
J
H
E
P
0
5
(
2
0
2
2
)
1
2
1

Published for SISSA by Springer

Received: March 3, 2022
Revised: April 14, 2022

Accepted: April 29, 2022
Published: May 18, 2022

Reheating and dark matter freeze-in in the Higgs-R2

inflation model

Shuntaro Aoki, Hyun Min Lee, Adriana G. Menkara and Kimiko Yamashita
Department of Physics, Chung-Ang University,
Seoul 06974, South Korea
E-mail: shuntaro@cau.ac.kr, hminlee@cau.ac.kr, amenkara@cau.ac.kr,
kimikoy@cau.ac.kr

Abstract: We study the post-inflationary dynamics for reheating and freeze-in dark mat-
ter in the Higgs-R2 inflation model. Taking the perturbative approach for reheating, we
determine the evolution of the temperature for radiation bath produced during reheating
and determine the maximum and reheating temperatures of the Universe. Adopting a
singlet scalar dark matter with a conformal non-minimal coupling and a vanishing Higgs-
portal coupling, we discuss the freeze-in production of dark matter both from the non-
thermal scattering during reheating and the thermal scattering after reheating. We find
that thermal scattering is dominant for dark matter production in our model due to the
high reheating temperature. The reheating temperature in our model is determined dom-
inantly by the Higgs condensate to be up to about 1014 GeV and dark matter with masses
up to about 109 GeV can be produced with a correct relic density.

Keywords: Classical Theories of Gravity, Cosmology of Theories BSM, Early Universe
Particle Physics, Particle Nature of Dark Matter

ArXiv ePrint: 2202.13063

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP05(2022)121

mailto:shuntaro@cau.ac.kr
mailto:hminlee@cau.ac.kr
mailto:amenkara@cau.ac.kr
mailto:kimikoy@cau.ac.kr
https://arxiv.org/abs/2202.13063
https://doi.org/10.1007/JHEP05(2022)121


J
H
E
P
0
5
(
2
0
2
2
)
1
2
1

Contents

1 Introduction 1

2 Higgs-R2 inflation 3
2.1 The model 3
2.2 Effective inflaton potential 4
2.3 Inflationary observables and perturbativity 6

3 Perturbative reheating 8
3.1 Boltzmann equations during reheating 8
3.2 Background field evolution after inflation 9
3.3 Decay rates of inflaton condensates 11
3.4 Analytic and numerical solutions for reheating 12

4 Freeze-in dark matter 17
4.1 A model for scalar dark matter 17
4.2 Dark matter freeze-in after reheating 18
4.3 Dark matter freeze-in during reheating 20
4.4 Dark matter abundance 23

5 Conclusions 26

A Details on thermal freeze-in 26

1 Introduction

Higgs inflation [1] has been drawing a lot of attention for recent years due to the fact that
the Higgs boson in the Standard Model (SM), which was discovered at the Large Hadron
Collider, can play a role for slow-roll inflation in the early Universe. Thus, it provides
a testing ground for inflationary scenarios by the interplay between the Higgs data at
small scales and the inflationary observables at large scales. The original proposal for
Higgs inflation, however, has a unitarity problem, because a large non-minimal coupling is
required to match the anisotropies of Cosmic Microwave Background (CMB) and it leads
to a premature violation of unitarity of order the Hubble scale during inflation [2–5]. There
are proposals to resolving the unitarity problem beyond the Higgs inflation by adding a
new degree of freedom coupled to the Higgs boson [6, 7]. Among the proposed solutions
is the ultra-violet (UV) completion of linear sigma model type [6], extending the global
symmetry of the Lagrangian in the Higgs-sigma field space. The extension of the Higgs
inflation with an R2 term has been identified as a linear sigma model [8–10], so it is amusing
to make a dual field-theory interpretation of the gravitational couplings in this context.

The Universe would have been empty after inflation unless there is a mechanism for
transferring the inflation energy to a hot thermal plasma. Thus, the period of reheating
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is necessary to make a smooth transition from inflation to hot Big Bang Universe [11–13].
However, reheating depends on the couplings between the inflaton and the SM particles,
which are completely unknown in inflation models with a singlet inflaton. It is remarkable
that if there is a delay in the completion of reheating due to small inflaton couplings, the
detailed evolution of reheating dynamics, such as the equation of state and the reheating
temperature, etc, could alter the inflationary predictions [14]. On the other hand, in Higgs
inflation and its UV complete models, the inflaton couplings to the rest of the SM particles
are fixed by the gauge symmetry of the SM and the new symmetry restoring the unitarity.
Thus, it is important to study the reheating dynamics concretely in these models and check
the consistency for inflation.

Not only hot thermal plasma with visible particles but also dark matter and dark
energy are necessary ingredients for the success of standard cosmology. There is a variety
of evidence for dark matter from galaxy rotation curves, gravitational lensing, CMB, Bullet
cluster, etc, but we don’t know the origin of dark matter in particle physics. Depending
on the interactions between dark matter and the SM particles, we can determine the dark
matter abundance at present and make a strategy for designing direct and indirect detection
experiments for dark matter. Given that there is no convincing direct evidence for dark
matter, it may be the case that dark matter is sequestered from the SM and it may interact
with the SM very feebly [15–18].

In this article, we investigate the reheating dynamics and the dark matter freeze-in
process in the extension of Higgs inflation with an R2 term. For inflation and reheating
discussion, we take the linear-sigma model frame where the conformal symmetry for gravi-
tational couplings is manifest and scalar fields have canonical kinetic terms. We introduce
a singlet scalar dark matter in our model with a near-conformal non-minimal coupling to
gravity and a vanishing small Higgs-portal coupling. There was a study on the production
of primordial black holes as dark matter in the Higgs-R2 inflation [19, 20].

Based on the perturbative analysis for reheating, we determine the evolution of the
inflaton condensates and the temperature of the Universe during reheating. Using the
results for reheating, we consider the freeze-in production of scalar dark matter by the
non-thermal inflaton scattering and the thermal scattering between SM particles and find
the parameter space for explaining the correct relic density for dark matter. We also take
into account the gravitational production of dark matter via massless graviton.

The paper is organized as follows. We begin with the setup for the Higgs inflation
model amended with an R2 term and recast it into a linear-sigma model dual Lagrangian.
We discuss the main features of inflationary predictions and the perturbativity conditions
during inflation. Next we focus on the perturbative reheating by using the Boltzmann
equations for inflaton and radiation energy densities and determine the evolution of the
temperature during reheating. We continue to introduce a singlet scalar dark matter in
our model with a general non-minimal coupling and a Higgs-portal coupling and discuss
the dark matter production during and after reheating. Finally, conclusions are drawn.
There is an appendix dealing with the details on thermal scattering rates for dark matter
production in our model.

Throughout the paper, we use the mostly plus convention (−,+,+,+) for the metric.
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2 Higgs-R2 inflation

We first introduce the setup for the Higgs-R2 inflation model and discuss the effective infla-
ton potential and its predictions for inflationary observables. We also show the constraints
on the model parameters from perturbativity and CMB measurements.

2.1 The model

Introducing the non-minimal coupling for Higgs fields in the SM and the R2 term beyond
the Einstein gravity, we begin with the corresponding Lagrangian [21–25], as follows,

L/
√
−gJ = 1

2(M2
Pl + ξĥ2)RJ −

1
2(∂µĥ)2 − λ

4 ĥ
4 + αR2

J (2.1)

where gJµν and RJ are the spacetime metric and the Ricci scalar in Jordan frame, respec-
tively, MPl = 2.4 × 1018 GeV is the reduced Planck mass, and ĥ is the Standard Model
Higgs boson in unitary gauge. We omit the Higgs mass parameter during inflation and
reheating. We note that ξ and λ are the non-minimal coupling and the quartic coupling
for the Higgs boson, respectively, and α is the coefficient of the R2 term. The Higgs-R2

model with eq. (2.1) provides a unitary completion of the original Higgs inflation up to the
Planck scale and it also explains the CMB data well.

