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Abstract--The onset of natural convection in a horizontal fluid layer cooled from above is investigated 
theoretically. The initially quiescent fh_dd placed between two flat plates is cooled by decreasing the upper 
boundary temperature at a constant time-rate. Its stability analysis is conducted by employing the propagation 
theory, which considers variations of disturbances with the time upon their onset. The critical conditions pre- 
dicted by this theory are found to agree ~avorably with the existing experimental results. Also, the effect of the 
Prandtl number on instability is discussed. 

INTRODUCTION 

The onset of natural convection in a horizontal 
fluid layer experiencing a sudden change in boundary 
temperature has been investigated extensively [1-6]. 
Most of previous studies have been conducted based 
on the quasi-static model and also on the linear ampli- 
fication theory. The former model neglects tl,e varia- 
tions of disturbance quantities with time, while the lat- 
ter one requires both an initial condition and its ampli- 
fication factor. Limited agreement between the exper- 
imental results and theoretical predictions has been 
shown, but the individual model loses the validity to a 
certain degree. The quasi-static model leads to time-in- 
dependent problems, which loses the effect of the 
Prandtl numbers on the criterion for the determination 
of the onset of convection time. In the amplification 
theory, the type of initial conditions and the amplifica- 
tion factor to correlate the theory with a particular 
experiment must be established. Therefore, the means 
to predict the critical conditions to mark the onset 
without the loss of generality is clouded in both mo- 
dels. 

Recently Choi, Shin and Hwang [7] suggested the 
propagation theory that disturbances are initiated 
under the principle of exchange of stabilities but they 
do not experience conventional quasi-sta:ic charac- 
teristics. Under this theory disturbances will grow non- 
exponentially upon their initiations for a given large 
Rayleigh number. This new deterministic model has 
several advantages: 

1. The effect of the Prandtl number on instability 
is obyiously seen in stability equations. 

2. The stability criteria are obtained directly from 
the stability equations. 

3. This model does not need an initial condition 
or amplification ratio. 

Choi et al. [7-8] applied this model to plane Couette 
flow and also plane Poiseuille flow with success. 

The problem considered here is that of a hori~,ontal 
fluid layer cooled from above by decreasing the tem- 
perature of the upper surface at a constant temporal 
rate. This is an extension of the work of Choi et al. [9], 
wherein the quasi-static approach was critically ex- 
amined. The purpose of this investigation is to clarify 
the stability criteria by applying the prepagation 
theory. In this regard, the base temperature profile is 
approximated by integral methods and simulation me- 
thod which give the different penetration depth from 
one another. 

MATHEMATICAL FORMULATION 

The problem of interest is that of the Newtonian 
fluid layer confined by two rigid boundaries, as shown 
in Fig. 1. After introducing the Boussinesq approxima- 
tion, the governing equations based on the linear sta- 
bility theory can be decomposed into the unperturbed 
equations and the perturbation equations. 
Unperturbed Equations 

The unperturbed equation governing a fluid at rest 
can be expressed as the heat conduction equation, in a 
dimensionless form, which depicts a base temperature 
profile: 

O00 0200 (11 
Or  Oz 2 

with the initial a[~d boundary conditions 

00 Iz, 0 I 0 (2) 

0o (0, r)  - r  and 0o (1, r ! - 0  for r->0 (3) 
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Fig. 1. A schematic diagram of the system. 
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A Leveque-type solution under the deep-pool app- 
roximation that the thermal penetration depth is very 
small in comparison with the whole deplh of a fluid 
layer is obtained as follows: 

�9 Z V ' ~  Z 2 , Z  2 Oo(Z,-r~ ~ x p ! - ~ ) - c ~ + r i  
( z 

erfc , ~ - - r  ) ('l) 

But, the above solution accompanies mathematical dif- 
ficulty in the stability analysis. Therefore, Choi et al. 
[9] approximated the base temperature profile by the 
following form: 

0 o = -  r ( l - z / 8 1 )  ~'2es7 for 0 ~ z - - ~ 8 1  (5) 

O0 = 0 for b'~ < z ~ l  (6) 

where b'~ represents the thermal penetration depth 

~0o/8, = - 0.01 ; & =2. 898~/r ). For the simplifica- 
tion of mathematical treatment, the approximate 
solution is obtained by using the integral method: 

