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Abstract: The scale of offshore wind turbines (OWTs) has increased in order to enhance their energy
generation. However, strong aero/hydrodynamic loads can degrade the dynamic characteristics
of OWTs because they are installed on soft seabeds. This degradation can shorten the structural
life of the system; repetitive loads lead to seabed softening, reducing the natural frequency of the
structure close to the excitation frequency. Most of the previous studies on degradation trained
prediction algorithms with actual sensor signals. However, there are no actual sensor data on the
dynamic response of OWTs over their lifespan (approximately 20 years). In order to address this data
issue, this study proposes a new prediction platform combining a dynamic OWT model and a neural
network-based degradation prediction model. Specifically, a virtual dynamic response was generated
using a three-dimensional OWT and a seabed finite element model. Then, the LSTM model was
trained to predict the natural frequency degradation using the dynamic response as the model input.
The results show that the developed model can accurately predict natural frequencies over the next
several years using past and present accelerations and strains. In practice, this LSTM model could be
used to predict future natural frequencies using the dynamic response of the structure, which can be
measured using actual sensors (accelerometers and strain gauges).

Keywords: natural frequency; frequency degradation; offshore wind turbine; LSTM

1. Introduction

Offshore wind turbines (OWTs) are subjected to strong wind and oscillating waves.
The rotation of the blades leads to thrust force on the tower of the OWTs [1], and the wave
exerts hydrodynamic loads on the offshore platform [2]. Additionally, atmospheric turbu-
lence, turbulent air flows, non-steady flow at the blades, and blade-generating turbulence
also affect the dynamic response of the OWTs [3,4]. The abovementioned loads result in the
vibration of the OWTs, which is transferred to the soil in which the structure is constructed.
This cyclic load can change the modulus of the soil [5]. Consequently, the system’s NF
resonates with the blade rotational frequencies, increasing the possibility of fatal effects on
the remaining lifespan of the system [6].

Previous studies have shown that predicting the dynamic behavior of OWTs is im-
portant and necessary in order to prevent resonance. The US National Renewable Energy
Laboratory provides multiple open-source simulation models [7]. Moreover, many studies
have attempted to verify a fully coupled simulation model using OWTs and a soil model.
Long-term OWT simulation models have made significant advances [8–10]. They can
optimize design parameters using simulation results or predict the dynamic behavior,
which changes as the soil foundation degrades. Accordingly, it is necessary to build a
long-term OWT simulation model in order to predict collapses and design appropriate
repair strategies. The OWT maintenance and repair costs can be reduced if the collapse of
the entire system due to soil degradation can be predicted. Remaining useful life (RUL)

Machines 2022, 10, 356. https://doi.org/10.3390/machines10050356 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10050356
https://doi.org/10.3390/machines10050356
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0003-4710-2664
https://orcid.org/0000-0003-2895-4749
https://orcid.org/0000-0002-2747-4850
https://doi.org/10.3390/machines10050356
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10050356?type=check_update&version=1


Machines 2022, 10, 356 2 of 12

prediction for structural systems is important in order to reduce maintenance costs and
improve system reliability, while also playing a vital role in scheduling and condition-based
decision-making.

Degradation prediction methods can be divided into three main categories: model-
based, data-driven, and hybrid methods. Model-based methods create mathematical
models to describe the degradation of systems or components (e.g., the Eyring model [11],
particle filters [12], and Weibull distribution [13]). They can provide accurate predictions
if the model is developed with extensive knowledge of the degradation mechanisms
of the systems. However, it is difficult to establish a precise mathematical or physical
model for complex systems under various conditions [14]. Moreover, they incur a high
computational cost because of the complex dynamic system under complex wind and
wave conditions. Data-driven methods use sensor data for prediction. Compared to
model-based methods, data-driven methods do not require significant prior knowledge
regarding the physical system, and can be easily generated. Considering the developments
in data analysis techniques, various deep learning models have been applied to data-driven
approaches. Ren et al. [15] suggested a deep neural network model for rolling bearing
degradation prediction. Li et al. [16] developed deep convolution neural networks for
aero-engine degradation using the publicly available C-MAPSS dataset. Zhou et al. [17]
proposed a prediction model for supercapacitors with a long short-term memory network
(LSTM). However, data-driven methods require a large amount of data. Therefore, a hybrid
method was proposed in order to overcome the limitations of model-based and data-driven
methods. In particular, using physically model-simulated data as the input to a data-driven
method, the hybrid method can predict degradation with only a small amount of data.
Cai et al. [18] proposed a hybrid approach for sub-sea pipelines in offshore oil and gas
production systems. Feng et al. [19,20] developed a hybrid model for mechanical gear
degradation. They first designed a dynamic model and a fatigue model of a spur gear
system. Then, the degradation parameter on the gear was updated over the long cycles
using the experimentally measured vibration signals.

