). In order to determine if there is a role of MV V or C protein
in SK-mediated modulation of MV replication, we used recombi-
nant viruses that lack the V or C gene namely the V� or C� viruses
(Patterson et al., 2000). The replication of V or C-deficient viruses
was diminished by SK inhibition similar to the V and C sufficient
MV (Fig. 2E). This result indicates that both MV V� and MV C� are
sensitive to SK inhibition and that V and C proteins do not play a
key role in SK-mediated regulation of MV replication. Further-
more, we used a small interfering RNA (si-RNA) approach to
knockdown SK1 levels to further confirm our results. Knockdown
of SK1 also reduced the level of pSK1 and resulted in a strong
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Fig. 1. Overexpression of SK1, but not exogenous S1P addition, enhances MV
replication. (A) HEK 293 (HEK) cells or sphingosine kinase 1 (SK1) overexpressing
HEK cells were infected with the Edmonston strain of measles virus (MV) either at
0.1 MOI or 0.5 MOI. At 1 day post-infection (dpi) Western blotting was performed
to detect the nucleoprotein (N) or the matrix (M) protein of MV. The level of viral
protein expressed by the control HEK cells was set to 1.0 at both MOIs. (B) NCI-
H358 cells (H358) were pre-treated with 50, 100, or 500 nM of S1P for 10 min
followed by infection with MV at 0.1 MOI. At 1 dpi, cell lysates were harvested for
Western blot analysis to detect N protein of MV. The relative intensities for each
band of N protein are shown.
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decrease in MV N protein levels (Fig. 2F). This data further
validates the importance of SK1 in MV replication.

SK inhibition leads to a decrease in the level of MV proteins,
which could influence the production of infectious progeny
viruses. To investigate this, H358 cells and B95-8 cells were
infected by MV, treated with SKI-II or its solvent, and then plaque
assays were performed to quantify the MV particles produced
from infected cells. The amount of viruses produced from both
H358 cells and B95-8 cells was inhibited by SKI-II treatment at 1 or
2 dpi (Fig. 3A and B). Approximately 25 fold fewer viruses were
produced from MV-infected, 10 mM SKI-II-treated H358 cells at
2 dpi compared to the untreated cells (Fig. 3A). Similarly, the
amount of viruses produced from MV-infected B95-8 cells that
were treated with 10 mM SKI-II was about 24 fold less than that
from its control cells at 1 dpi (Fig. 3B). These results conclusively

indicate that SK inhibition impairs the production of viral proteins
and ultimately leads to a decrease in the amplification of MV
particles.

