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ABSTRACT Electric vehicle (EV) user data (e.g., arrival/departure times and initial/desired state of
energy (SOE) of the EV at EV charging stations (EVCSs)) are crucial data based on which the energy
management system (EMS) of EVCS calculates the economic charging schedules of EVs according to their
preferred charging conditions. In this paper, we present a novel cyber attack via the manipulation of EV
user data against the EMS of an EVCS that may result in incorrect electricity costs incurred by the EVCS
through distorted charging schedules of EVs. The proposed attack method is formulated as a mixed-integer
linear-programming-based bi-level optimization problem that comprises upper- and lower-level optimization
problems. At the upper level, malicious EV user data injected into the communication network between the
EVs and the EMS of the EVCS are calculated, while a normal operation of the EV charging optimization
algorithm in the EMS is ensured at the lower level even if malicious data are delivered from the upper
level. The formulated bi-level optimization problem is converted into a single-level optimization problem by
replacing the lower-level problem with its corresponding Karush–Kuhn–Tucker conditions. The feasibility
of the proposed cyber attack against EVCSs is demonstrated via a simulated scenario in which 40 EVs
arrive at an EVCS, which has six charging poles with different charging speeds. The economic impact of
such an attack is quantified in terms of the total electricity cost incurred by the EVCS, charging schedule,
initial/desired SOE of EVs, and attack effort.

INDEX TERMS Cyber attack, electric vehicle, electric vehicle charging station, energymanagement system,
bi-level optimization method.

I. INTRODUCTION
Transportation electrification through which fossil-fuel vehi-
cles are replaced by electric vehicles (EVs) is becoming feasi-
ble owing to the environmental and economic advantages of
EVs [1]. Compared to fossil-fuel vehicles, EVs can reduce
carbon pollution, greenhouse gas emissions, and the con-
sumption of fossil resources. Furthermore, EVs are utilized as
flexible loads to conduct peak shaving and voltage regulation
by controlling their charging and discharging capabilities
through the vehicle-to-grid technology, thereby maintaining
a stable operation of the power distribution grid [2]. For trans-
portation electrification, EV charging stations (EVCSs) con-
stitute a crucial equipment through which EVs charge their
desired power from the power distribution grid. To achieve
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transportation electrification along with the aforementioned
advantages of EVs, it is necessary to develop a system for
EVCS operators to manage the charging schedules of EVs to
minimize their electricity charging costs while maintaining
the charging preferences of EV users [3].

Energy management systems (EMSs) for EVCS constitute
a core technology for EVCS operators to conduct optimal
charging scheduling of EVs that charge their power via charg-
ing poles at the EVCS. In general, an optimization algorithm
is implemented in the EMS to calculate the optimal charg-
ing schedules of EVs by minimizing the costs incurred by
the EVCS while purchasing electricity from power utilities
according to the charging preferences of EV users [4]. To this
end, two types of data need to be embedded into the optimiza-
tion algorithm of EMSs prior to its execution. The first type
corresponds to static data, which include the number and type
of charging poles of the EVCS (these poles can have different
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FIGURE 1. EV user data-induced cyber attack on the EMS of an EVCS.

charging speeds) as well as the time-of-use (TOU) pricing
tariff. The second type represents dynamically varying data
of heterogeneous EV users, which are transmitted through
the communication network from EV users to the EMS of an
EVCS via their mobile phones. These dynamically varying
data for each EV user include i) the predicted arrival time and
initial state of energy (SOE) of the EV when the EV arrives
at the EVCS, and ii) the preferred departure time and desired
SOE of the EV when the EV departs from the EVCS.

The mobile communication network employed for com-
munication between EVs and the EMSs of EVCSs may be
vulnerable to potential cyber attacks that compromise the
mobile phones of EV users, as illustrated in Fig. 1. The adver-
sary can penetrate the communication channels in cellular or
Wi-Fi wireless networks and inject malicious data into the
aforementioned second type of EV user data. Consequently,
the manipulated EV user data may lead to the malfunction of
the optimization algorithm in the EMS of an EVCS, thereby
increasing the total electricity cost incurred by the EVCS
by distorting the EV charging schedules. The primary goal
of this study is to propose a novel cyber attack strategy in
which the adversary increases the electricity cost incurred by
the EVCS by manipulating EV user data and investigate the
economic impact of the operation of EVCS subject to such an
attack.