In this study, a hybrid method was developed to predict the dynamic behavior of a
tripod OWT. A long-term OWT simulation model was developed to generate time-varying
dynamic behavior data over the desired life span of the tripod OWT (i.e., 20 years). First, a
finite element model (FEM) was built using a 3-MW WinDS3000 TC-2 wind turbine (Doosan
Heavy Industries & Construction, Changwon, Korea) [21] installed in the southwestern sea
region of the Korean Peninsula. This model was used to calculate the dynamic behavior
of the tripod OWT. Then, the OWT model parameters were determined using the sensor
data from the actual structure. Next, the long-term virtual sensor data of the OWT were
obtained using the FEM, and the acceleration, strain, and NF of the OWT structure were
collected. It is challenging to acquire actual long-term OWT sensor data because most
OWTs have only recently been installed. Alternatively, virtual data were obtained from
the model, and such data were used to train the OWT NF degradation prediction model.
Subsequently, the performance of the prediction model was validated using a test dataset.

The remainder of this paper is organized as follows. Section II describes the FEM and
soil modulus degradation model. Section III describes the data generation method using
the model presented in Section II. Section IV describes the LSTM model for NF prediction
and its test results. Finally, Section V summarizes and concludes this paper.

2. OWT and Seabed Dynamic Model

OWT sensor data are required over its lifespan (i.e., 20 years) to train the NF degrada-
tion prediction model. However, collecting 20-year data from the OWT is difficult because
most offshore wind farms have been recently constructed. Thus, this study calculated
virtual sensor data from a physical model of the OWT, seabed, and aero/hydrodynamic
loads. The prediction model was then trained and validated using the virtual sensor data.

In this section, the integrated physical OWT model is described. Section 2.1 presents
the dimensions and mechanical properties of the OWT structure and seabed. In Section 2.2,
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the model parameter values are determined using structural health monitoring data.
Section 2.3 describes the mathematical soil degradation model.

2.1. Three-Dimensional Finite Element Model

A three-dimensional FEM was built using a 3-MW WinDS3000 TC-2 wind turbine
with a tripod substructure, as shown in Figure 1. Triangular shell elements were used for
the tower, substructure, and suction buckets. The weight of the rotor-nacelle assembly
(RNA) is 186 t; the nacelle, hub, and blades are 128, 28, and 28 t, respectively. The diameter
of the blades is 100 m [21]. This turbine assembly is considered to have a lumped mass,
and is located at the top of the wind tower. The dimensions of the structure, with suction
buckets supporting the wind turbine, are listed in Table 1 [21]. The properties of the steel
used for the tower, substructure, and suction buckets are listed in Table 2 [21]. The mean
sea water level was set at 13.6 m.
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Figure 1. OWT system comprising the OWT structure and soil. (a) OWT components; (b) 3D FEM
mesh model.

Table 1. OWT model dimensions.

Suction caisson diameter 6 m
Suction bucket length 12 m

Suction bucket thickness 19 mm
Diameter of a circle made by connecting the center of suction 23.1 m

Tower length 58.5 m
Substructure length 24.9 m

Maximum tower diameter 4.5 m
Minimum tower diameter 3.07 m

Table 2. Properties of the steel used for the OWT.

Steel density 7850 kg/m3

Steel Young’s modulus 210 GPa
Steel shear modulus 80.8 GPa
Steel Poisson’s ratio 0.29

The soil model was established using soil data obtained from standard penetration
and cone penetration tests; the soil properties were measured at 35◦58′19.43” N latitude and



Machines 2022, 10, 356 4 of 12

126◦30′53.39” E longitude [21]. The seabed consists of three layers, and the soil properties
were determined as shown in Table 3. Previous studies have shown that a soil finite model
provides reliable results when its diameter is six times larger than the suction caisson
diameter and its length is 3.5 times longer than the suction caisson length [22,23]. Therefore,
the size of the soil model in this study was determined using these criteria.

Table 3. Soil properties.