00 = - r (1 -  z/b'2 ) '~ for 0 < z < g 2  (7) 

00 = 0 for 8~ < z _-<; 1 (8) 

The above equations satisfy the boundary conditions: 

,::3 0o 
. . . . .  1 at z =  0 (9) Oo r and O r 

00o 020o 
Oo Oz Oz 2 0 at z::: a'~ (10) 

The energy equation produces the value of a'2 = ff20r 
for n = 5, and & = 8~8r forn= 3.All these solutions are 
compared each another, in a normalized form, in Fig. 
2. It is found that the fifth-order polynomial having 
82 ~ff2Oz- agrees well with the exact solution. 
P e r t u r b a t i o n  E q u a t i o n s  

The linearized perturbation equations are derived 
from the equations of continuity, momentum, and en- 
ergy under the Boussinesq approximation as usual [9]. 
The resulting equations are obtained by considering 
that the disturbances show the characteristics of two- 
dimensional periodic waves near the onset time as fol- 
lows: 

c92 ( - ~ i -  a~) w=:: a20 (11) 
P r  Or  ' O z  2 'Oz  

r i I 
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1 
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Integral Met hod (3rd order) 
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Fig. 2. Base temperature profiles in various methods. 

t O-~-- O* R a ~ - w  (112) Dr  (-a-~z ' - a ' ! t o = -  

From these equations the values of ' R a '  and ' a '  
must be found for given r and Pr. 

In a conventional stability analysis, the time was 
considered as a parameter so that time-dependence of 
disturbance quantities could be neglected in perturba- 
tion equations. In the present study, the propagation 
theory which considers the variations of disturbance 
quantities with time is considered. For the stability an- 
alysis the similarity variables are introduced as fol- 
lows: 

~" =g~z (13) 

w-g lw*(~ ' )  and 0 - 0 " ( ~ ' I  /14) 

where g~ and g2 are functions of the thermal penetra- 
tion depth, which can be given as 82 and 1 / 8 in this 
system, respectively. Perturbation equations are trans- 
formed by using the above similarity variables: 

2 

(D2 -a  .2) t ( D ' -  a*~) + 2 .  ] I ~ ' D - 2 ) I  w* 

- - a * 2 0  * ('15) 

( D ' '  A '  - - ~ - ~ ' D - - a  .2) 0*=IRa*(DO0)w* (16) 

where D=d/d~', A=&/.~r, Ra*=Ra 83 and a* =a& The 
resulting equations are valid at the onset time re, when 
the parameters Ra* r and a* are kept constant [it 1 ]. By 
substituting equation (16) into equation (15), the stabil- 
ity equations can be obtained as follows: 

A' 
( D ' ~ 2  ~'D--a*')' I D ' - a * " 2 ~ '  2PrA~ 

(~'D 3- a*~,;'l) �9 2a *z) ]w* § Ra*a *~ (DO,,)w*- 0 
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for 0 <:~'--~ 1 (17) 

( D ' 4 - ~  ~D - a .2) ~ (D 2 - a*2) ~ 

A ~ 
+ 2-~rr (~" D ' -  a*'~" D + 2 a * ' ) I  wo *= 0 

for g ~ l  (18) 

where the subscripts i and o indicate the inside and 
the outside region of the thermal penetration depth, 
respectively. 

SOLUTION PROCEDURE 

For infinite-Pr fluids, the convective term in stabili- 
ty equations can be ignored. There.~ore, tee resulting 
equations are expressed as follows: 

A 2 
~+ D a *= 2 ~(D ~ - g  - ) ( D 2 - a * 2 ) ' + R a * a *  (DO~)] 

w * = 0  for 0 < ~ ' < 1  (19) 

a 2 

(D2+7-~ 'D - a .2) ( D ' -  a*2)2w * =  0 

for ~" => 1 (20) 

Boundary conditions for a deep-pool system become 

w * = D w * =  0 at ~ '=0 and ~'--,.oo (21) 

Because the temperature disturbances vanish at a rigid 
boundary, another boundary condition can be obtain- 
ed from equation (15): 

(D2-- a*')2w * 0 a'~ /," 0 and ~'--,.cc (22) 

Now, two solutions of equations(l ~)and (20), which 
satisfy the boundary conditions, will be patched each 
other at ~'= 1. Interface conditions at _'_'g = 1 are given by 
continuity of velocity, momentum, and stress: 

w~*=w* and D"w*=D'~w * ( n - l ,  2 , " , 5 )  (23) 

Equations (19) and (20) can be analytically solved by 
following the method of Choi et al. [7]. 