Given that EVCSs and EVs are tightly coupled through an
advanced information and communication technology (ICT)
for efficient EV charging and stable operation of the power
distribution grid, numerous previous studies have explored
various types of cyber threat models, which exploit the
vulnerability of ICT networks, and developed methods for
detecting and mitigating such threats. In [5]–[7], three
types of confidentiality-integrity-availability cyber attacks
on EVCSs, namely eavesdropping attack (confidentiality
attack), man-in-the-middle attack (integrity attack), and
denial-of-service attack (availability attack), were intro-
duced, and the risk assessment of EVCSs subject to these
attacks was conducted. In [8], a risk assessment framework
for large-scale EVCSs was developed to evaluate the vul-
nerability of EVCSs to cyber attacks on the communication
between EVCSs and electric utilities. Various cyber attacks
on EVs and EVCSs were presented in [9]; herein, cyber
attacks were classified according to the type of exchanged
data among the EVs, EV aggregators, and EVCS control cen-
ters. A novel data-driven cyber attack strategy was proposed
in [10] inwhich the adversarymanipulates EVs and the EVCS

loads to yield frequency instability in the electric power grid
using available data from power grid, EVCSs, and EVs.
In [11], a cyber attack for manipulation of the SOE of EVs
was presented, and a method for estimating the manipulated
SOEwas developed using a back-propagation neural network
based on experimental data. In [12], the impact of cyber
attacks on the transportation system, electric power grid, and
EVCSs was discussed, and some guidelines to protect the EV
charging network from cyber attacks were introduced. The
vulnerability of the onboard charger hardware of an EV to
data integrity attacks was investigated in [13] wherein the
adversary disrupts the main charger controller logic and bat-
tery management system by performing fake communication
between the charging controller and electronic control units.
In [14], [15], new attack strategies to distort the communi-
cation protocol, in particular the open charge point proto-
col, between the EMS of an EVCS and the EVCS control
center were introduced. Here, the adversary following the
attack strategymisleads the EVCS operator, causing incorrect
authentication of new EV users and dispatching incorrect
charging commands to EVs. More recently, a cyber attack
based on the manipulation of EV charging and discharging
against a power grid was investigated in [16]. It was verified
that because of the high reactive power demand of EVs, the
manipulation of EV load has a greater detrimental impact
on the power grid operation than that of the residential load.
A concise review of various cyber attacks on EVs and EVCSs
and the risk assessment of power grid operation subject to
such attacks is provided in [17]. In contrast with attack mod-
els and corresponding attack impact analysis, various defend-
ing algorithms that detect cyber attacks on EVs and EVCSs
and mitigate the impact of such attacks have been developed.
Data-driven approaches were adopted for the detection of
cyber attack against i) EVs using a machine learning method
based on the transient physical characteristics of EVs [18],
and ii) EVCSs using deep neural networks and long-short-
term memory methods [19]. In [20], a mixed-integer linear
programming (MILP)-based optimization model was pre-
sented to minimize the risk of attack propagation by isolating
a group of compromised EVCSs. A new attack mitigation
approach using cyber insurance was proposed in [21] in
which the risk of EVs to cyber attack is transferred by cyber
insurance to a third party so that the EVs are always assigned
the best charging/discharging price. In [22], a cyber attack
that targets the inter-area stability of the power grid through
the malfunction of EVCSs was considered, and a two-stage
defendingmethod for EVCSs was developed for attack detec-
tion using a back-propagation neural network scheme. Attack
mitigation through the deletion of adversarial requests from
EVCSs was also proposed.

However, previous studies have neither formulated a math-
ematical attack strategy via the manipulation of EV user data
to cause malfunction of the EMS of an EVCS nor conducted
attack impact analysis. To the best of our knowledge, the
present study is the first of its kind aiming to develop a man-
in-the-middle attack method based on a bi-level optimization
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problem in which the adversary stealthily injects malicious
data into the EV user data and causes a malfunction of the
EMS, thereby increasing the total electricity cost incurred by
the EVCS owing to the manipulated EV charging schedule.
The main contributions of this study can be summarized as
follows:
1) We propose a cyber attack on the EV charging opti-

mization algorithm deployed in the EMS of an EVCS.
The adversary distorts the charging schedules of EVs
at the EVCS by stealthily manipulating the EV user
data (arrival/departure times and initial/desired SOE of
EVs at the EVCS), which are transmitted from EVs to
the EVCS, thereby increasing the total electricity cost
incurred by the EVCS.