Soil Depth (m) γd (t/m3) Su (kPa) vsoil Esoil (kPa)

Sand 1 0–2.5 19.0 8 0.35 8700
Clay 2.5–8.3 18.5 45 0.40 9300

Sand 2 8.3–10.7 19.0 15 0.35 26,100

2.2. Damping Ratio

The total damping of the entire OWT system depends on several damping sources [24]:
structural, aerodynamic, hydrodynamic, and soil damping. A damping ratio of 2–3% is
typically used to describe the overall damping effect for OWTs [25–27].

The overall damping ratio can be determined using the initial NF of the OWT.
The NF of the actual OWT was measured over four installation stages, as shown in
Figure 2a1–a4 [21]. The substructure, including the suction caissons, was installed in
Stage I. The bottom and middle towers were installed in Stage II. In Stage III, the remain-
ing part of the tower was assembled and the nacelle was installed. The hub and blades
were assembled in Stage IV. The NF was measured using accelerometers attached to the
structure [21].
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Figure 2. Dynamic response of the OWT for different installation stages. (a1–a4) First mode shape of
the OWT for Stages I–IV; (b1–b4) Frequency response of the accelerometers for Stages I–IV; the NF of
each stage is indicated within the corresponding panel.

The NF of Stage I was obtained using an accelerometer signal impact test [21]. Ac-
celerometers were attached to the transition piece of the tower and substructure in order to
acquire the acceleration data. The NFs of Stages I–IV were determined to be 3.2, 1.42, 0.372,
and 0.323 Hz, respectively, as shown in Figure 2b1–b4. The overall damping ratio of the
FEM was set as 2% because this value accurately calculates the NFs; the NF errors were
0.18%, 1.4%, 0.9%, and 0.05% for Stages I–IV, respectively.
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2.3. Soil Degradation Model

Wind- and wave-generated stochastic loads degrade the soil modulus. This degrada-
tion was calculated for all of the nodes in the seabed. A frequency-domain analysis was
used to reduce the computational cost, as opposed to a time-domain analysis. Stochastic
soil stress variations can be considered via Rayleigh and Gaussian distributions [28]. Based
on these probabilistic properties, Nam et al. [28] proposed a method to rapidly calculate
stochastic soil stress variations without using the Monte Carlo method. They also proposed
a soil degradation calculation method in the presence of stochastically fluctuating stress. We
adopted the above-mentioned methods for the FEM in order to calculate the soil modulus
degradation under different wind conditions.

The degradation function parameters must be determined before applying the pre-
vious degradation model [28] to the OWT model. In this study, the degradation function
G(N), which describes the degradation ratio using the normalized shear stress amplitude
τ̃a and normalized shear stress mean τ̃m, is described as

G(N) = exp
(
−c1

(
|τ̃m|c2 + 1

)
(τ̃a)c3)

√
N − 1

)
, (1)

where N is the number of repetitive loading cycles applied to the soil. Parameters c1, c2, and
c3 determine the degradation speed. This empirical relation was obtained using previous
stress-controlled cyclic load test results for soil [29]. The values of c1, c2, and c3 were
determined based on experimental data. In this study, c1−3 were randomly determined as
0.07, 2.24, and 11.78, respectively.

3. Virtual Sensor Data Generation

The virtual sensor data were measured for 14 different locations based on ten ac-
celerometers and four strain gauges attached to the 3-MW WinDS3000 TC-2 turbine.

3.1. Wind Conditions

When the OWT blades are rotated by the wind, a thrust force is also applied to the
rotor axis. The thrust force magnitude Fa is calculated as follows:

Fa =
1
2

ρaπR2
bV2

h Ct, (2)

where ρa is the air density, Rb is the blade radius, Vh is the wind speed at hub height, and
Ct is the thrust coefficient. The air density ρa was 1.252 kg/m3 at the candidate site [30].
The blade radius Rb is 45.6 m, and thrust coefficient Ct—which varies according to wind
speed—for the WinDS3000 TC-2 turbine was provided by Doosan Heavy Industries &
Construction [28]. The stochastic wind speed Vh was obtained from the Kaimal spectrum,
as described in [30]. The wave-caused dynamic pressure should be considered to predict
the dynamic response of the structure and soil. The stochastic wave elevation was obtained
from Pierson and Moskowitz [30], which describes the wave power spectrum as a function
of wind speed. The pressure applied to the submerged part of the structure by a wave
can be calculated using potential theory [28]. Once the wind speed is determined, the
aero/hydrodynamic loads are determined.