A solution of equation (]9) can be easily determin- 
ed in a power series form as follows: 

w~*= .E H~ f*'  (~') (2411 
,C=l 

f , , ( r  ~ , ,~ .n  (25) 
n=0 

where H, is an arbitrary constant and b,~ ('~ can be con- 
structed to satisfy equation (19) with the base temper- 
ature profile by the integral method. For example. 
when the base mmperature profile is approximated as 
a fifth order polynomial, b~, {'~ becomes 

rl.~ .~3a*21n-2) v''*~.o. 2-aa~ * ' (n -4)~ .  

b~ ~ , +  ~n-6) !([a *6-5R~*ra*2)b~!~ 

- 2 0 R a * r  a*2b~i/r - 30Ra*ra*2bl~ 

+ 2 0 R a ,  ra,2b~L~ 9 . . 2 . ,  - 5 R a  ra  b'._~0)] 

for n :> 6 (26} 

where bC~ ' = 0 for n_~0. 

b~Y =~,~, for 0 < n ~ 5 .  

This study is concerned oMy with the case of very 
small time marking the onset of thermal convection. 
So, the general solution of equation (20) should be ob- 
tained in the infinite domain and this brings complica- 
tion in its mathematical treatment. Therefore, the eq- 
uation (20) can be separated as follows: 

A 2 
( D ' §  a * 2 ) y =  0 (27) 

(D ' -  a .2) ~w*= Y (28) 

After transforming a coordinate in equation (27) to 
s = ~ - l ,  its solution is obtained in exponential forms. 
Also, we can find the asymptotic solution of equation 
(27) which satisfies the boundary condition (22) as 
~---*ooTby adopting the WKB approximation method: 

cr (-~A' x' a, 2) ~/2 Y (~') ~ - exp [ -  A '~  2 /8 -  J + ~- 

A '  A ~ 
& l / ( ~  ~ ' + ~  + ~ * ' ) ~ '  (29) 

The above solution provides the boundary conditions 
at s = 0  for the exponential forms obtained above. Se- 
quently wo* in equation (28) can be easily obtained by 
an operator technique: 

wo* = (Fit +H,  .~;) e-a*~+Ha (eC'**P (s) 

+ e  -'=**ca (s) ~/4a *~ (30) 

where 

Pn n+l Pn s~+,_ 1 ,,~ 7n~l-Y s P (s  
=,~o ( n + l ) ( n §  a~==Q 

P . = - [ ( 2 a * ' + ~  -~') ( n - 1 ) P , - , - b ~  ( n - 2 + a * ' )  

+ A~ ,,~ 
P,,2 ~ - a  r = _ a ] / n ( n - 1 )  

P _ , - 0 ,  P~ =Y(1), P , = Y ' ( 1 ) - Y ( 1 )  

q" s"+2+ ~-,~0 q" s"-' Q ( s ) = ~ ~  <n,Cl)(nq-2) = ( - ~ 7 -  

.M A' 
qn = ( ( 2 a * ' - - ~ - ) ( n -  1)qn-a + T  (a* -  n§  q,~_2 

A'  
+ y a * q n  ~ ] / n ( n -  1) 

q-~ =0,  q~, =Y(1), q~ =Y'(1)---Y(1) 

Finally, the critical conditions can be determined 
from the following secular equations which are obtain- 
ed by applying the conditions (21) and (22): 
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a*  
(~ I ' l  - I  0 0 f + _ ~ f  flXl f(sl 

,2,, a* <4), f(s, a* f + ~ - f  f"~" " - 1 0 

i 
~,,, a f(,> f,<s> a .2 2a* 0 f + ~ -  " r,),, , ,  

= 0  

f~2~"+6f(,~", f(~l',, f,~,,,, a .3 -3a .2 0 

f l l l iv~6f / i , lv  fl~liv f l s / lV_a*,  4a *~ -Y(1) 