2) We address the proposed attack method using a
bilevel optimization problem that comprises upper- and
lower-level optimization problems. In the former, mali-
cious data injected into the EV user data are calculated
to distort the EV charging schedule with minimum
attack effort. In the latter, the EV charging optimiza-
tion algorithm is ensured to be executed normally
even if malicious data are calculated from the former.
We then reformulate the bi-level optimization problem
into a single-level optimization problem by replacing
the lower-level problem with its Karush–Kuhn–Tucker
(KKT) conditions.

3) We validate the feasibility and performance of the pro-
posed attack method through a simulation scenario in
which 40 EVs charge power via charging poles with
different charging speeds at an EVCS during one day.
Numerical examples confirm that the proposed attack
method has a detrimental economic impact on the EVCS
operation by manipulating the EV charging schedule in
terms of the total electricity cost incurred by the EVCS
and charging energy of EVs.

The remainder of this paper is organized as follows.
Section II introduces a system model for the charging of
multiple EVs at an EVCS and an EV charging optimiza-
tion problem with an attack model. Section III presents a
mathematical formulation of the proposed attack strategy
using both bi-level and single-level optimization problems.
Section IV presents numerical examples that demonstrate
the performance of the proposed attack method. Finally,
conclusions and future research directions are drawn in
Section V.

II. PROBLEM DESCRIPTION
A. SYSTEM MODEL
Let us consider a situation in which multiple EVs with differ-
ent charging conditions and EV user preferences are charged
at a single EVCS having three different charging power levels
(i.e., Levels 1, 2, and 3). The EVCS is connected to power
distribution system, which is managed by distribution system
operator (DSO). In this study, DSO provides the EVCS with
the TOU pricing signal, using which the EVCS purchases
power from the distribution grid and supplies it to EVs

connected to the EVCS. The EV charging scenario comprises
the following two steps:
Step 1) Before the EVs arrive at their targeted EVCS,

EV users send their private charging information
using their mobile phones through a communication
network to the EVCS.

Step 2) Using the information received from the EV users
in Step 1), the EMS in the EVCS schedules optimal
charging powers for EVs that arrive at the EVCS and
assigns optimal charging poles.

In Step 1), vector Dj encoding the private charging infor-
mation delivered by the EV user j ∈ J contains four types of
data:

Dj =

[
aj, dj, SOE I

j , SOE
D
j

]
. (1)

In (1), aj and dj represent the predicted arrival and desired
departure times of EV j at the EVCS, respectively; SOE I

j
is the predicted initial SOE of EV j when it arrives at the
EVCS; SOED

j is the minimum threshold for the desired SOE
level of EV j when it departs from the EVCS. In this study,
we assume that the predicted and desired data of EV users are
quite accurate.

In Step 2), we assume that the EVCS has multiple charging
poles i ∈ I = I(1)⋃ I(2)⋃ I(3) that are categorized into
three types of charging poles with different maximum charg-
ing limits: i ∈ I(1) for Level-1 charging (50 kW), i ∈ I(2) for
Level-2 charging (100 kW), and i ∈ I(3) for Level-3 charg-
ing (200 kW). The EVCS is assumed to be equipped with
an optimization-based EMS to achieve economic operation.
Under TOU pricing tariff, the EMS assists the EVCS operator
to minimize the total charging cost of EVs (i.e., the total
cost suffered by the EVCS while purchasing electricity from
power utilities) through the optimal charging scheduling and
charging pole assignment for EVs according to the predicted
EV charging condition and desired comfort level of the EV
user. Note that the EMS requires various types of input data
to economically operate the EVCS and completely satisfy
EV user preferences. These input data include the maximum
SOE (SOEmax

j ) of each EV j and the maximum charging
power (Pmax

i ) at charging pole i for the EVCS along with
the private user data of EV j (Dj) defined in Step 1). The
EMS includes an EV charging optimization module based
on the aforementioned input data. The mathematical model
is detailed in the next subsection.