Following the discussion in refs. [8–10, 26], we change the original frame in eq. (2.1)
to a new frame where the unitarity up to the Planck scale is manifest. To do so, we first
introduce an auxiliary field χ̂ instead of the R2 term, in the following,

L/
√
−gJ = 1

2(M2
Pl + ξĥ2 + 4αχ̂)RJ −

1
2(∂µĥ)2 − λ

4 ĥ
4 − αχ̂2. (2.2)

Then, we can check that the original Lagrangian with the R2 term in eq. (2.1) is reproduced
after χ̂ is integrated out. Next we perform a conformal transformation with following field
redefinition,1

gJµν = ∆−2gLµν , ĥ = ∆h, χ̂ = ∆2χ, (2.3)

with

∆−2 =
(

1 + σ√
6MPl

)2
, (2.4)

and the σ field being subject to the following constraint,

(
1 + σ√

6MPl

)2
+ ξ

h2

M2
Pl

+ 4α χ

M2
Pl

= 1− h2

6M2
Pl
− σ2

6M2
Pl
. (2.5)

1The new frame is called the Linear-sigma frame. As shown below, the introduction of σ-field linearize
the original Higgs inflation model in the new frame, which is analogous to the σ-field in the linear sigma
model.
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Thus, we have changed the fundamental variable from χ to σ in eq. (2.4). As a result, the
Lagrangian is given in terms of (h, σ) by

L/
√
−gL = M2

Pl
2

(
1− h2

6M2
Pl
− σ2

6M2
Pl

)
RL −

1
2 (∂µσ)2 − 1

2 (∂µh)2 − λ

4h
4

−κ4

[
σ(σ +

√
6MPl) + 3

(
ξ + 1

6

)
h2
]2
, (2.6)

with κ ≡ 1/(36α). In the new frame, σ and h conformally couples to the Ricci scalar
and their kinetic terms are canonically normalized (i.e., the field target space is flat), so
unitarity and perturbativity are manifest. It is remarkable that the running Higgs quartic
coupling is corrected by the Higgs non-minimal coupling above the sigma scalar threshold
to λeff = λ+ 9κ

(
ξ+ 1

6)2, so the stability of the electroweak vacuum can be guaranteed due
to the tree-level shift in the Higgs quartic coupling [27].

2.2 Effective inflaton potential

We discuss the inflationary prediction of the Higgs-R2 inflation model in the Einstein frame.
Making a Weyl transformation with

gLµν = Ω−2gEµν , Ω2 = 1− h2

6M2
Pl
− σ2

6M2
Pl
, (2.7)

we recast eq. (2.6) into the Einstein frame Lagrangian,

L/
√
−gE = M2

Pl
2 RE −

1
2Ω4

(
1− h2

6M2
Pl

)
(∂µσ)2 − 1

2Ω4

(
1− σ2

6M2
Pl

)
(∂µh)2

− hσ

6M2
PlΩ4∂µh∂

µσ − V, (2.8)

where

V = 1
Ω4

[
1
4κ
(
σ(σ +

√
6MPl) + 3

(
ξ + 1

6

)
h2
)2

+ 1
4λh

4
]
. (2.9)

In the following discussion, we omit “E” for the Einstein metric.
During inflation, h has a large mass much greater than the Hubble scale H [23] (see

also eq. (2.17)), so that it can be integrated out. It turns out that dV
dh = 0 leads to a

nonzero VEV of h [9], as follows,

h2 =
κσ(σ +

√
6MPl)

(
σ − 3

(
ξ + 1

6

)
(σ −

√
6MPl)

)
λ(σ −

√
6MPl)− 3κ

(
ξ + 1

6

) (
σ − 3

(
ξ + 1

6

)
(σ −

√
6MPl)

) . (2.10)

Then, inserting eq. (2.10) back to the Lagrangian (2.8), we obtain the effective Lagrangian
for σ,

Leff/
√
−g = M2

Pl
2 R− (∂µσ)2

2
(

1− σ2

6M2
Pl

)2 − Veff(σ), (2.11)
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where the effective inflaton potential is given by

Veff(σ) = 9λκM4
Plσ

2
[
λ(σ −

√
6MPl)2 + κ

(
σ − 3

(
ξ + 1

6

)
(σ −

√
6MPl)

)2
]−1

. (2.12)

In terms of the canonical field φ defined through

σ/MPl = −
√

6 tanh
(

φ√
6MPl

)
, (2.13)

we express the effective inflaton potential [9] as

Veff(φ) = 9κM4
Pl

4

(
1− e−

2φ√
6MPl

)2 [
1 + κ

4λ

(
6ξ + 1 + e

− 2φ√
6MPl

)2]−1

' VI

(
1− 2λ+ κ(3ξ + 1)(6ξ + 1)

λ+ 9κ
(
ξ + 1

6
)2 · e

− 2φ√
6MPl + · · ·

)
, (2.14)

with

VI ≡
9κλM4

Pl

4
(
λ+ 9κ

(
ξ + 1

6
)2) . (2.15)

We note that the scalar potential is very flat for φ/MPl � 1, and it unifies the R2 inflation
and the Higgs inflation: R2-like (or Higgs-like) inflation can be realized for 9κξ2 � λ (or
9κξ2 � λ).

We remark that the decoupling condition for the Higgs in eq. (2.10) takes an approxi-
mate form during inflation,

h2 ' 72κξM2
Pl

2λ+ 3κξ(6ξ + 1) e
− 2φ√

6MPl ≡ AM2
Pl e
− 2φ√

6MPl . (2.16)

So, for A > 0, the Higgs field is stabilized at a nonzero sigma-dependent background value
during inflation, and a positive squared mass for the canonically normalized Higgs boson
is obtained during inflation as

m2
h = 12ξ

(
2 + 3κξ

λ
(1 + 6ξ)

)
H2
I = 864κξ2

Aλ
H2
I , (2.17)

whereHI '
√

VI
3M2

Pl
is the Hubble scale during inflation. For R2-like (or Higgs-like) inflation,

we obtainm2
h ' 24ξH2

I (orm2
h ' 216κξ3/λH2

I ). Thus, in order to safely decouple the Higgs
field during inflation, we need to take mh � HI , requiring ξ � 1.

On the other hand, for A < 0, the Higgs field could not be stabilized at a nonzero
value, so instead we need to take h = 0 during inflation in this case. As a result, the
inflaton potential becomes the one for Starobinsky model, as follows,

Veff(φ) ' 9κM4
Pl

4

(
1− e−

2φ√
6MPl

)2
, (2.18)
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with the effective Higgs mass given by

m2
h = −12ξH2

I . (2.19)

Thus, for ξ < 0, the Higgs direction is stable during inflation. But, for ξ < 0, the graviton
kinetic term in the original Lagrangian with the R2 term in eq. (2.1) could have a wrong
sign beyond a certain Higgs field value, so we don’t consider the possibility with ξ < 0 in
this work.

2.3 Inflationary observables and perturbativity

The CMB normalization of the scalar power spectrum gives a relation in the parameters
(see ref. [9] for details),

λ+ 9κ
(
ξ + 1

6
)2

κλ
= 2.25× 1010. (2.20)

The slow-roll parameters are given by

ε = M2
Pl

2

( 1
Veff

dVeff
dφ

)2
= 1

3
(2λ+ κ(1 + 3ξ)(1 + 6ξ))2(

λ+ 9κ
(
ξ + 1

6
)2)2 e

− 4φ√
6MPl , (2.21)

η = M2
Pl

Veff

d2Veff
dφ2 = −2

3 ·
2λ+ κ(1 + 3ξ)(1 + 6ξ)

λ+ 9κ
(
ξ + 1

6
)2 e

− 2φ√
6MPl

+2κ
3 ·

(λ+ 12λξ + κ(1 + 3ξ)(1 + 6ξ)2)(
λ+ 9κ

(
ξ + 1

6
)2)2 e

− 4φ√
6MPl . (2.22)

Then, the spectral index and the tensor-to-scalar ratio are given in terms of the number of
e-folding N by

ns = 1− 6ε∗ + 2η∗

= 1− 2
N
− 9

2N2 + 3κ
N2

(
λ+ 12λξ + κ(1 + 3ξ)(1 + 6ξ)2)

(2λ+ κ(1 + 3ξ)(1 + 6ξ))2 , (2.23)

r = 16ε∗ = 12
N2 , (2.24)

where ε∗, η∗ are the slow-roll parameters evaluated at the horizon exit. The inflationary
predictions for N = 50− 60 are consistent with the Planck result [28].

In the case with non-instantaneous reheating, we get the number of efoldings required
to solve the horizon problem, as follows [14],

N = 61.1 + ∆N − ln
(
V

1/4
end
Hk

)
− 1

12 ln
(

greh
106.75

)
, (2.25)

where the contribution from the delayed reheating is given by

∆N = 1
12

(3w − 1
w + 1

)
ln
( 45Vend
π2grehT 4

reh

)
. (2.26)
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Figure 1. Consistent inflation for the parameter space in (ξ, κ). The red region shows the strong
coupling regime. The blue and green regions correspond to the Higgs-like inflation (with 9κξ2 >

λ) and the R2-like inflation (with 9κξ2 < λ), respectively. The orange line satisfies the CMB
normalization (2.20). We set λ = 0.01.

Here, Vend is the inflation energy at the end of inflation, Hk is the Hubble parameter
evaluated at the horizon exit for the Planck pivot scale, k = 0.05 Mpc−1, and greh, Treh
are the number of massless degrees of freedom and the reheating temperature at reheating
completion, respectively, and w is the averaged equation of state during reheating.

Inflation ends when ε = 1. Then, we read off the inflaton field value at the end of
inflation, φe, as

φe/MPl =
√

6
4 log

(2λ+ κ(1 + 3ξ)(1 + 6ξ))2

3
(
λ+ 9κ

(
ξ + 1

6
)2)2

 . (2.27)

In either R2-like or Higgs-like inflations, the argument of the logarithm is roughly estimated
as 4/3, which leads to

φe/MPl ' 0.18, (2.28)

or σe/MPl ' −0.18. Then, the inflaton field value at the end of inflation sets the initial
condition for inflaton condensates at the onset of oscillations.