Iv+6_f<ll~ f/31v f,,iv a,5 _5a, l -Y'{1} f 

t31) 

where the prime represents differentiation with res- 
pect to ~" . In this system, Ra*r is expressed as an 
eigenvalue for a given wave number, a*. Fig. 3 shows 
a typical stability diagram for determining the critical 
condition. All of disturbances do not grow until Ra*r 

reaches (Ra* r) o while disturbances will grow for 
Ra* r > (Ra*r)c 

In case of very small Prandtl numbers, by looking 
back at equations (17) to (18), new stability equations 
can be reformulated. But, it can be assumed that, for 
small Prandtl numbers, velocity disturbances are con- 
fined within the thermal boundary layer by scale 
analysis [101. Also, by introducing Choi's modified 
concept [4] that "temperature disturbances at the 

r"-, 

z 
,Z2 

"5 

e,., 

c 

I [ I I I I I T - - - -  

unstable 

-(Ra* r) . . . .  3558 ~ ~ ' ~  ~ ~  
I stable 

ac, ~ = 2.75 

I _ l  . . . . .  J _ _ _ k  I _ L _ _ 3 _ _ _  

a*, Modified Wave Number 

1___ 

Fig. 3. A typical stability diagram for infinite Prandtl 

number. 

onset of natural convection are confined wiLhin the 
thermal boundary layer thickness", the stability equa- 
tion is easily formulated as follows: 

A~ A~ 
('2 ( D ' + ' 2  ~'D - a*') (~" D ' -  a* '~ 'D+2a* ' )  

§  Ra*a* ' (D 00 )}w*~= 0 for 0 < g < l  (32) 

w * = 0  for g ~ l  (33) 

The above equation makes us be able to observe 
the qualitative charateristics of the instability in very 
small-Pr fluids without mathematical difficulty. It is im- 
portant to note that PrRa*r for very small-Pr fluids 
plays the same role as Ra* r for infinite-Pr fluids. The 
stability criteria can be obtained by the same pro- 
cedures as the case of the infinite Prandtl number. But, 
the boundary conditions must be relaxed under the 
approximation for very small-Pr fluids so thai: the no 
slip condition can not be applicable. The boundary 
conditions become 

w * ~ 0  and 0 * =  0 at ~ = 0 (34) 

wl*~0, Dwff~ 0 and 8 * =  0 at ~'*- 1 {35) 

R E S U L T S  A N D  D I S C U S S I O N  

The theoretical results of this study are presented 
for the infinite Prandtl number in Table 1. Integral me- 
thods (1) and (2) mean that they are approxim~ted as a 
fifth-and a third-order polynomial, respectively. 

These critical values may be modified by using the 
relationship between the thermal penetration depth 
and time. It enables us to compare theoretical values 
with experimental data of Davenport and King [3] as 
shown in Fig. 4. 

The critical conditions based on the propagation 
theory are lower than experimental va]ues, which may 
reflect the growlh time required for a finite disturbance 
to be observed and also the influence of Prandtl num- 
bers on the critical conditions. The critical time is in- 
versely proportional to 2/5 power of the calculated 
Rayleigh number in accordance with the experimental 
observation. 

In the present propagation theory, the thermal 
penetration depth is used as a length scaling factor. 

Table 1. Critical conditions with r c = m  Ra -2s5 and a c =  
n Ra is5 for Pr -*  oo. 

Base Temperature Profile Ra*r a* m n 

Integral Method (1) 3560 2.75 4.36 0.29 

Integral Method (2) 1063 1.99 4.64 0.31 

Simulation Method 1214 2.00 4.78 0.32 
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Fig. 4. The time of the onset of convection vs. critical 

Rayleigh number. 

Even though three different values are used, the resul- 
ting critical conditions in the form of r~= taRa -2/5 are 
almost the same as summarized in Table 1. Therefore, 
it may be stated that the simple approximation to de- 
scribe the basic temperature profile can be used for the 
stability analysis. The distributions of disturbance am- 
plitudes are illustrated in normalized form.'; in Fig. 5. 
From this figure the value of the thermal penetration 
depth influences the pattern of disturbance distribu- 
tion to a certain degree. 