B. EV CHARGING OPTIMIZATION MODEL
For each EV j, at a scheduling time k ∈ K := {t, t +
1, . . . , t+h−1}with a scheduling unit time1t and prediction
horizon h, the EV charging algorithm is formulated in terms
of the following MILP optimization problem:

min J =
∑
k∈K

Ck∑
j∈J

Pj,k

1t (2)

s.t. α : SOEj,k+1 = SOEj,k + Pj,k1t (3)

β : SOE I
j ≤ SOEj,k ≤ SOE

max
j (4)
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γ : SOED
j ≤ SOEj,t+h (5)

χ : 0 ≤ Pj,k ≤
∑
i∈I

bchi,j,kP
max
i (6)

λ :
SOED

j − SOEj,k

SOEmax
j

≤ bnfj,k

≤

(
SOED

j − SOEj,k − ε

SOEmax
j

)
+ 1 (7)

θ :
∑
j∈J

bchi,j,k ≤ 1 (8)

ζ :
∑
i∈I

bchi,j,k ≤ b
s
j,k (9)

ρ : bchi,j,k−1 + b
nf
j,k − 1 ≤ bchi,j,k ≤ b

ch
i,j,k−1 + b

nf
j,k

(10)

bchi,j,k , b
nf
j,k ∈ {0, 1}. (11)

This MILP optimization problem aims to minimize the
objective function in (2), which is the total electricity charg-
ing cost calculated using the TOU price Ck and charging
power Pj,k for all EVs during the prediction horizon h. Equa-
tion (3) represents the dynamics of the SOE for EV j at
a future time k + 1 in terms of the SOE at current time
k and charging power Pj,k with scheduling unit time 1t .
Equations (4) and (5) describe the constraints on the SOE
with an initial SOE (SOE I

j ) when EV j arrives at the EVCS
at time k along with the maximum SOE (SOEmax

j ) and with a
desired SOE (SOED

j ) when EV j completes its charging at the
end of the prediction horizon, respectively. The EV charging
power is limited by the maximum charging power Pmax

i at
charging pole iwith the three different charging levels defined
in (6), where bchi,j,k represents the binary decision variable that
determines the charging status of EV j at charging pole i (‘‘1’’
for charging; ‘‘0’’ otherwise). Equation (7) states that EV j
is not fully charged at time k (i.e., bnfj,k = 1) if SOEj,k is
smaller than SOED

j ; otherwise, EV j is fully charged at time k
(i.e., bnfj,k = 0). Here, ε is a sufficiently small positive number.
Equation (8) guarantees that each charging pole i is at most
connected to one EV at time k . According to (9), the charging
process of EV j at charging pole i can be allowed only when
the EV stays at the EVCS (i.e., bsj,k = 1). Equation (10)
allows for consecutive or no consecutive charging of the EV at
times k − 1 and k depending on the non-fully charging status
bnfj,k , corresponding to i) bchi,j,k−1 = bchi,j,k = 1 when bnfj,k =
1 and ii) bchi,j,k−1 = bchi,j,k = 0 when bnfj,k = 0, respectively.
The binary decision variables are defined in (11).

Finally, the decision variables for the EV charg-
ing optimization problem in (2)–(11) are expressed as
[Pj,k , SOEj,k , bchi,j,k , b

nf
j,k ]. Note that bsj,k is a parameter with

a binary value defined as

bsj,k =

{
1, aj ≤ k < dj
0, otherwise

(12)

FIGURE 2. Conceptual diagram illustrating a cyber attack on the EMS of
an EVCS.

where aj and dj denote the arrival and departure times of EV j
at the EVCS, respectively. In this study, the charging window
Tw
j of EV j at the EVCS is defined as dj − aj and includes its

charging time T c
j (i.e., T c

j ⊂ Tw
j ).

In general, bi-level optimization problems are hard to be
solved by the commercial optimization solvers. To resolve
this issue, as described in Section III, the proposed bi-level
optimization-based attack strategy needs to be transformed
into a single-level optimization problem by replacing the
lower-level optimization problem (i.e., EV charging opti-
mization problem defined by (2)–(11)) with its KKT con-
ditions. Evidently, the optimal solution of the single-level
optimization problem is readily calculated by many avail-
able optimization solvers. However, no KKT conditions for
the MILP optimization problem exist because the MILP
optimization problem is convex no longer. Therefore, the
MILP-optimization-based EV charging problem should be
converted into a convex linear-programming-based optimiza-
tion problem by relaxing the binary decision variables in (11)
with continuous variables as follows:

ξ : 0 ≤ bchi,j,k ≤ 1, ν : 0 ≤ bnfj,k ≤ 1. (13)

In the relaxed EV charging optimization problem, all vari-
able vectors (α, β, γ , χ , λ, θ , ζ , ρ, ξ , and ν) associated with
the equality and inequality constraints represent Lagrangian
multipliers with non-negative values. The Lagrangian mul-
tiplier vector of the inequality constraint having both the
upper and lower limits is expressed as the corresponding
Lagrangian multiplier subvectors. For example, vector β in
constraint (4) is decomposed into two subvectors, i.e., β =
[β+,β−], where β+ and β− correspond to the upper and
lower limits of the inequality constraint, respectively.