From the Lagrangian (2.6) in the linear sigma-model frame, it is obvious that there
is no unitarity violation up to the Planck scale, provided that the following perturbativity
conditions are satisfied:

κ . 1, λeff ≡ λ+ 9κ
(
ξ + 1

6

)2
. 1, 6κ

(
ξ + 1

6

)
. 1. (2.29)

It is remarkable that the large non-minimal coupling ξ in the original Higgs inflation ac-
companies with a new parameter κ (the inverse coefficient of R2-term) and their product
could be small or order one. Thus, now we consider the constraints on parameters from the
perturbativity conditions (2.29) and the CMB constraint (2.20). In figure 1, we show the
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allowed parameter space of (ξ, κ) with λ = 0.01 fixed.2 The red region does not satisfy the
perturbativity conditions, which means the strong coupling regime. The perturbative re-
gions are further divided by Higgs-like (blue) and R2-like (green) situations. The orange line
corresponds to the CMB constraint (2.20). In the following sections, we will discuss some
phenomenological aspects of the Higgs-R2 model while keeping these conditions in mind.

3 Perturbative reheating

We consider the perturbative reheating in the Higgs-R2 model. To this end, we solve the
Boltzmann equations for the energy densities for inflaton and radiation in the presence
of inflaton decay rates, and obtain the time evolution of the inflaton condensates and the
radiation energy density during reheating. Using the numerical results, we identify the
maximum and reheating temperatures of the Universe during reheating. Our approach for
reheating can be compared to the oscillation condensate with dissipation in non-equilibrium
thermodynamics [29, 30].

3.1 Boltzmann equations during reheating

In order to discuss the reheating process, we consider the system of dynamical equations,
composed of the Boltzmann equations for the inflaton condensates and the radiation energy
as well as the Friedmann equation, as follows,

σ̈ + σ

3Ω2M2
Pl
σ̇2 + h

3Ω2M2
Pl
σ̇ḣ+ (3H + Γσ0)σ̇

+ 2σ
3Ω2M2

Pl
U + 1

Ω2

(
1− σ2

6M2
Pl

)
Uσ −

hσ

6Ω2M2
Pl
Uh = 0, (3.1)

ḧ+ h

3Ω2M2
Pl
ḣ2 + σ

3Ω2M2
Pl
σ̇ḣ+ (3H + Γhosc)ḣ

+ 2h
3Ω2M2

Pl
U + 1

Ω2

(
1− h2

6M2
Pl

)
Uh −

hσ

6Ω2M2
Pl
Uσ = 0, (3.2)

ρ̇r + 4Hρr −
Γσ0

Ω4

[(
1− h2

6M2
Pl

)
σ̇2 + hσ

6M2
Pl
σ̇ḣ

]

−Γhosc

Ω4

[(
1− σ2

6M2
Pl

)
ḣ2 + hσ

6M2
Pl
σ̇ḣ

]
= 0, (3.3)

3H2M2
Pl = ρσ+h + ρr (3.4)

where U ≡ V Ω4 and the subscripts in Uσ, etc, denote the derivatives with respect to
corresponding fields. Here, ρσ+h is the total energy density for σ and h, given by

ρσ+h ≡
1

2Ω4

[(
1− h2

6M2
Pl

)
σ̇2 +

(
1− σ2

6M2
Pl

)
ḣ2 + hσ

3M2
Pl
σ̇ḣ+ 2U

]
, (3.5)

2The value of the Higgs quartic coupling λ at inflation scales depends on the SM parameters, such as
top quark mass and Higgs mass, through the renormalization group equations. But, for concreteness, we
will choose λ = 0.01 at inflation in the current section and in the following discussion on reheating.
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ρr is a radiation energy density, and Γσ0 and Γhosc are the decay rates of the sigma and
Higgs condensates, which will be derived shortly.

We consider the equation of state parameter w as an important quantity to see the
evolution of the Universe after inflation,

w = pσ+h + pr
ρσ+h + ρr

= pσ+h + ρr/3
ρσ+h + ρr

, (3.6)

where pσ+h is the pressure for the inflaton condensates,

pσ+h ≡
1

2Ω4

[(
1− h2

6M2
Pl

)
σ̇2 +

(
1− σ2

6M2
Pl

)
ḣ2 + hσ

3M2
Pl
σ̇ḣ− 2U

]
, (3.7)

and pr = ρr/3 is the pressure for the radiation.

3.2 Background field evolution after inflation

After inflation, the sigma field starts to oscillate around the potential minimum. In the
mean time, the Higgs field is released from the initial background field value set by
eq. (2.10), and it also starts to oscillate between the broken and symmetric phases of
electroweak symmetry, depending on the sign of σ, and it contains a rapidly oscillating
part [31–35].

We denote the background evolution of σ by σ0 and divide the background evolution of
h into a slowly oscillating part h0 related to σ0 and a rapidly oscillating part hosc [34, 36],
as follows,

σ(t) = σ0, (3.8)
h(t) = h0(σ0) + hosc(t), (3.9)

where the inflation condition in eq. (2.10) relates the Higgs condensate to the sigma con-
densate by

(h0(σ0))2 =
κσ0(σ0 +

√
6MPl)

(
σ0 − 3ξ̃(σ0 −

√
6MPl)

)
λ(σ0 −

√
6MPl)− 3κξ̃

(
σ0 − 3ξ̃(σ0 −

√
6MPl)

)
' − 3

√
6κξ̃

λ+ 9κξ̃2MPlσ0, (3.10)

for σ0 < 0, and h0 = 0 for σ0 > 0. For σ0 < 0, we used |σ0|/MPl � 1. Henceforth, we take
a simpler notation for the Higgs non-minimal coupling to

ξ̃ ≡ ξ + 1/6. (3.11)

It turns out that the above relation in eq. (3.10) is a good approximation during reheating
for ξ̃ & 100. The behavior can be understood from the cubic coupling of type, κξ̃σh2, in
the scalar potential (2.9), because the negative mass term for h with σ < 0 develops the
non-zero VEV. On the other hand, when σ > 0, we find that the h0 part of the Higgs
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Figure 2. Time evolution of inflaton condensates, σ and h, during reheating, in red and black
lines, respectively. We took ξ = 4000 (100) on left (right) plots.

condensate goes to zero, which is now a stable minimum. We confirm this behavior by
solving the equations of motion numerically as below.

Expanding the Lagrangian around |σ| = |σ0| � MPl and h = h0, we can read off the
masses for σ0 and hosc as

m2
σ =

3κM2
Pl ≡ m2

σ,+ , σ0 > 0,
3κλM2

Pl
λ+9κξ̃2 ≡ m2

σ,− , σ0 < 0
(3.12)

and

m2
h =

3
√

6κξ̃MPlσ0 ≡ m2
h,+ , σ0 > 0,

6
√

6κξ̃(−MPlσ0) ≡ m2
h,− , σ0 < 0,

(3.13)

respectively. Thus, the masses of the inflaton condensates are time-dependent, due to the
interactions between them. We note that the mass for the sigma condensate for σ0 < 0 in
eq. (3.12) and the masses for the Higgs condensate in eq. (3.13) are valid for ξ̃|σ0|/MPl � 1.
This is true if the inflaton field value is not far from the one at the end of inflation because
ξ̃|σe|/MPl ' 20−700� 1 for ξ̃ = 100−4000. Then, the masses for the inflaton condensates
in eqs. (3.12) and (3.13) are good approximations for the perturbative reheating. As will
be shown in the next subsection, the Higgs condensate with a relatively large positive σ0
dominates the perturbative reheating, so we focus on the regime.