MV infection increases the level and activation of SK1 in B95-8 cells

Our results indicate that SK1 has a positive effect on MV
replication, as it favors MV propagation in cells. Therefore, there
is a possibility that MV infection could regulate the activation/
expression of cellular SK1 for its own fitness. To test this possibi-
lity, we monitored the expression and phosphorylation of SK1 in
B95-8 cells following MV infection. MV infection increased the
phosphorylation of SK1 and also the expression level of SK1
protein over time (Fig. 4). The increase of pSK1 is greater
(approximately 2.0 fold) than the enhanced expression of SK1 by
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Fig. 2. Inhibition of SK impairs the expression of MV proteins. (A) H358 cells were infected with MV at 0.1 MOI and were co-treated with DMS (20 mM), SKI-II (20 mM), or the
solvent, DMSO (�). At 1 dpi, Western blotting was performed to detect MV N protein expression levels. The level of N protein in the solvent treated (�) condition was set to
1.0. (B) B95-8 cells were infected with MV at 0.1 MOI and co-treated with SKI-II at 5 or 10 mM or the solvent (�). At 1 dpi, cell lysates were harvested to perform Western blot
analysis to detect N and M protein levels. The level of M and N proteins in the solvent treated (�) condition was set to 1.0. (C) B95-8 cells were infected with MV at 0.5 MOI
and at 3 dpi, cells were incubated with a polyclonal antibody to detect measles virus proteins expressed on the surface of the cells by flow cytometry. Dotted histogram
represents uninfected cells; open histogram represents MV-infected, the solvent-treated cells; and filled histogram represents MV-infected, SKI-II-treated cells. The levels of
mean fluorescence intensity (MFI) of each sample are depicted. (D) H358 cells were infected with wild type MV of JW strain at 0.1 or 1 MOI. Infected cells were co-treated
with either SKI-II (20 mM) or its solvent (�). At 1 dpi, Western blotting was performed to detect N protein. The level of N protein in the solvent treated (�) condition was set
to 1.0 at both MOIs. (E) H358 cells were infected with V� or C� viruses at 0.1 MOI and were either treated with SKI-II (20 mM) or the solvent (�). At 1 dpi, Western blot
analysis was performed to detect N protein of MV. The level of viral proteins in the V� or C� infected and solvent treated (�) condition was set to 1.0. (F) H358 cells were
transfected with siRNA targeting SK1 (si-SK1) or the scrambled si-RNA control (SCR). Transfected cells were infected with MV at 0.1 MOI and harvested for Western blot
analysis to detect MV N, SK1, and pSK1 proteins. Relative band intensities of N, SK1 and pSK1 are shown.
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infection when their increased intensities were compared (pSK1/
SK1). This indicates that the elevated level of pSK1 is not just due
to the heightened level of SK1 expression. MV-induced expression/
activation of SK1 could enhance MV replication. However, little

increase of SK1 expression/phosphorylation was observed in H358
cells following MV infection (data not shown). These results
suggest that MV regulates SK1 expression/activation in a cell-
type specific manner.

MV-induced activation of NF-κB signaling, which is needed
for efficient MV replication, is modulated by SK inhibition

It is possible that SK inhibitors regulate the level of sphingo-
lipids that are components of cellular membranes and affect the
initial entry step of MV into the cells. To address this, cells were
infected with MV for 1 h and washed to remove any unbound
virus particles from the cell surface. After 1 or 3 hours post-
infection (hpi), SKI-II was supplied to the infected cells. Addition of
SKI-II even after 3 h of MV-cell interaction could still potently
inhibit MV replication (Fig. S2), suggesting that the inhibition
mainly occurs at the post-entry levels of MV replication.

Recently, SK1 as well as intracellular S1P were reported to
interact with TRAF2 and increase TNF-induced activation of the
NF-κB pathway (Alvarez et al., 2010). Also, there is a report
demonstrating that NF-κB activity is elevated in A549 cells following
MV infection (Helin et al., 2001). Therefore, we defined the function
of SK1 in MV-induced activation of NF-κB pathway. We detected
phosphorylation of p65 (RelA) as one of our read-outs for NF-κB
activation, since phosphorylated p65 is a major component of the
active NF-κB transcription complex (Gilmore, 2006). Notably, MV
increased the activation of p65 at 6, 9, 12 and 30 hpi and interest-
ingly, this increase was impaired by the treatment with SKI-II in
B95-8 cells (Fig. 5A). However, the level of total p65 did not change
by the SKI-II treatment (Fig. 5A). This implies that SK inhibition leads
to a decrease in MV replication, which correlated well with a
reduction of activation of NF-κB signaling. Similar results were also
reproducible when H358 cells were used (Fig. 5B). We observed that
MV induced the phosphorylation of p65 and IKKα/β, which is the
kinase upstream of p65 and necessary for the activation of p65.
In addition, a decrease in the phosphorylation status of these
components was detected when SK was inhibited (Fig. 5B). It is
known that the activated p65 subunit translocates to the nucleus
and binds to NF-κB promoter elements to activate the transcription
of target genes (Gilmore, 2006). Therefore, we have used a reporter
plasmid to measure NF-κB promoter activity. SK inhibition
decreased NF-κB promoter activity induced by the MV V�

(Fig. 5C), further supporting our conclusion that SK inhibition
interferes with NF-κB signaling upon MV infection. These observa-
tions led us to speculate that MV-induced activation of NF-κB signal
pathway contributes to the efficient MV replication. To investigate
this, NF-κB-specific inhibitors were utilized and their effect on MV
replication was monitored. As indicated in Fig. 5D, when H358 cells
were pre-treated with Wedelolactone that inhibits the kinase
activity of IKKα/β (Idris et al., 2009) prior to MV infection, there
was a strong decrease in MV N protein levels. Similar inhibition
of MV replication by Wedelolactone was observed in B95-8 cells
(Fig. S3). To confirm the result, we tested another inhibitor of IKKα/
β, Bay-11-7082 (Bay) that prevents the phosphorylation and sub-
sequent degradation of IκB (Pierce et al., 1997). The treatment with
Bay reduced the expression of MV N protein when the cells were
infected by MV at 0.1 or 1 MOI (Fig. 5E). Thus, we could conclude
that MV-induced activation of NF-κB pathway is crucial for efficient
virus replication and that SK inhibition could display its anti-viral
effect, at least in part, by suppressing the MV-induced NF-κB signal
pathway.

Following this observation, the next issue we addressed was
the possible role of type I interferon (IFN) in SK-mediated MV
replication, since NF-κB activation can lead to type I IFN produc-
tion. Therefore, we used Vero cells which are known to be
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deficient in type I IFN production (Chew et al., 2009). Interestingly,
SKI-II or Bay-mediated inhibition of MV replication was recapitu-
lated in Vero cells (Fig. 5F), suggesting that the anti-viral
effect observed upon SK inhibition does not mechanistically

involve the production of type I IFN in itself. These results
demonstrate that SK1-NF-κB pathway is needed for effective MV
replication and this phenomenon is independent of the production
of type I IFN.
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Discussion

Our findings establish a pro-viral role of SK1 in the replication
of MV. We show that overexpression of SK1 promotes efficient
MV replication, whereas the enforced inhibition of SK1 activation/
expression represses MV replication.

Several studies have suggested that the uptake of viruses into
the cell can be influenced by the sphingolipid composition of the
cell membrane (Chazal and Gerlier, 2003). For instance, MV
interaction with DC-SIGN induces sphingomyelinase activation
and ceramide generation, which enhances MV uptake into den-
dritic cells (Avota et al., 2011). In contrast, the entry of human
immunodeficiency virus (HIV) (Finnegan et al., 2004) and hepatitis
C virus (HCV) (Voisset et al., 2008) into cells was shown to be
inhibited by ceramide. Since SK could regulate the balance of
sphingolipid levels including ceramide, sphingosine, and S1P
(Snook et al., 2006), it is conceivable that inhibition of SK
enzymatic activity influences the uptake/entry step of MV into
the cells. However, addition of the SK inhibitor even at 3 h after
viral infection of the cells could potently inhibit MV replication
(Fig. S2). This suggests that the inhibition of virus replication may
not occur at the level of MV-interaction with the cellular receptor
but presumably at a stage post MV entry. We have measured the
level of viral RNAs to determine if the inhibition is observed at the
level of viral RNA synthesis. However, there was no significant
change in MV N RNA levels (both the positive and negative sense
N RNAs) between SK inhibitor-treated cells and the solvent-
treated control (data not shown). This suggests that SK inhibition
might regulate MV replication at a post-transcriptional level. The
exact point in MV life cycle where the inhibition is initiated
remains to be further explored.