C. PROPOSED ATTACK MODEL AND ASSUMPTIONS
As illustrated in Fig. 2, we consider a scenario in which an
adversary stealthily injects malicious data into the EV data
(i.e., arrival/depareture times and initial/desired SOE) that
are transmitted via a communication network from the EV
users’ mobile phones to the EMS of the EVCS. In this attack
scenario, the EV data manipulated by the adversary are fed
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into the EV charging optimization algorithm of the EMS
described in Section II-B as input data, thereby leading to
changes in its optimal solution (e.g., an increase in the total
electricity cost incurred by the EVCS through a distorted EV
charging schedule). The primary goal of the proposed attack
is to have a detrimental impact on the operation cost of the
EVCS.

For a successful attack based on the proposed attack strat-
egy, the adversary needs to satisfy the following assumptions:
• The adversary is capable of breaching a mobile com-
munication network and compromising mobile phones
of EV users by monitoring and manipulating their data.
As more EV users communicate with the EVCS using
their mobile phones via a wireless network, it is evident
that the possibility of the attack on such communication
will increase.

• The adversary can formulate an EV charging optimiza-
tion problem and calculate its optimal solution with the
knowledge of the EVCS operating conditions, including
the number and type of charging poles with different
charging speeds and the TOU pricing tariff.

III. MATHEMATICAL FORMULATION OF CYBER ATTACK
ON EVCS
In this section, we present an optimization problem that
describes an EV user data-induced cyber attack on an EVCS.
Section III-A introduces a bi-level optimization attack for-
mulation that comprises upper- and lower-level optimization
problems. In the bi-level optimization problem, the upper-
and lower-level problems correspond to the adversary and
EVCS operator, respectively. In Section III-B, the bi-level
optimization attack problem formulated in Section III-A
is transformed into an equivalent single-level optimization
problem using the KKT conditions of the lower-level opti-
mization problem.

A. BILEVEL OPTIMIZATION MODEL FOR THE PROPOSED
EVCS ATTACK
The proposed attack strategy is formulated as the follow-
ing bi-level MILP optimization problem with multi-objective
function and constraints:

� Upper level

max JU =
∑
k∈K

Ck∑
j∈J

Pj,k

1t − ω∑
j∈J

baj (14)

s.t. − τSOE I
j b

a
j ≤ 1SOE

I
j ≤ τSOE

I
j b

a
j (15)

− τSOED
j b

a
j ≤ 1SOE

D
j ≤ τSOE

D
j b

a
j (16)

1SOE I
j ≤ 1SOE

D
j

≤ min(SOEmax
j − SOED

j +1SOE
I
j ,

SOEmax
j − SOED

j ) (17)

0 ≤ 1aj ≤ κbaj (18)

− κbaj ≤ 1dj ≤ 0 (19)

bs,aj,k =

{
1, aj +1aj ≤ k < dj +1dj

0, otherwise.
(20)

� Lower level

min JL =
∑
k∈K

Ck∑
j∈J

Pj,k

1t (21)

s.t. β̃ : SOE I
j +1SOE

I
j ≤ SOEj,k ≤ SOE

max
j (22)

γ̃ : SOED
j +1SOE

D
j ≤ SOEj,t+h (23)

λ̃ :
SOED

j +1SOE
D
j − SOEj,k

SOEmax
j

≤ bnfj,k

≤

(
SOED

j +1SOE
D
j − SOEj,k − ε

SOEmax
j

)
+ 1

(24)

ζ̃ :
∑
i∈I

bchi,j,k ≤ b
s,a
j,k (25)

Eqn. (3), (6), (8), (10), (13). (26)