In this connection, it is necessaw to carefully ex- 
amine the base temperature profiles in Fig. 2. The dif- 
ferences between the approximate profile and the ex- 
act one produce a little different distribution between 
amplitude functions. But they are negligible in predic- 
ting the critical values. This is the reason why a num- 
ber of trial functions have generated the critical condi-. 
tions with success [1,2,6]. As of now, the following 
stability criteria based on the fifth order polynomial is 
the most precise, since it is the closest to the exact 
temperature distribution: 

re- 4.36 Ra -~5 and a,: 0.29 Ra ~''s 

for p r ~ o o  (36) 

Kaviany [6] reported that the amplification theo~ 

produced the relation of r~= 18.6Ra -24 for Pr= 7 and 
r -  19.7Ra -e~s for P r ~  oc. His critical time is the time 
at which the magnitude of the disturbance grows by 
one thousand times its initial value. His results for 
Pr= 17 and the prediction for Pr --.oc are compared in 

0.0 I I 7 

8 

>. 

e,,l 

F Temperature 

0.5~-- 

1.0 

1.5 

. 4  
/ i  " 

/ /  

7 / 

7 
Velocity 

/ - "  

Integral Method (1) 7 /  
Integral Method (2) / Simulation Method 

0.0 0.2 
' i I 

0.4 0.6 

Normalized Quantities 

Jt 
-7 

018 1.01 

Fig. 5. The distributions of amplitude functions for in- 

finite Prandtl number. 
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Fig. 7. The effect of Prandtl numbers on the stability 
criteria under the assumptions of wo*=0 and 
0o* ~---0. 

Fig. 6. From this figure the present prediction is found 
more reliable, since the time period when disturban.- 
ces grow to a discernible size is required. 

The critical time predicted by equation (36) is a lit- 
tle higher than that of Choi et al. 's work [q]. They us- 
ed the modified quasi-static model that the temperature 
disturbances are confined within the thermal penetra- 
tion depth. This assumption is found quite reasonable 
from Fig. 5. Therefore this concept may be extended to 
low-Pr cases. For P r< l ,  it may be probable to confine 
both velocity and temperature disturbances within the. 
thermal penetration depth. This kind of treatment re.- 
moves mathematical complication. It is found that the; 
lower the Prandtl number is, the more stable the sys- 
tem is. Therefore the stability criteria show the trend 
as illustrated in Fig. 7. In the case of Pr . 0, the critical 
conditions are represented by 

r~ 3. 32 (Pr Ra) ~/~ ane ac - 0 .  577 (PrRa) 1.~s 

(37) 

It is clear that for a given- Rayleigh number the criti- 
cal time increases as the Prandtl number decreases. 
This means that the system becomes more stable. 

CONCLUSION 

Predicted results of the time of the onset of thermal 
convection for a horizontal fluid layer cooled from 
above have been presented. The propagation theory 
predicts very favorable critical condition.,;. Through 
comparison with existing results it is found that the 
present theory is quite reasonable. Also, it seems evi.- 
dent that the temperature disturbances are initiated 
within the thermal penetration depth. 

The results presented here complement the work 
of Choi, Yeo, Kwon and Yoo [9]. 
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NOMENCLATURE 

A2 : constant in equation (15), 6"2/r 
a : wave number 
a* : modified wave number, a6  
a,, % : coefficients in equation (29) 
D : differential operator with respect to 
g : gravitational acceleration, m/sec 
H, : constants in solutions 
h : layer thickness, m 
Pr : Prandtl number, v/x 
Ra : Rayleigh number, a~ghS/x2v 
Ra* : modified Rayleigh number, Ra~ 3 
s : variable, !;" -1 
T : temperature, K 
t : time, sec 
W : vertical component of velocity perturbation 
w : dimensionless velocity, W h / x  
w* : modified velocity, W/~ "2 

Z : vertical distance, m 
z : dimensionless vertical distance, Z/h 

Greek  Letters  
a thermal expansivity, 1 / K 
fl temporal rate in temperature rate 
6 dimensionless therntal penetration depth 
6. i  Kronecker delta 
~" modified vertical distance, z/o ~ 
0,g * temperature perturbation non-dimensional- 

ized by agh3/v~ 

00 base temperature non-dimens[onalized by 
x/~h 2 

x : thermal diffusivity, m2/sec 
v : kinematic viscosity, m2/sec 
r : t ime non-dimensionalized by , 'c/h 2 

Subscr ip t s  
c : critical state 
i : region for ~" < 1 
o : region for ~ > 1 
0 : base state 
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