In figure 2, we depict the numerical solution to eqs. (3.1)–(3.4) for the background
evolution of σ and h, with the initial condition set by eq. (2.28). We set Γσ0 = Γh0 =
Γhosc = 0 for the early time after inflation. Thus, we find that the time evolution of the
Higgs condensate is well approximated by eq. (3.10) for a large ξ̃, as seen in figure 2. But,
the deviation of the Higgs condensate from h0(σ0) has a large oscillation frequency for
ξ̃ & 100. The rapidly oscillating part hosc of the Higgs condensate appears prominent for
σ0 > 0 when the Higgs background h0 becomes zero. It turns out that hosc is the dominant
source for reheating due to the rapid oscillation and the large top Yukawa coupling, as will
be discussed shortly.
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3.3 Decay rates of inflaton condensates

We derive the decay rates of the sigma and Higgs condensates. For the analytic approach,
we approximate the inflaton condensates to σ0(t) ∼ sin(mσt) and hosc(t) ∼ sin(mht) with
constant masses given in eqs. (3.12) and (3.13), and neglect the expansion of the Uni-
verse for the decay rates. However, we need to go beyond such approximations when the
dynamics of σ and h becomes nonlinear and far from the harmonic oscillator.3

We first divide σ and h into the inflaton condensates and the quantum fluctuation
parts, δσ and δh, as follows,

σ = σ0(t) + δσ, (3.14)
h = h0(σ0) + hosc(t) + δh. (3.15)

Decay rates of the sigma condensate. Expanding the Lagrangian (2.8) by eqs. (3.14)
and (3.15), we find the dominant terms for the σ0 decay as

L ⊃ cσ0(δh)2 (3.16)

with

c =

−
3
2
√

6κξ̃MPl , σ0 > 0,
3
√

6κξ̃MPl , σ0 < 0.
(3.17)

σ0 couples only to the other particles in the Standard Model through the conformal factors,
∆ and Ω2, and thus suppressed by the Planck scale. Applying the standard formula for
the decay rate of the inflaton condensate [37–39], we obtain

Γσ0→δhδh =


9
√

3
16πMPlκ

3/2ξ̃2
(
1− 4

√
6ξ̃ σ0

MPl

)1/2
, σ0 > 0,

9
√

3
4π MPlκ

3/2ξ̃2
√

λeff
λ

(
1 + 8

√
6ξ̃ λeff

λ
σ0
MPl

)1/2
, σ0 < 0.

(3.18)

In either cases, σ0 > 0 or σ0 < 0, for a sizable non-minimal coupling with ξ̃ & 1, the
σ0 → δhδh decay mode is kinematically blocked in the early stage of reheating, but it is
limited for |σ0|/MP . 0.1ξ̃−1 after some oscillations, being subdominant for reheating.

Decay rates of the Higgs condensate. As discussed in the previous section, the Higgs
condensate is composed of the slowly oscillating part h0 related to σ0 and the relatively
rapidly oscillating part hosc.

First, regarding the decays of hosc that starts appearing for σ0 > 0, we focus on the
decay mode into a top quark pair through the Yukawa coupling yt. From the following
interaction for the Higgs condensate,

L ⊃ − yt√
2
ht̄t = − yt√

2
(h0(σ0) + hosc)t̄t, (3.19)

3A more rigorous treatment has been made in ref. [34].
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we identify the effective top quark mass as

mt = yt

√
3
√

6κ
2λeff

ξ̃(−MPlσ0), (3.20)

for σ0 < 0, but mt = 0 for σ0 > 0. From eq. (3.19), we also obtain the decay rate for
hosc → tt̄ as

Γhosc→tt̄ =


3y2
t

16πMPl
(
3
√

6κξ̃ σ0
MPl

)1/2
, σ0 > 0,

3y2
t

16πMPl
(
−6
√

6κξ̃ σ0
MPl

)1/2 (
1− y2

t
λeff

)3/2
, σ0 < 0.

(3.21)

Here, for σ0 < 0, the hosc → tt̄ decay mode is kinematically allowed, only if the non-minimal
coupling ξ̃ is large enough, ξ̃ & 5000 for yt = 0.5 at inflation scale. However, for σ0 > 0,
the hosc → tt̄ decay mode is always open [34], thus it becomes a dominant decay mode for
the Higgs condensate. Similarly, the other decay modes of hosc such as hosc →WW,ZZ, bb̄

can be open (for large ξ̃ in the case of gauge bosons) [34], but they are subdominant as
compared to hosc → tt̄.

On the other hand, the slowly oscillating part of the Higgs condensate, h0, has a
nonzero amplitude only for σ0 < 0, with a characteristic frequency of order mσ. Thus, the
decay mode for h0 → tt̄ is open for |σ0|/MP . 0.1(λ/y2

t )ξ̃−1, with the corresponding decay
rate given by Γh0→tt̄ ∼ y2

tmσ. In this case, h0 → tt̄ is kinematically blocked in the wider
field range of σ0 for λ� y2

t than for σ0 → δh δh.
To conclude, for most of the field range of the sigma condensate with ξ̃|σ0|/MPl & 1,

the decay modes for the sigma condensate and the h0 part of the Higgs condensate are
kinematically blocked, while the hosc part has a larger decay rate from hosc → tt̄ for σ0 > 0
and it becomes a dominant source for reheating.

3.4 Analytic and numerical solutions for reheating

In this subsection, we solve the Boltzmann equations with the decay rates derived in the
previous subsection, and study the evolution of inflaton and radiation energy densities, the
reheating and maximum temperatures, and the equation of state.

Analytic solutions. We first derive the analytical solutions for energy densities during
reheating. Our system contains two inflatons, σ and h, which makes it difficult to follow
the dynamics analytically.4 As mentioned in section 3.2, the evolution of both inflaton
condensates are intertwined through nonlinear interactions and affected by anharmonic
terms. But, in order to capture the essence of the reheating dynamics, we split the total
energy density and pressure into ρσ+h ' ρσ + ρh and pσ+h ' pσ + ph, respectively, and
treat them in the separate Boltzmann equations. Here, we note that

ρσ = 1
2 σ̇

2 + 1
2m

2
σ,+σ

2, ρh = 1
2 ḣ

2 + 1
2m

2
h,+h

2 + λeff
4 h4, (3.22)

pσ = 1
2 σ̇

2 − 1
2m

2
σ,+σ

2, ph = 1
2 ḣ

2 − 1
2m

2
h,+h

2 − λeff
4 h4, (3.23)

4The reheating analysis in multifield inflation model has been discussed in refs. [40–56].
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where m2
σ,+ and m2

h,+ are given by

m2
σ,+ = 3κM2

Pl, (3.24)
m2
h,+ = 3

√
6κξ̃MPlσ0. (3.25)

Here, the masses for the inflaton condensates in eqs. (3.24) and (3.25) are taken from
eqs. (3.12) and (3.13) for σ0 > 0. But, when σ0 becomes negative during the oscillation,
the Higgs condensates becomes tachyonic, developing a nonzero VEV very quickly and
switching to m2

σ,−and m2
h−

for σ0 < 0 as shown in eqs. (3.12) and (3.13).
Using ρσ,h and pσ,h, we recast the set of Boltzmann equations, eqs. (3.1)–(3.4), into

the following,

ρ̇σ + 3H(ρσ + pσ) + Γσ(ρσ + pσ) = 0, (3.26)
ρ̇h + 3H(ρh + ph) + Γh(ρh + ph) = 0, (3.27)

ρ̇r + 4Hρr − Γσ(ρσ + pσ)− Γh(ρh + ph) = 0, (3.28)
3M2

PlH
2 = ρσ + ρh + ρr (3.29)

where we omitted the higher order terms suppressed by the Planck scale.
Before going into the details on reheating, we comment on the initial energy densities at

the onset of inflaton oscillations. At the end of inflation with ε = 1, we recall σe ' −0.18MPl
and he is given by eq. (3.10) with σ = σe. Thus, we have the inflaton condensates as
σ̇2
e = 1

2m
2
σ,−σ

2
e and ḣ2

e ' h2
e ·

σ̇2
e

4σ2
e

= 1
8m

2
σ,−h

2
e at the end of inflation. Then, we find the sum

of the energy density and pressure at the end of inflation:

ρσ + pσ '
1
2m

2
σ,−σ

2
e , (3.30)

ρh + ph '
1
8m

2
σ,−h

2
e. (3.31)

with m2
σ,− = 3λκ

λeff
M2

Pl. Here, we note that the ratio of the inflatons at the end of inflation
is given by

h2
e

σ2
e

' 3
√

6κξ̃
0.18λeff

. (3.32)

In the perturbative regime satisfying the CMB normalization, we have κξ̃ . 0.02λeff , for
which σe & he, so ρσ + pσ & ρh + ph at the onset of the inflaton oscillation. But, as
discussed in the previous subsection, in most of the field values of σ0, the decays of the
inflaton condensates are kinematically blocked, due to the large effective masses of the
decay products, so they are not efficient for reheating.