1) UPPER LEVEL
In the upper level (14)–(20), the adversary calculates four
types of malicious data (1SOE I

j ,1SOE
D
j ,1aj, and1dj) that

are injected into the user data of EV j. The malicious data
calculated at the upper level are fed into the EV charging
optimization problem at the lower level to simultaneously
maximize the total electricity cost incurred by the EVCS and
minimize the attack effort while maintaining undetectable
conditions along with limited attack capability. The first
term in the multi-objective function (14) for the proposed
attack represents the total electricity charging cost for all
EVs, whereas the second term represents the total number
of injected malicious data, where baj is equal to one when
the data for EV j are manipulated; otherwise, baj is equal
to zero. In the second term of the multi-objective function,
ω denotes a penalty for the attack effort. A smaller ω leads
to a larger number of baj = 1, thereby wasting more attack
effort; however, it allows the adversary to further increase the
total electricity charging cost.

The magnitudes of the injected malicious SOE data,
i.e.,1SOE I

j and1SOE
D
j , are limited by the attack limit factor

τ in (15) and (16), respectively. Equation (17) ensures that
these malicious data are undetected by both the EV user
and EVCS operator; it can be derived from the following
inequality constraints (27), (28):

SOED
j ≤ SOE

D,a
j − SOE

I,a
j + SOE

I
j (27)

SOED,a
j − SOE

I,a
j + SOE

I
j ≤ SOE

max
j (28)

where the manipulated initial and desired SOE data are
respectively defined as

SOE I,a
j = SOE I

j +1SOE
I
j (29)

SOED,a
j = SOED

j +1SOE
D
j . (30)

Equation (27) guarantees that the manipulation of the SOE
data is undetected by the EV user. This is because the sum
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FIGURE 3. Illustration of the derivation of the upper and lower bounds
for auxiliary binary variables bs,a*

j,k and bs,a**
j,k .

of the attack-related charging energy (SOED,a
j − SOE

I,a
j ) and

the attack-free initial SOE (SOE I
j ) is still larger than or equal

to the desired SOE level. In addition, the right-hand side
of (27) should be limited by SOEmax

j , as expressed in (28).
This inequality constraint makes the EVCS operator believe
that the EV charging optimization algorithm is carried out
correctly. Finally, the constraints (27) and (28) along with the
additional inequality constraint SOED,a

j ≤ SOEmax
j become

equivalent to the constraint (17).
Themagnitudes of the injectedmalicious data, i.e.,1aj and

1dj, are limited by the attack limit factor κ in (18) and (19),
respectively, when the attack is initiated with baj = 1. Note
that 1aj and 1dj should be set as non-negative (1aj ≥ 0)
and non-positive (1dj ≤ 0) integers, respectively. This is
because, under an attack with 1aj < 0 or 1dj > 0, the EV
charging optimization problem may calculate the charging
schedule earlier than aj or later than dj; however, the EV actu-
ally arrives or departs at aj or dj. As a result, this phenomenon
allows the EVCS operator to readily detect such abnormal
situations. Equation (20) represents the binary status of an
EV that stays at the EVCS (i.e., bs,aj,k = 1) between the
manipulated arrival (aj+1aj) and departure (dj+1dj) times.
In contrast to the fact that bsj,k in (12) without attack is a
fixed parameter, bs,aj,k is a variable that changes with 1aj and
1dj. Equation (20) can be relaxed using the following linear
equality and two linear inequality constraints with a large
positive numberM s:

bs,aj,k = bs,a*j,k + b
s,a**
j,k − 1 (31)

k − (aj +1aj)+ 1
M s ≤ bs,a*j,k ≤

k − (aj +1aj)
M s + 1 (32)

dj +1dj − k
M s ≤ bs,a**j,k ≤

dj +1dj − k − 1
M s + 1.

(33)

In (31), bs,aj,k is expressed in terms of two auxiliary binary vari-

ables, i.e., bs,a*j,k and bs,a**j,k , and they are limited by the manip-
ulated arrival and departure times, respectively, as described
in (32) and (33). Fig. 3 illustrates a conceptual diagram that
explains how to derive the upper and lower bounds of two
auxiliary binary variables.

2) LOWER LEVEL
The lower level (21)–(26) corresponds to the EV charg-
ing optimization problem that is introduced in Section II-B.
In the lower-level problem, four constraints of the EV
charging optimization problem are modified according
to (22)–(25), including four types of malicious data
(1SOE I

j ,1SOE
D
j ,1aj,1dj) that are transferred from the

upper level.