The Weibull distribution shape and scale parameters (k and c, respectively) were used
for the wind speed probability. In order to consider various wind speed conditions, virtual
sensor signals were obtained for nine different sets of (k, c) = (5.27, 4.50), (6.3, 4.7), (6.02,
1.78), (7.53, 1.83), (12.8, 8.0), (13.55, 2.12), (17.02, 6.0), (15.52, 5.02), and (18.1, 9.0), as shown
in Figure 3. Note that the values of c and k for wind speed distribution are approximately
7.5 and 1.8, respectively, in the southwestern sea of the Korean Peninsula [31]. Thus, the
values of the c and k of this study were determined such that the order of the value is
similar to that of the experimental data. The purpose of this study is to establish the NF
prediction model, and to verify its performance under various conditions. Thus, the values
of c and k significantly vary in order to consider various wind conditions, and to check if
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the proposed model can predict the NF in the various wind conditions. However, when
this model is applied to a specific wind farm, the exact c and k values of the site need to
be considered.
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3.2. Long-Term Structural Data

Long-term simulations were conducted using the FEM and the different wind distri-
butions in order to acquire the virtual sensor dataset. The simulations were performed for
the lifespan of the OWT (i.e., 20 years). The acceleration and strain frequency response
functions (at 14 different positions) were acquired; these data correspond to the sensor
data. The data were stored every 0.1 years; thus, a total of 200 samples were obtained for a
20-year simulation for a specific (k, c) set.

Figure 4 shows the NF over the long-term simulations. Nine different wind distribu-
tions, as described in Section 3.1, were applied to the OWT. As the wave model is a function
of wind speed, the wave condition also changes as the wind distribution changes.
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4. NF Degradation Prediction

OWTs are subjected to strong wind and wave loads. Cyclical dynamic loading can
change the modulus of the soil in which the structure is constructed. Soil modulus degra-
dation changes the dynamic behavior of the OWT system, including the OWT and soil. For
example, when the soil modulus decreases, the NF of the OWT system also decreases. This
NF degradation can be critical for structural safety because the NF of the system is close
to the rotating frequency of the blades. Thus, an NF prediction model was developed to
prevent resonance.

4.1. LSTM for the Future NF

Among the nine wind distributions described in Section 3.1, the data corresponding to
six distributions were used to train the LSTM model, and the remaining three distributions
were used to validate its prediction performance. z-score normalization was applied in
order to reduce the range difference between each feature. In this study, the LSTM model
was designed to predict a three-year NF degradation using six-year virtual sensor data and
wind speed as inputs.

The prediction model inputs and outputs are shown in Figure 5. The input comprised
22 signals over 60 stamps. This study used a 0.1-year time interval; thus, 60 time stamps
correspond to a six-year span. The 22 signals are as follows: the wind speed Weibull
distribution parameters k and c, the NF, the difference between NF and initial NF, the
acceleration amplitudes at the NF (from ten accelerometer signals), the strain amplitudes at
zero frequency (from four strain gauges), and the strain amplitudes at the NF (from four
strain gauges). The output is the NF over three years (i.e., 30 time stamps).

The prediction model consists of a single LSTM layer and three dense layers, as shown
in Figure 6. A hyperband [1] tuner was used to determine the optimal number of LSTM
units and dense layer neurons. The hyperband tuner determined 75 LSTM units and 64,
448, and 512 neurons in each subsequent dense layer. A hyperbolic tangent was used as
the activation function. Dropout layers were used with a dropout rate of 0.3 in order to
increase the model generalization and avoid overfitting. The mean absolute error of NF
was used as a loss function for training. The Adam optimizer with mini-batches was used.
The maximum number of training epochs was set to 35,000, and a learning rate of 0.001
was used for the entire training epoch.
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Figure 6. Established LSTM model structure with one LSTM layer and three dense layers.

4.2. Prediction Results

The LSTM model performance was validated under three different wind distributions.
Figure 7 shows two three-year degradation prediction examples in which the previous
six-year data were used as the input. Figure 7a1–a3 shows the prediction results for
6–9 years when (k, c) = (12.8, 8.0) (Case A). Figure 7b1–b3 shows the prediction results for
12–15 years when (k, c) = (17.02, 6.0) (Case C). These results suggest that the model can
predict the NF degradation trends; however, it produces some errors. One might argue
that the NF degradation can be predicted with a simple curve fitting. However, the curve



Machines 2022, 10, 356 9 of 12

fitting approach is not suitable for this application because it cannot consider the temporal
variation of the wind condition. Although the present work considers constant c and k
values for the wind condition, the proposed model is able to consider temporally varying
c and k; it can be trained if a new dataset with varying c and k is provided. Indeed, the
development of a prediction model under time-varying wind conditions is a potential
future work. However, the curve fitting approach cannot deal with the time-varying c
and k.
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tendency for a three-year period using the previous six-year data as the input. (a1–a3), (b1–b3) and
(c1–c3) represent results corresponding to Cases A, B, and C, respectively.