Nonetheless, for σ0 > 0, the hosc part of the Higgs condensate starts appearing and
always decays by hosc → tt̄ with a large decay width as discussed in the previous subsection.
Taking hosc(t) = A cos(mh,−t) and an approximate conservation of the Higgs energy density
by ρh ∼ m2

σ,−h
2
e ∼ A2m2

h,−, we obtain the initial amplitude for hosc as A ∼ (mσ,−/mh,−)he.
Thus, even if the hosc part has a small amplitude for mh,− � mσ,−, it can reheat the
Universe efficiently with the initial Higgs energy at the end of inflation.
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We now discuss the approximate solutions for the energy densities during reheating.
Assuming that the average of each pressure vanishes during reheating, namely, pσ = ph = 0,
and neglecting Γσ and Γh in eqs. (3.26) and (3.27), we obtain

ρσ = ρσ,end

(
a

aend

)−3
, ρh = ρh,end

(
a

aend

)−3
(3.33)

where a is the scale factor, and the subscript “end” means that the quantities are evaluated
at the end of inflation. Substituting eq. (3.33) into eq. (3.28) and now including the decay
rates for the inflaton condensates, we can solve ρr as a function of a as

ρr = 2
√

3
5 MPl

Γσρσ,end + Γhρh,end√
ρend

((
a

aend

)− 3
2
−
(

a

aend

)−4
)
, (3.34)

where ρend ≡ ρσ,end + ρh,end is the total energy density of inflatons at the end of inflation
and ρr = π2greh

30 T 4.
Defining the point of reheating completion at areh by ρσ(areh) + ρh(areh) = ρr(areh),

we can determine areh by(
areh
aend

)3
= 25

12
ρ3

end
M2

Pl (Γσρσ,end + Γhρh,end)2 , (3.35)

where we used areh � aend. Then, the reheating temperature ρr(areh) = π2greh
30 T 4

reh can be
expressed as

T 4
reh = 72M2

Pl
5π2greh

(
Γσρσ,end + Γhρh,end
ρσ,end + ρh,end

)2

. (3.36)

As the radiation energy from eq. (3.34) is maximized at amax = (8/3)2/5 aend, we can
obtain the analytic expression for the maximum temperature Tmax from

T 4
max = 12

√
3

π2greh

(3
8

) 3
5
MPl

Γσρσ,end + Γhρh,end√
ρend

. (3.37)

The above results are a two-field generalization of the previous results [57–61].

Numerical solutions. We are now in a position to present the results for the numerical
solutions for the inflaton condensates and the radiation plasma produced during reheating.
We choose different parameter sets with the initial condition given by eq. (2.28). The
decay rates of the inflaton condensates depend on the sign of σ0, which is included by the
step function. In figure 3, we show the numerical results for the time evolution of the
inflaton energy density, ρσ+h (black), and the radiation energy density, ρr (orange), for
different values of the Higgs non-minimal coupling, ξ = 4000, 1000, 500, 100, from top to
bottom panels. Another parameter κ (which is the inverse coefficient of R2-term) is chosen
appropriately to satisfy eq. (2.20) with λ = 0.01. The blue dashed line denotes the total
energy density ρσ+h + ρr. The reheating completes when ρσ+h = ρr. As can be seen from
all the plots in figure 3, the reheating completion is delayed as ξ becomes smaller.
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Figure 3. Time evolution of the energy densities during reheating. Inflaton energy density, ρφ ≡
ρσ+h, the radiation energy density, ρr, and the total energy density, ρσ+h + ρr, are shown in black,
orange and blue dashed lines, respectively. We chose ξ = 4000, 1000, 500, 100, for top left, top right,
down left, and down right plots, respectively.

We assume the instantaneous thermalization for radiation and read off the time evo-
lution of temperature just from T =

( 30
π2greh

ρr
)1/4 with greh = 106.75 during reheating.

Then, in figure 4, we depict the reheating temperature Treh and the maximum temperature
Tmax for different choices of the Higgs non-minimal coupling, ξ = 4000, 1000, 500, 100, from
top to bottom panels. It turns out that the difference between Treh and Tmax is not so
significant, not being so sensitive to the change of ξ. As a result, for 100 ≤ ξ ≤ 4000, we
find that the reheating temperature is given by 2.6 × 1013 GeV ≤ Treh ≤ 2.5 × 1014 GeV,
whereas the maximum temperature varies by 5.8× 1013 GeV ≤ Tmax ≤ 3.6× 1014 GeV.

In figure 5, we also show the numerical results for the time evolution of w during reheat-
ing for different values of the Higgs non-minimal coupling, ξ = 4000, 1000, 500, 100, from
top to bottom panels. Then, we find that the average value of w can be well approximated
as 〈w〉 = 0 (matter-like) until the reheating completes, as denoted in blue dashed line.

Using our numerical results for the reheating temperature Treh and the averaged equa-
tion of state, 〈w〉 = 0, and the general formula for the number of efoldings in eq. (2.25),
we obtain the number of efoldings for the pivot scale, k = 0.05 Mpc−1, to be in the follow-
ing range,

N = 53.2− 54.0, (3.38)

for Treh = 2.6×1013−2.5×1014 GeV. Then, from eq. (2.23), we can determine the spectral
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Figure 4. Reheating temperature Treh and maximum temperature Tmax as a function of the Higgs
non-minimal coupling ξ, in red and blue lines, respectively.

Figure 5. Time evolution of the equation of state w during reheating. The blue dashed
line denotes the time at reheating completion. We took the Higgs non-minimal coupling to
ξ = 4000, 1000, 500, 100, for top left, top right, down left, and down right plots, respectively.

index and the tensor-to-scalar ratio as

ns = 0.9608− 0.9614, (3.39)
r = 0.0041− 0.0042. (3.40)

Here, we took Vend ' VI ' 3M2
PlH

2
k . Then, our above results are consistent with the Planck

2018 data for the spectral index, ns = 0.9670± 0.0037 [28], and the Planck/BICEP/Keck
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limit on the tensor-to-scalar ratio at 95% CL, r < 0.036 [62]. We find that the delayed
reheating gives rise to a correction to the number of efoldings by −∆N = 0.88−1.6, which
amounts to −∆ns = 0.00064− 0.0012.

4 Freeze-in dark matter

In this section, we introduce a singlet scalar dark matter (DM) in the Higgs-R2 inflation
model and study the dark matter production from freeze-in processes during and after
reheating.

4.1 A model for scalar dark matter

We extend the Higgs-R2 inflation model by adding a scalar dark matter X̂ in the Jordan
frame Lagrangian,

L/
√
−gJ = 1

2(M2
Pl + ξĥ2 + ηX̂2)RJ −

1
2(∂µĥ)2 − 1

2(∂µX̂)2 − Ṽ (ĥ, X̂) + αR2
J + LSM

= 1
2(M2

Pl + ξĥ2 + ηX̂2 + 4αχ̂)RJ −
1
2(∂µĥ)2− 1

2(∂µX̂)2 − Ṽ (ĥ, X̂)− αχ̂2+ LSM,

(4.1)

where we recasted the R2 term in terms of the auxiliary field χ̂ in the second line. Here, η
is a non-minimal coupling for X̂, and Ṽ is the scalar potential for ĥ and X̂, respecting the
Z2-symmetry for dark matter, given by

Ṽ (ĥ, X̂) = λ

4 ĥ
4 + m2

X

2 X̂2 + λX
4 X̂4 + λhX

4 ĥ2X̂2, (4.2)

and LSM contains the remaining part of the Standard Model.
Making a conformal transformation and field redefinitions as in the previous section,

gJµν = (∆Ω)−2gEµν , ĥ = ∆h, χ̂ = ∆2χ X̂ = ∆X, (4.3)

with

∆−2 ≡
(

1 + σ√
6MPl

)2
, (4.4)(

1 + σ√
6MPl

)2
+ ξ

h2

M2
Pl

+ η
X2

M2
Pl

+ 4α χ

M2
Pl

= 1− h2

6M2
Pl
− X2

6M2
Pl
− σ2

6M2
Pl
, (4.5)

Ω2 = 1− h2

6M2
Pl
− X2

6M2
Pl
− σ2

6M2
Pl
, (4.6)

we obtain the following Lagrangian in Einstein frame,

L/
√
−gE = M2

Pl
2 RE −

1
2Ω4

(
1− h2

6M2
Pl
− X2

6M2
Pl

)
(∂µσ)2 − 1

2Ω4

(
1− σ2

6M2
Pl
− X2

6M2
Pl

)
(∂µh)2

− 1
2Ω4

(
1− σ2

6M2
Pl
− h2

6M2
Pl

)
(∂µX)2 − hX

6M2
PlΩ4∂µh∂

µX − hσ

6M2
PlΩ4∂µh∂

µσ

− Xσ

6M2
PlΩ4∂µX∂

µσ − V + 1
(Ω∆)4LSM, (4.7)
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where the full scalar potential V is given by

V = 1
Ω4

[
1
4κ
(
σ(σ +

√
6MPl) + 3ξ̃h2 + 3η̃X2

)2

+ λ

4h
4 + m2

X∆−2

2 X2 + λX
4 X4 + λhX

4 h2X2
]
. (4.8)

Here we introduced the notation,

η̃ ≡ η + 1
6 . (4.9)

Then, η̃ = 0 corresponds to the conformal gravity coupling for dark matter. From the
Lagrangian (4.7) with eq. (4.8), we find that the scalar dark matter X couples feebly to
σ and h with gravitational interactions, for conformality, |η̃| � 1, and a vanishing Higgs-
portal coupling, |λhX | � 1.

4.2 Dark matter freeze-in after reheating

Dark matter can be produced in the periods of reheating and post-reheating. The Universe
evolves differently in each period, so we consider the freeze-in production of dark matter in
both cases separately in the following. Also, there are two kinds of production mechanisms
by the SM radiation (thermal production [61, 63–67]) and the inflaton condensates (non-
thermal production [60, 61, 64, 68–72]).

In this subsection, we first compute the DM abundance produced after reheating. In
this case, reheating is complete and the Universe is dominated by the SM radiation, so
only the thermal production for dark matter is important.