B. SINGLE-LEVEL OPTIMIZATION MODEL FOR THE
PROPOSED EVCS ATTACK
This subsection presents the transformation of the bilevel-
MILP-optimization-based attack method, described in the
previous subsection, into a single-level optimization problem.
A key part of this transformation is that the KKT conditions of
the lower-level optimization problem are derived and merged
into the upper-level optimization problem as its constraints.

Given the vectors for decision variables x and data d,
an optimization problem with linear equality constraints
(Ax = d) and linear inequality constraints (Bx ≤ d) is
expressed as

min
x
J (x,d) (34)

s.t. π : Ax = d, (35)

η : Bx ≤ d. (36)

Let us denote the Lagrangian function as L(x,d) =
J (x,d)−π (Ax−d)+η(Bx−d). Subsequently, the following
KKT conditions are derived:
1) First-order optimality conditions: ∇xL(x,d) =

0⇒∇xJ (x,d)− π∇x(Ax− d)+ η∇x(Bx− d) = 0,
2) Primal feasibility conditions: Ax = d, Bx ≤ d,
3) Complementary slackness and dual feasibility condi-

tions: η(Bx− d) = 0, η ≥ 0.
Detailed expressions for the KKT conditions of the lower

level in the proposed bi-level optimization attack problem are
presented in the subsequent subsections.

1) FIRST-ORDER OPTIMALITY CONDITIONS
By differentiating the Lagrangian function of the EV charging
optimization problem associated with the lower level, the
following first-order optimality conditions are obtained:

Ck1t − αj,k1t − χ
−

j,k + χ
+

j,k = 0, k ∈ K (37)

−β̃−j,k + β̃
+

j,k − γ̃j + αj,k−1 = 0, k = t + h (38)

−β̃−j,k + β̃
+

j,k + αj,k−1 − αj,k − λ̃
−

j,k + λ̃
+

j,k = 0,

b k ∈ K (k 6= t) (39)

−χ+j,kP
max
i + θi,k + ζ̃j,k − ρ

−

i,j,k + ρ
+

i,j,k

−ξ−i,j,k + ξ
+

i,j,k , k = t + h− 1 (40)

−χ+j,kP
max
i + θi,k + ζ̃j,k − ρ

−

i,j,k + ρ
−

i,j,k+1 + ρ
+

i,j,k

−ρ+i,j,k+1 − ξ
−

i,j,k + ξ
+

i,j,k = 0, k ∈ K (k 6= t + h− 1)

(41)
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−̃λ−j,kSOE
max
j + λ̃+j,kSOE

max
j + ρ−i,j,k − ρ

+

i,j,k

−ν−j,k + ν
+

j,k = 0, k ∈ K. (42)

2) PRIMAL FEASIBILITY CONDITIONS
The primal feasibility conditions include all equality and
inequality constraints of the lower-level problem:

Eqn. (22)− (26). (43)

3) COMPLEMENTARY SLACKNESS CONDITIONS
The complementary slackness conditions are expressed in
the multiplication form of the inequality constraints and their
corresponding Lagrangian multipliers.

β̃−j,k

(
−SOEj,k +1SOE I

j + SOE
I
j

)
+ β̃+j,k

(
SOEj,k − SOEmax

j

)
= 0 (44)

γ̃j

(
1SOED

j − SOEj,t+h + SOE
D
j

)
= 0 (45)

−χ−j,kPj,k + χ
+

j,k

(
Pj,k −

∑
i∈I

bchi,j,kP
max
i

)
= 0 (46)

λ̃−j,k

(
−bnfj,kSOE

max
j +1SOED

j − SOEj,k + SOE
D
j

)
λ̃+j,k

(
bnfj,kSOE

max
j −1SOED

j + SOEj,k − SOE
max
j

+ ε − SOED
j
)
= 0 (47)

θi,k

∑
j∈J

bchi,j,k − 1

 = 0 (48)

ζ̃j,k

(∑
i∈I

bchi,j,k − b
s,a
j,k

)
= 0 (49)

ρ−i,j,k

(
bchi,j,k−1 + b

nf
j,k − b

ch
i,j,k − 1

)
+ ρ+i,j,k

(
−bchi,j,k−1 − b

nf
j,k + b

ch
i,j,k

)
= 0. (50)

In addition, the nonlinear complementary slackness con-
ditions derived above are linearized using the big-M method
with additional auxiliary binary decision variables (δβ̃