Recent findings for SK-mediated regulation of TNF-induced
NF-κB signaling led us to hypothesize that SK inhibition regulates
host NF-κB signal pathway upon MV infection. Indeed, our results
suggest that the antiviral effect exhibited by SKI-II directly
correlated with SK-mediated modulation of the NF-κB pathway.
Importantly, we have shown that NF-κB pathway is critical for
efficient MV replication (Fig. 5D and E). To the best of our
knowledge, this is the first report to reveal the crucial role played
by the NF-κB pathway in promoting MV replication. These findings
provide a new mechanism of how MV uses the host cellular
machinery to facilitate its own replication.

Several viruses are thought to incorporate/hijack the NF-κB path-
way into their life cycle for their own benefits in replication/
pathogenesis (Hiscott et al., 2001). One well-known example is
influenza virus infection wherein NF-κB signaling plays a critical role
in promoting influenza viral RNA synthesis (Kumar et al., 2008).
However, NF-κB signaling could regulate anti-viral cellular processes
including host protective immune responses (Hayden and Ghosh,
2012). For instance, MV RNA is sensed by cellular pattern recognition
receptors (PRRs) such as RIG-I and MDA-5 (Ikegame et al., 2010),
which could lead to NF-κB-mediated innate anti-viral immune
responses by inducing the synthesis of pro-inflammatory cytokines
and type I IFNs to control MV spread. In response to this host
protective signaling, many viruses encode for proteins to block/
antagonize this pathway so that they can establish a more productive
infection in the cells. Some examples include influenza NS1 protein
(Wang et al., 2000) and HCV core protein (Joo et al., 2005). Similarly,
MV V protein was reported to inhibit NF-κB signaling by binding to
the Rel homology domain (RHD) of the p65 subunit to disrupt its
nuclear translocation (Schuhmann et al., 2011). Also, the P protein of
MV suppresses NF-κB signaling by up-regulating A20, which is a
negative regulator of NF-κB, to remain “immunologically silent” in
monocytes but this phenomenon was not found in epithelial cells
(Yokota et al., 2008). This report indicates that a cell type-dependent
regulation of NF-κB pathway by MV may exist.

Thus, MV activates NF-κB to facilitate its replication, while MV
seems to suppress activation of NF-κB signaling to some extent. It
is possible that MV-induced activation of NF-κB signaling is
required for the synthesis of viral proteins and then newly
produced MV proteins suppress the anti-viral function of NF-κB.
Therefore, an optimal level of NF-κB activation that facilitates MV
replication seems to be maintained in the host cells. These
observations suggest a dual role for NF-κB pathway during MV
replication. MV might differentially regulate the cellular NF-κB
signaling depending on various factors such as the time point of
NF-κB activation during MV replication cycle, cell type specificity,
and the extent of NF-κB signaling it activates. We have recently
published that SK1 has pro-viral role in influenza virus replication
and the mechanisms also involve SK-mediated regulation of NF-κB
pathway, which is essential for influenza viral RNA synthesis (Seo
et al., 2013). Also during HIV infection, NF-κB is known to directly
bind to the HIV long terminal repeat to promote viral transcription
and HIV gene expression (Kwon et al., 1998). The mechanistic
details of how the NF-κB pathway aids MV replication remains to
be further explored.

MV non-structural proteins V and C are known to be involved
in subverting the host immune response, particularly by antag-
onizing the antiviral type I IFN system (Ramachandran and
Horvath, 2009; Shaffer et al., 2003). Additionally, these proteins
were shown to suppress the NF-κB pathway (McAllister et al.,
2010; Schuhmann et al., 2011). However, V and C-deficient viruses
still remained sensitive to SK inhibition. This finding leads us to
speculate that V and C proteins might be dispensable for MV in
utilizing SK1 as a pro-viral factor to aid its own replication.
Furthermore, it is interesting to note that although NF-κB signal-
ing can lead to type I IFN production, our results show that SK
inhibition's anti-viral mode of action is independent of the
production of type I IFN (Fig. 5F).