When dark matter is decoupled from the SM plasma, the DM number density nX is
governed by the following Boltzmann equation with the production reaction rate [15],

ṅX + 3HnX = R(T ), (4.10)

where R(T ) is the reaction rate for thermal scattering. For the thermal production i1(p1)+
i2(p2) → X(p3) + X(p4) with the amplitude |M|2i1+i2→X+X , the reaction rate is given
by [15, 73]

R = T

211π6

∫ ∞
4m2

X

ds dΩK1

(√
s

T

)√
s− 4m2

X |Mi1+i2→X+X |2, (4.11)

where i1,2 collectively denote the SM radiation, dΩ ≡ 2πd cos θ13 is the solid angle of
momenta formed by p1 and p3, and K1(z) is the first modified Bessel function of the 2nd
kind. The overbar in the amplitude means that the symmetric factor of the initial and
final states are included.

Using T ∝ a−1 (hence Ṫ = −HT ) and H =
√

grehπ2

90
T 2

MPl
after reheating, we can rewrite

the Boltzmann equation (4.10) as

dY

dT
= − 1

HT 4R(T ) = −
√

90
π2greh

MPl
T 6 R(T ), (4.12)

where we defined the DM abundance by Y ≡ nXT−3.
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Thermal production from the contact terms. After reheating, the inflatons (σ and
h) have stopped oscillation and settled down to the origin. Thus, neglecting VEVs σ0 and h0
and denoting the quantum fluctuations δσ, δh, and δX, simply by σ, h, and X, respectively,
we obtain the following type of interactions between DM and the other particles:

LX/
√
−g = − X2

12M2
Pl

(∂µσ)2 − X2

12M2
Pl

(∂µh)2 − h2

12M2
Pl

(∂µX)2

− σ2

12M2
Pl

(∂µX)2 − Xσ

6M2
Pl
∂µX∂

µσ − hX

6M2
Pl
∂µh∂

µX

+cσXXσX2 + cσσXXσ
2X2 + chhXXh

2X2 + X2

12M2
Pl
gµνT SM

µν , (4.13)

where

cσXX = − m2
X√

6MPl
− 3

2
√

6κη̃MPl, cσσXX = − m2
X

4M2
Pl
− 1

2κ(3η̃ + 1),

chhXX = − m2
X

6M2
Pl
− 9

2κξ̃η̃ −
λhX

4 , (4.14)

and T SM
µν ≡ − 2√

−g
δ(
√
−gLSM )
δgµν is an energy-momentum tensor of the SM particles with the

Higgs contribution being extracted.5 We note that the dark matter couplings coming from
gµνT SM

µν vanish in our case because all the SM fermions and gauge bosons are massless
during reheating. Therefore, there is no direct coupling between DM and the SM particles
at tree level,6 except for h.

Since the reheating is complete at this stage, we only need to consider the thermal
production from the SM plasma including h in radiation components (hence we set mh =
0). Only the Higgs field in the SM couples directly to DM via the derivative coupling
and the mixing quartic coupling in eq. (4.13), resulting in the scattering amplitude for
h+ h→ X +X, in the following,

Mh+h→X+X = −s+ 2m2
X

6M2
Pl
− 18κη̃ξ̃ − λhX , (4.15)

where s is the center of mass energy.

Thermal production from the graviton exchanges. Apart from the contact in-
teractions for DM, all the SM particles can interact with DM through graviton ex-
changes [71, 72, 77–83]. Expanding the metric around flat space gµν ' ηµν + 2hµν/MPl
and ignoring mixing quartic terms and higher order terms, we find that

L ⊃ 1
MPl

hµν
(
T SM
µν + T hµν + T σµν + TXµν

)
, (4.16)

5In addition to the above interactions, there exist DM self-interactions such as X4 and X2(∂µX)2, but
they are irrelevant for the following discussion.

6There are nonzero effective couplings between DM and SM gauge bosons by trace anomaly, although
they are suppressed by the loop factor [74, 75].
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with

T φµν = ∂µφ∂νφ−
1
2ηµνη

ρσ∂ρφ∂σφ−
1
2ηµνm

2
φφ

2, (φ = h, σ,X). (4.17)

Based on the interactions in eq. (4.16), the scalar dark matter X can be produced from
the SM plasma. We obtain the scattering amplitude for h + h → X + X with graviton
exchanges by

MG
h+h→X+X = − 1

M2
Pl

(t−m2
X)(s+ t−m2

X)
s

, (4.18)

where t = s
2

(√
1− 4m2

X
s cos θ13 − 1

)
+m2

X is another Mandelstam variable. Then, together
with eq. (4.15), the total squared amplitude for h+ h→ X +X is given by

|Mtotal
h+h→X+X |2 =

(
s+ 2m2

X

6M2
Pl

+ 18κη̃ξ̃ + λhX + (t−m2
X)(s+ t−m2

X)
sM2

Pl

)2

. (4.19)

Similarly, the contributions from the other SM particles with graviton exchanges are the
following,

|MG
f+f→X+X |2 = −1

2M4
Pls

2

(
s+ 2t− 2m2

X

)2
((
t−m2

X

)2
+ st

)
, (4.20)

|MG
V+V→X+X |2 = 2

M4
Pls

2

(
m4
X − 2m2

Xt+ t(s+ t)
)2
. (4.21)

The next job to do is to calculate the reaction rate R(T ) from eq. (4.11) with
eqs. (4.19), (4.20) and (4.21), and perform the integration of the Boltzmann equation (4.12)
based on the R(T ). We leave some calculation details for appendix A, and show the results
only. After integrating eq. (4.12) from Treh to T∗ with T∗ � mX � Treh, we find that the
asymptotic value of Y (T∗) is fixed independently of T∗,

Y (T∗) ' Y (Treh) +
√

10
20480π4g

1/2
reh

4m4
X + 45M4

Pl

(
λhX + 18κη̃ξ̃

)2

mXM3
Pl

+ 209
√

10
240π6g

1/2
reh

T 3
reh
M3

Pl
(4.22)

where greh is treated as constant during the integration. The second (third) term on
the right-hand side shows the IR (UV) freeze-in. We note that the DM abundance at
the reheating temperature, Y (Treh), is to be determined by the initial condition and the
dynamics during reheating, which we will discuss below.

4.3 Dark matter freeze-in during reheating

Next we discuss the DM production during reheating for determining Y (Treh) in eq. (4.22).
During reheating, the inflaton energy ρσ+h ' ρσ+ρh dominates the Universe, and therefore,
the Universe experiences the matter-like epoch with w = 0 (see figure 5).

The temperature T and the scale factor a follow the non-trivial relation (3.34). For the
DM production during reheating, in general, we need to take into account the production
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process not only from the SM radiation (via thermal scattering) but also the inflation
condensate (via non-thermal scattering). In our case, both sigma and Higgs fields are
responsible for the non-thermal production, while the SM radiation is for the thermal
production. Thus, we can divide the total DM abundance into thermal and non-thermal
contributions, as follows,

Y (Treh) = Ythermal(Treh) + Ynon−thermal(Treh). (4.23)

Thermal production from the SM plasma. We first estimate the thermal production
for Ythermal(Treh). In this case, all the SM particles except for the Higgs contribute to the
processes with graviton exchanges and thus only eqs. (4.20) and (4.21) are relevant. Using
T ∝ a−3/8 (hence Ṫ = −3

8HT ) and H =
√

π2g∗
90

T 4

T 2
reh

, the Boltzmann equation (4.10) can
be rewritten as

d

dT
(nXT−8) = − 8

3HT 9R(T ) = −8
3

√
90

π2greh

MPlT
2
reh

T 13 R(T ). (4.24)

Integrating the above equation from Treh to Tmax and taking the limit ofmX � Treh � Tmax
(see appendix A for details), we obtain

Ythermal(Treh) ' 69
√

10
40π6g

1/2
reh

T 3
reh
M3

Pl
. (4.25)

Non-thermal production from inflaton condensates. Next we move to the non-
thermal production for Ynon−thermal(Treh). In this case, it is more convenient to use a as
the variable to follow the time evolution, instead of T [72]. Then, we can rewrite the
Boltzmann equation (4.10) as

d

da
(nXa3) = a2R(a)

H
'
√

3
ρend

MPla
2
(

a

aend

)3/2
R(a), (4.26)

where we used 3M2
PlH

2 ' ρσ + ρh for inflaton domination era.
For the non-thermal production with the inflaton condensates, the reaction rate can

be written [70, 72] as

R = 1
8π

∞∑
n=1
|Mn|2

√
1−

4m2
X,eff

n2ω2 , (4.27)

where Mn is the transition amplitude for the inflaton condensate with a Fourier mode
n and a frequency ω to the two-particle final state. We note that only the n = 1 mode
contributes to the reaction rate when the inflaton potential during reheating is quadratic.
Here, m2

X,eff is the effective DM mass during reheating, which can be different from the
bare mass m2