The prediction results were further investigated by calculating the absolute prediction
error (%) for each test case for different three-year periods, as shown in Table 4. These
results suggest the following model characteristics. First, a more dramatic NF degradation
leads to a larger error. The NF of Cases A and B decreases rapidly compared to that
of Case C. Moreover, the average error of Cases A and B is more than twice as large as
that of Case C, suggesting that NF prediction is more challenging when intensive soil
softening occurs. Second, a non-linear NF leads to a larger error. In Cases A and B, the NF
prediction between 7 and 12 years had the largest error, while in Case C, the NF prediction
for 6–9 years yielded the largest error. Figure 4 shows that the NF degradation in these
periods is highly non-linear compared to other periods. Furthermore, Case C converges
faster to a linear form than Cases A and B; thus, it exhibits the largest error in the initial
period. As the proposed LSTM model does not have a deep structure, it has difficulties
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learning this complex non-linearity. The error could be reduced if the model is developed
with a deeper structure.

Table 4. Prediction error (%) for each test case for different three-year prediction periods.

Prediction Period (Years)
Wind Condition Test Case A

k = 12.8, c = 8.0
Test Case B

k = 6.3, c = 4.7
Test Case C

k = 17.02, c = 6.0

6–9 0.030 0.053 0.030
7–10 0.054 0.062 0.007
8–11 0.053 0.058 0.004
9–12 0.045 0.054 0.010
10–13 0.038 0.046 0.015
11–14 0.039 0.042 0.012
12–15 0.044 0.038 0.014
13–16 0.045 0.035 0.014
14–17 0.043 0.033 0.016
15–18 0.041 0.031 0.024
16–19 0.040 0.029 0.027
17–20 0.038 0.028 0.026

Average error 0.044 0.043 0.015

The uncertainties of the OWT are the stochastic wind speed and soil variation over
sites. First, the stochastically varying wind speed affects NF degradation. However, the NF
degrades much slower than the variation of the wind speed and the resulting vibration [28].
Thus, the degradation is determined by the history of the wind speeds. Consequently, the
NF degradation is affected by the probability distribution of the wind speed, rather than by
the current stochastic wind speed. Thus, the instant variations in the wind speed do not
change the NF degradation. However, the distribution of the wind speed definitely affects
the degradation. The uncertainty of the soil variation (over sites) was not considered in
this study; thus, the performance of the proposed LSTM can be different in other sites.

5. Conclusions

Owing to wind- and wave-caused dynamic loads, the seabed stiffness gradually
decreases, changing the dynamic behavior of OWT systems. Dynamic behavior changes,
such as NF variations, should be monitored in order to ensure the safety of the OWT
because NF variations increase the possibility of resonance. The following aspects were
investigated in this study to predict NF degradation and assess the possibility of resonance.

(i) A high-fidelity model was used for NF degradation prediction under different wind
speed conditions. Important dynamic parameters (e.g., system damping) were
obtained by comparing the predicted NF values with experimentally measured
NF values.

(ii) A long-term virtual sensor dataset for the OWT was generated. Long-term NF,
acceleration, and strain values (over 20 years) were calculated using the OWT model.
This long-term dataset is valuable because it is difficult to acquire a real long-term
dataset for the actual OWT. Furthermore, such datasets can be used to train neural
network models and investigate the dynamic response of OWTs over their lifespan.

(iii) An LSTM model capable of NF degradation prediction was developed. The trained
model accurately predicted the NF degradation trend over a three-year period using
the previous six-year sensor data as the input.

Despite its many advantages, the proposed model has certain limitations. First, in
real marine environments, the wind speed distribution changes over time; however, in this
study, a constant wind distribution was used for each case. Accordingly, future work will
focus on upgrading the proposed LSTM model to predict NF degradation in the presence
of a time-varying wind distribution. Second, the used wave elevation spectrum (Pierson
and Moskowitz spectrum) was established for normal sea states. Thus, the present model
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is unable to predict the degradation in the presence of harsh conditions (e.g., gusts), which
need to be considered in the future.
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