MV infection increases the activation of SK1 as well as the
expression level of SK1 in B95-8 cells (Fig. 4). It is possible that the
MV genome and/or viral protein(s) could trigger the activation of SK1.
Indeed, LPS-mediated stimulation of its receptor TLR4 has been
reported to activate SK1 (Pchejetski et al., 2011). Therefore, PRR-
mediated sensing of MV components could lead to activation of SK1,
which remains to be further explored. However, MV-induced phos-
phorylation of SK1 was not observed in H358 cells, suggesting that
cell type-specific regulation may exist. Conceivably, B95-8 cells, but
not H358 cells, efficiently produce cytokines such as TNF-α upon MV
infection, which may contribute to the prominent activation of SK1.
We and other investigators have reported that viruses regulate SK1
expression or activation. Respiratory syncytial virus (Monick et al.,
2004) and influenza virus increase SK1 activation/expression (Seo
et al., 2013), whereas bovine viral diarrhea virus (Yamane et al., 2009)
and dengue virus (Wati et al., 2011) decrease SK1 activation. Thus,
SK1 activation/inactivation is dependent on the type of viruses
invading the host cells and seems to be an important regulatory
event occurring in virus-infected cells.

The activation of SK1 that we observe following MV infection
can result in the intracellular accumulation of S1P. The S1P thus
generated is known to function in two possible manners (Spiegel
and Milstien, 2011). It can be secreted out of the cells and then
bind to canonical S1P receptors to trigger SIP receptor-mediated
signaling events. The other way by which S1P functions is to act
intracellularly as a second messenger. Indeed, recent studies have
delineated the intracellular role of S1P, which is binding to TRAF2
and mediating TNF-induced NF-κB activation (Alvarez et al., 2010).
In our experimental system, we find that, exogenously supplied
S1P does not have any effect on MV replication (Fig. 1B). Therefore,
SK1 enzyme mediated generation of intracellular S1P and the
subsequent intracellular signaling events appear to regulate MV
replication.
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In this study, we have demonstrated that SK1 expression/
activation is required for efficient MV replication and propagation.
Further, our study has revealed a crucial role of the NF-κB pathway
in MV replication and has established a link between SK1 and NF-
κB pathway upon MV replication. Development of small animal
models that manifest the clinical and biological aspects of a
natural measles infection would allow us to determine the role
of SK1 and NF-κB pathway in vivo. Collectively, our observations
provide new insights into the MV-host interactions and further
provide a basis for the development of novel therapeutic strategies
to control MV infection.

Materials and methods

Viruses and cells

Edmonston MV (MV-Ed), the vaccine strain of MV (Hahm et al.,
2007) and V or C-deficient MV (Patterson et al., 2000) were
amplified on Vero cells. Wild type MV of the JW strain was
amplified by passage on B95-8 cells as described previously
(Hahm et al., 2003; Manchester et al., 2000). HEK293 cells and
SK1 cells (Min et al., 2007) were maintained in Dulbecco's
Modified Eagle's Medium (DMEM, Mediatech) as explained else-
where. NCI-H358 cells (Human bronchioalveolar carcinoma cells)
were purchased from ATCC and were maintained in RPMI 1640
medium supplemented with D-glucose to a final concentration of
4.5 g/L, 1% HEPES, 1% sodium pyruvate, and 1% L-glutamine. B95-8
cells (Marmoset B-cell line) were maintained in RPMI 1640
medium (Mediatech). Vero cells were maintained in DMEM
medium. Cells were cultured in a CO2 incubator at 37 1C and all
media were supplemented with 10% fetal bovine serum (HyClone)
and penicillin (100 U/mL)/streptomycin (100 μg/mL) (Mediatech).