X in eq. (4.2).
In contrast to the case for deriving the DM interactions after reheating in eq. (4.13),

we now need to keep the VEVs of the inflatons (σ0 and hosc) during reheating. Then,
taking a conformal gravity coupling for dark matter, η̃ = 0, and λhX = 0, we find that
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the dominant interactions for dark matter come from both the non-derivative couplings
given by

L ⊃

−
κ
2σ

2
0X

2 , σ0 > 0,
−κ

2
λ

λ+9κξ̃2σ
2
0X

2 , σ0 < 0,
(4.28)

and the derivative couplings given by

L ⊃ − 1
12M2

Pl
X2(∂µσ0)− 1

6M2
Pl
Xσ∂µX∂

µσ0 −
1

12M2
Pl
σ2

0(∂µX), . (4.29)

These contact interaction terms contribute to the scattering process, σ0 + σ0 → X + X,
with the oscillating background σ0. In eq. (4.28), the resulting DM interactions do not
differ much for σ0 > 0 and σ0 < 0 if ξ̃ is relatively small. Here, the effective mass of DM
can be taken to m2

X,eff = κσ2
0 from eq. (4.28). The contributions from eq. (4.28) and (4.29)

to the scattering amplitude for σ0 + σ0 → X +X are

Mnon−der
1 = −κ4σ

2
e , (4.30)

Mder
1 = −κ8σ

2
e

(
1− σ2

0
3M2

Pl

)
, (4.31)

where σe is the oscillation amplitude of the sigma-field at the end of inflation, which is
related to the sigma energy density by ρσ = σ2

em
2
σ/2 = 3σ2

eκM
2
Pl/2.

In addition to the contact interactions, the graviton exchanges with (4.16) also give
rise to non-negligible contributions to σ0 + σ0 → X +X [71, 72], as follows,

MG
1 = 3

8κσ
2
e

(
1 + σ2

0
6M2

Pl

)
. (4.32)

Summing up eqs. (4.30), (4.31), and (4.32), we obtain the total scattering amplitude as

Mtotal
1 = 5

48κσ
2
e

σ2
0

M2
Pl
. (4.33)

Remarkably, the leading contributions proportional to κσ2
e cancel out, and the resultant

total amplitude is suppressed by σ2
0/M

2
Pl ∼ 10−2 as compared with the contributions only

from the contact interactions.
Finally, from eq. (4.27) with eq. (4.33), we obtain the reaction rate for σ0 + σ0 →

X +X as

Rscatter(a) ' 25
248832π

ρ4
σ

κ2M12
Pl

= 25
248832π

(
a

aend

)−12 ρ4
σ,end

κ2M12
Pl
, (4.34)

where we extracted the leading term with respect to σ2
0/M

2
Pl, and used the averaged value

for the sigma condensate
〈
σ4

0
〉

= 3σ4
e/8 = ρ2

σ/6κ2M4
Pl.
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For a vanishing Higgs-portal coupling, η̃ = λhX = 0, the extra contributions coming
from the Higgs condensate are always subdominant as compared to those for the sigma
condensate discussed above.7

Substituting eq. (4.34) into the Boltzmann equation in eq. (4.26), and integrating
between areh and aend, we finally obtain the DM abundance during reheating at the time
of reheating completion,

Ynon−thermal(Treh) '
√

3πgreh
2239488

Treh
κ2M11

Pl

ρ4
σ,end

ρ
3/2
end

(4.38)

with nX(aend) = 0. Here, we omitted some small factors by taking into account areh � aend.

4.4 Dark matter abundance

We are now in the stage to combine out results for the DM abundance both during and
after reheating, obtained in the previous subsections.

Conformal couplings for dark matter. We first discuss the full DM abundance when
dark matter have conformal couplings.

Using the asymptotic value of the yield (4.22) with eqs. (4.25) and (4.38), the DM relic
abundance at present can be determined to be

Ωh2 = 1.6× 108
(
mX

1GeV

)(
g0
greh

)
Y (T∗),

' 1.6× 108
(
mX

1GeV

)(
g0
greh

)[√3πgreh
2239488

Treh
κ2M11

Pl

ρ4
σ,end

ρ
3/2
end

+ 623
√

10
240π6g

1/2
reh

T 3
reh
M3

Pl

+
√

10
20480π4g

1/2
reh

4m4
X + 45M4

Pl

(
λhX + 18κη̃ξ̃

)2

mXM3
Pl

]
, (4.39)

where g0 = 3.91 is the number of the effective relativistic degrees of freedom at present.
In figure 6, we show the parameter space in (mX , Treh) for the case with η̃ = λhX = 0

under the condition that the observed DM abundance is saturated, Ωh2 = 0.12. We also set
ρend = 9× 1061 GeV4, which holds almost the same for 100 ≤ ξ ≤ 4000, and ρσ,end = ρend.

7We also remark that even for η̃ = 0, there exists a three-point coupling σ0X
2 in addition to eq. (4.28),

L ⊃

{
− m2

X√
6MPl

σ0X
2 , σ0 > 0

− m2
X√

6MPl

λ−3κξ̃+9κξ̃2

λ+9κξ̃2 σ0X
2 , σ0 < 0,

(4.35)

which leads to the decay of the sigma condensate. The resulting reaction rate is given by

Rdecay(a) ' 1
72π

m4
Xρσ

κM4
Pl
. (4.36)

However, as compared to eq. (4.34), the contribution from the sigma decay is small, because

Rdecay/Rscatter ∼
(
MPl

σe

)6 (mX

mσ

)4
� 1, (4.37)

for mX � mσ.
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Figure 6. Parameter space in (mX , Treh) for dark matter abundance. The blue shaded region
shows Ωh2 > 0.12. The green band corresponds to the predicted reheating temperature in the
Higgs-R2 model (see figure 4). The region with Treh > mX in the figure (namely, the region above
the gray dashed line) is valid under the current approximation (4.22) and (4.25).

The orange dashed line in figure 6 shows the result from the thermal production during
and after reheating (from the second and third terms in eq. (4.39)), while the blue dashed
line shows the one from the non-thermal production during reheating (from the first term
in eq. (4.39)). The net effect for the DM abundance is shown in black line. The blue
shaded region shows the overclosure for dark matter, namely, Ωh2 > 0.12. The green band
corresponds to the reheating temperature obtained in the Higgs-R2 model as shown in
figure 4, that is, 2.6 × 1013 GeV ≤ Treh ≤ 2.5 × 1014 GeV, for 100 ≤ ξ ≤ 4000. We note
that only the region with Treh � mX in the figure (namely, above the gray dashed line) is
consistent with the assumption used in eqs. (4.22) and (4.25).

Therefore, we find that scalar dark matter with mass 2.1 × 107 GeV ≤ mX ≤ 4.6 ×
109 GeV can explain the whole amount of the observed DM abundance in our model.
For mX < 2.1 × 107 GeV, scalar dark matter is less abundant than the observed DM
abundance, so we need an extra production mechanism or dark matter. For the range of
DM masses that are consistent with the observed relic density, the velocity of dark matter
is sufficiently small at the CMB recombination. For instance, recalling that scalar dark
matter is produced dominantly from the inflaton scattering during reheating, we denote
the DM velocity by vX = pX/EX with pX = mσ(areh/arec) at recombination arec. Then,
using arec/areh = Treh/Trec and taking mσ ∼ 1013 GeV and Treh ∼ 1013 GeV in our model,
we obtain vX ∼ eV/mX ∼ 10−18 for mX ∼ 109 GeV, which is small enough to be consistent
with the Lyman-α constraint [76].
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Figure 7. The same figure as figure 6, but the case with a nonzero Higgs-portal coupling, λhX =
3.5× 10−11, is included in blue line.

Non-conformal couplings for dark matter. We comment on the effects of the de-
viation of the non-minimal coupling from conformality η̃, and the tree-level Higgs-portal
coupling λhX .

First, for thermal production, λhX and a product of couplings, κη̃ξ̃, appear additively
in eqs. (4.39), so their effects on dark matter production are almost the same. To avoid the
overproduction of DM, we need to set the upper limits on them, roughly to |λhX | . 10−12

and |η̃| . 10−6 for ξ̃κ ∼ 10−7. Around these values, the thermal production with λhX 6= 0
or η̃ 6= 0 stands out to affect the total DM abundance.

Secondly, for non-thermal production, non-zero η̃ and λhX lead to the following addi-
tional interactions,

L ⊃

−3
√

3
2MPlη̃κσ0X

2 , σ0 > 0,
−3
√

3
2MPlκ

η̃λ−λhX ξ̃/2
λ+9κξ̃2 σ0X

2 , σ0 < 0.
(4.40)

Taking them for σ0 > 0, we find that the reaction rate from the decay of the inflaton
condensate is given by

Rdecay,η̃(a) ' 9
8π η̃

2κρσ, (4.41)

which is smaller than the one from the inflaton scattering with conformality in eq. (4.34).
For example, we have Rdecay,η̃/Rscatter ∼ 10−2 � 1 for η̃ ∼ 10−6.

In summary, we find that only the thermal production is affected by the non-conformal
couplings with |λhX | . 10−12 or/and |η̃| . 10−6. In figure 7, we show the example with
λhX = 3.5× 10−11. In this case, we can obtain the correct DM relic density for a small er
DM mass than in the case with λhX = 0.
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5 Conclusions

We have presented the perturbative analysis of reheating dynamics in the Higgs inflation
augmented with an R2 term. In this model, there is no unitarity violation from inflation
all the way to the end of reheating, as far as perturbativity conditions on the dimensional
couplings for the dual sigma and Higgs fields are satisfied. The mixed sigma-Higgs inflation
with a large Higgs non-minimal coupling is favored for stability in most of the parameter
space, setting the inflaton condensate to be a mixture of sigma and Higgs fields at the
onset of oscillations.

From the perturbative decays of sigma and Higgs condensates, we have identified the
evolution of the radiation temperature until the end of reheating in the presence of the per-
turbative decays of inflaton condensates. Thus, there is no significant delay of reheating
completion due to the efficient decays of the Higgs condensate, so the resulting reheat-
ing temperature varies between 1013 GeV and 1014 GeV, depending on the non-minimal
coupling for the Higgs boson.

We added a singlet scalar dark matter with a near-conformal gravity coupling and a
vanishingly small Higgs-portal coupling in our model and obtained the dark matter relic
density from freeze-in processes during and after reheating. We found that thermal scat-
tering is most efficient for dark matter production due to the high reheating temperature of
1013−1014 GeV and a correct relic density for dark matter can be obtained for dark matter
masses between 107 GeV and 109 GeV.
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A Details on thermal freeze-in

In this appendix, we show some details on the derivation of eqs. (4.22) and (4.25), which
corresponds to thermal production after and during reheating.

Let us start from thermal production after reheating. In this case, we need to evaluate
the reaction rate (4.11) based on the scattering amplitudes given in eqs. (4.19), (4.20)
and (4.21), which we show here again,

R(T ) = T

211π6

∫ ∞
4m2

X

ds dΩK1

(√
s

T

)√
s− 4m2

X |Mi1+i2→X+X |2, (A.1)
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with

|Mtotal
h+h→X+X |2 =

(
s+ 2m2

X

6M2
Pl

+ 18κη̃ξ̃ + λhX + (t−m2
X)(s+ t−m2

X)
sM2

Pl

)2

, (A.2)

|MG
f+f→X+X |2 = −1

2M4
Pls

2

(
s+ 2t− 2m2

X

)2
((
t−m2

X

)2
+ st

)
, (A.3)

|MG
V+V→X+X |2 = 2

M4
Pls

2

(
m4
X − 2m2

Xt+ t(s+ t)
)2
. (A.4)

Then the total reaction rate can be expressed as

Rtotal(T ) = 4Rh(T ) + 45Rf (T ) + 12RV (T ), (A.5)

where Rh, Rf , and RV are the reaction rates (A.1) associated with eqs. (A.2), (A.3),
and (A.4) respectively, with numerical factors corresponding to the SM degrees of freedom.
After Ω- and s-integrations, we obtain the explicit form

Rtotal(T ) = m2
XT

2

5760π5

4m4
X + 45M4

Pl

(
λhX + 18κη̃ξ̃

)2

M4
Pl

K1

(
mX

T

)2

+ m7
XT

2880π9/2M4
Pl
G3,0

1,3]!
(

−2
−7

2 ,−
1
2 ,

1
2

∣∣∣∣∣ m2
X

T 2

)
− m7

XT

1440π9/2M4
Pl
G3,0

1,3

(
−1

−5
2 ,−

1
2 ,

1
2

∣∣∣∣∣ m2
X

T 2

)

+ 69m7
XT

512π9/2M4
Pl
G3,0

1,3

(
0

−7
2 ,−

1
2 ,

1
2

∣∣∣∣∣ m2
X

T 2

)
, (A.6)

where K1(z) is the first modified Bessel function of the 2nd kind, and Gm,np,q

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣∣ z
)

is the Meijer G-function.

Next, we integrate the following Boltzmann equation,

dY

dT
= −

√
90

π2greh

MPl
T 6 R(T ), (A.7)

from Treh to a certain late time T∗ (Treh � T∗). Remember that Y ≡ nXT−3. The resultant
DM abundance at T = T∗ is given by

Y (T∗) = Y (Treh) + F(Treh)−F(T∗) (A.8)
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where

F(T ) = F1(T ) + F2(T ) + F3(T ) + F4(T ), (A.9)

F1(T ) = −
√

10
7680π11/2g

1/2
reh

4m4
X + 45M4

Pl

(
λhX + 18κη̃ξ̃

)2

mXM3
Pl

G3,1
2,4

(
1, 2

1
2 ,

3
2 ,

5
2 , 0

∣∣∣∣∣ m2
X

T 2

)
, (A.10)

F2(T ) =
√

10
1920π11/2g

1/2
reh

(
mX

MPl

)3
G3,0

1,3

(
1

−3
2 ,

3
2 ,

5
2

∣∣∣∣∣ m2
X

T 2

)
, (A.11)

F3(T ) =
√

10
960π11/2g

1/2
reh

(
mX

MPl

)3
G3,1

2,4

(
1, 1

−1
2 ,

3
2 ,

5
2 , 0

∣∣∣∣∣ m2
X

T 2

)
, (A.12)

F4(T ) = − 207
√

10
1024π11/2g

1/2
reh

(
mX

MPl

)3
G3,1

2,4

(
1, 2

−3
2 ,

3
2 ,

5
2 , 0

∣∣∣∣∣ m2
X

T 2

)
. (A.13)

Here, greh is taken to be constant for T∗ < T < Treh. For Treh � T∗, we find |F1(T∗)| �
|F1(Treh)| but |F2,3,4(T∗)| � |F2,3,4(Treh)|. This behavior shows that the F1 contribution
corresponds to the IR freeze-in, while those with F2,3,4 are the UV freeze-in. In the limit
with mX � T∗, F1(T∗) can be approximated as

F1(T∗) ' −
√

10
20480π4g

1/2
reh

4m4
X + 45M4

Pl

(
λhX + 18κη̃ξ̃

)2

mXM3
Pl

. (A.14)

As a result, eq. (A.8) becomes

Y (T∗) ' Y (Treh) +
√

10
20480π4g

1/2
reh

4m4
X + 45M4

Pl

(
λhX + 18κη̃ξ̃

)2

mXM3
Pl

+ F2(Treh) + F3(Treh) + F4(Treh). (A.15)

We note that the DM abundance at T = T∗ is fixed independently of T∗. We can make a
further simplification for Treh � mX , where F2,3,4 can be expanded at the leading order in
powers of mX/Treh. In this case, we get

Y (T∗) ' Y (Treh) +
√

10
20480π4g

1/2
reh

4m4
X + 45M4

Pl

(
λhX + 18κη̃ξ̃

)2

mXM3
Pl

+ 209
√

10
240π6g

1/2
reh

T 3
reh
M3

Pl
, (A.16)

which is same as eq. (4.22).
For the estimation during reheating, almost same procedure can apply but this time

we need to keep only fermion and gauge boson contributions, eqs. (A.3) and (A.4) for
radiation, and use the Boltzmann equation during reheating epoch,

dỸ

dT
= −8

3

√
90

π2greh

MPlT
2
reh

T 13 R(T ), (A.17)

instead of eq. (A.7). Here Ỹ ≡ nXT−8 = Y T−5. The total reaction rate is evaluated as

Rtotal(T ) = 45Rf (T ) + 12RV (T )

= 69m7
XT

512π9/2M4
Pl
G3,0

1,3

(
0

−7
2 ,−

1
2 ,

1
2

∣∣∣∣∣ m2
X

T 2

)
. (A.18)
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Then, by integrating eq. (A.17) from Tmax to Treh, we obtain

Ỹ (Treh) = G(Treh)− G(Tmax) (A.19)

with

G(T ) ≡ 69
√

10
128π11/2g

1/2
reh

T 2
reh

m4
XM

3
Pl
G3,1

2,4

(
1, 11

2
2, 5, 6, 0

∣∣∣∣∣ m2
X

T 2

)
. (A.20)

We set Ỹ (Tmax) = 0. For Treh � Tmax, we have |G(Treh)| � |G(Tmax)|, and therefore, the
asymptotic expression of Y (Treh) = T 5

rehỸ (Treh) is fixed by

Y (Treh) ' 69
√

10
128π11/2g

1/2
reh

T 7
reh

m4
XM

3
Pl
G3,1

2,4

(
1, 11

2
2, 5, 6, 0

∣∣∣∣∣ m2
X

T 2
reh

)
. (A.21)

In the limit mX � Treh, it becomes

Y (Treh) ' 69
√

10
40π6g

1/2
reh

T 3
reh
M3

Pl
, (A.22)

which produces eq. (4.25).
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