Western blot analysis

Specific antibodies against measles virus proteins namely
nucleoprotein (N) and matrix protein (M), SK1, pSK1, pIKKαβ,
IKKαβ, p65, p-p65, actin, and GAPDH were purchased from Cell
Signaling Technology, Abcam, Santa Cruz Biotechnology, and ECM
Biosciences. Total proteins were harvested using 2� sample buffer
containing β-mercapto-ethanol and after heat inactivation at
95 1C, equal amounts of protein samples were loaded onto 12%
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) gels to resolve proteins and then transferred to nitrocellu-
lose membrane (PROTRAN-NC, Whatman). The membrane bound
antibodies were detected using Enhanced Chemiluminescence
substrate solution (Thermo scientific). The relative intensities for
each band were determined based on the control protein expres-
sion (Actin or GAPDH) by densitometry using Image J software and
the values obtained are depicted below each blot. All the pre-
sented data were repeated at least twice with independent
experimental settings.

Plaque assay

For titration of viruses, the cell lysates with the supernatants
were subjected to 2 cycles of freezing and thawing to collect cell-
associated MV along with the viruses released into the super-
natant. Monolayers were prepared by seeding 4�105 Vero cells in
2 mL of growth medium on 6 well plates (Corning). After over-
night incubation, monolayers were infected with the virus sample
that was serially diluted in complete medium. Viruses were
allowed to infect monolayers for 1 h at 37 1C, 5% CO2, shaking
plates every 15 min. After viruses were adsorbed, a 2 mL agarose-
containing overlay was added to each well. After the overlay

solidified, the plates were incubated for 5 days at 37 1C, 5% CO2.
On day 5, cells were fixed with 25% formalin and stained with
crystal violet. The numbers of plaques in each well were counted
and titers were calculated.

Inhibitors

To inhibit sphingosine kinase activity, SK-specific inhibitors
SKI-II (Sigma-Aldrich) and N,N,-dimethylsphingosine (Cayman
Chemical) were used. To inhibit NF-κB signaling, Bay-11–7082
(Sigma-Aldrich) or Wedelolactone (Sigma-Aldrich) were used.
DMSO was used as solvent to prepare all of the inhibitors
mentioned.

RNA interference

Small interfering RNAs (siRNA) targeting human SK1 (siSK1)
was purchased from Thermo Scientific (ON TARGET plus SMART
pool siRNA). Non-targeting scrambled RNA was purchased from
Dharmacon and used as control. Cells were reverse transfected
with 50 nM si-SK1 using Lipofectamine RNAiMAX (Invitrogen)
according to the manufacturer's instructions. At day 3 post-trans-
fection, cells were split and transfected once again with siRNA.
One day later, transfected cells were infected with MV and
harvested at 2 dpi for analysis.

Sphingolipids

Sphingosine 1-phosphate (S1P) was purchased from Cayman
Chemicals. 3% tissue culture grade-bovine serum albumin (BSA)
(Sigma Aldrich) was used as solvent to dissolve S1P.

Flow cytometric analysis

For detection of measles virus proteins by flow cytometry,
MV-infected B95-8 cells were incubated with a human polyclonal
serum to MV (Hahm et al., 2003, 2007) which was used as the
primary antibody. The cells were thoroughly washed and then
stained with a PE-conjugated donkey anti-human IgG antibody
(Jackson Immuno Research Laboratories). Data were collected by a
CyAn ADP flow cytometer (Beckman Coulter) and were analyzed
with FlowJo (Treestar) software. Similar result was obtained with
two independent experiments.

NF-κB luciferase reporter assay

H358 cells were co-transfected with 100 ng of NF-κB promoter-
luciferase reporter plasmid (pGL3-NF-κB) (Nakhaei et al., 2009)
and 10 ng of Renilla luciferase plasmid (pRL-CMV) which was used
as a transfection control. After 24 h, transfected cells were infected
with 0.5 MOI of MV V� and co-treated with SKI-II or its solvent.
At one day post-infection, cells were lysed to measure Renilla and
firefly luciferase activities using the dual luciferase reporter assay
system (Promega), according to manufacturer's instructions. The
averages were compared using a bidirectional, unpaired Student's
t-test.
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