−

j,k , δ
β̃+

j,k

δ
γ̃
j , δ

χ−

j,k , δ
χ+

j,k , δ
λ̃−

j,k , δ
λ̃+

j,k , δ
θ
j,k , δ

ζ̃
j,k , δ

ρ−

i,j,k and δ
ρ+

i,j,k ) and a large

positive constantM c as follows:

β̃−j,k −M
cδ
β̃−

j,k ≤ 0

SOEj,k −1SOE I
j − SOE

I
j ≤ M

c(1− δβ̃
−

j,k )

β̃+j,k −M
cδ
β̃+

j,k ≤ 0

SOEmax
j − SOEj,k ≤ M c(1− δβ̃

+

j,k )

δ
β̃−

j,k + δ
β̃+

j,k ≤ 1

(51)


γ̃j −M cδ

γ̃
j ≤ 0

SOEj,t+h −1SOED
j − SOE

D
j

≤ M c(1− δγ̃j )

(52)



χ−j,k −M
cδ
χ−

j,k ≤ 0

Pj,k ≤ M c(1− δχ
−

j,k )

χ+j,k −M
cδ
χ+

j,k ≤ 0

Pj,k −
∑
i∈I

bchi,j,kP
max
i ≤ M c(1− δχ

+

j,k )

δ
χ−

j,k + δ
χ+

j,k ≤ 1

(53)



λ̃−j,k −M
cδλ̃
−

j,k ≤ 0

bnfj,kSOE
max
j −1SOED

j + SOEj,k − SOE
D
j

≤ M c(1− δλ̃
−

j,k )

λ̃+j,k −M
cδλ̃
+

j,k ≤ 0

−bnfj,kSOE
max
j +1SOED

j − SOEj,k

+SOEmax
j − ε + SOED

j ≤ M
c(1− δλ̃

+

j,k )

δλ̃
−

j,k + δ
λ̃+

j,k ≤ 1

(54)


θj,k −M cδθj,k ≤ 0

1−
∑
j∈J

bchi,j,k ≤ M
c(1− δθj,k )

(55)


ζ̃j,k −M cδ

ζ̃
j,k ≤ 0

bs,aj,k −
∑
i∈I

bchi,j,k ≤ M
c(1− δζ̃j,k )

(56)



ρ−i,j,k −M
cδ
ρ−

i,j,k ≤ 0

−bchi,j,k−1 − b
nf
j,k + b

ch
i,j,k + 1 ≤ M c(1− δρ

−

i,j,k )

ρ+i,j,k −M
cδ
ρ+

i,j,k ≤ 0

bchi,j,k−1 + b
nf
j,k − b

ch
i,j,k ≤ M

c(1− δρ
+

i,j,k )

δ
ρ−

i,j,k + δ
ρ+

i,j,k ≤ 1.

(57)

4) DUAL FEASIBILITY CONDITIONS
The dual feasibility conditions represent the following
Lagrangian multipliers with non-negative values:

[
α; β̃; γ̃ ;χ; λ̃; θ; ζ̃ ; ρ; ξ ; ν

]
≥ 0. (58)

Finally, using the aforementioned KKT conditions, the
proposed bi-level attack optimization problem can be refor-
mulated in terms of the following single-level optimization
problem:
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� Single-level attack optimization problem

max J =
∑
k∈K

Ck∑
j∈J

Pj,k

1t − ω∑
j∈J

baj (59)

s.t. Eqn. (15)− (19), (31)− (33) (60)

Eqn. (37)− (43),

(51)− (58) (KKT conditions). (61)

IV. NUMERICAL EXAMPLES
A. SIMULATION SETUP
We set up a simulation environment in which 40 EVs with
different charging information and preferences communicate
with the EMS of an EVCS before they arrive at the EVCS.
Upon arrival, the EVs charge power via the charging poles
of the EVCS according to the charging schedule calculated
by the EMS. The arrival/departure times of each EV were
randomly distributed based on a discrete uniform distribution
during one day. The EVCS was assumed to be equipped with
six charging poles, three pairs of which correspond to differ-
ent maximum charging power capacities as follows: Pmax

i =

50 kW for i = 1, 2 ∈ I(1) (Level 1), Pmax
i = 100 kW for

i = 3, 4 ∈ I(2) (Level 2), and Pmax
i = 200 kW for i = 5, 6 ∈

I(3) (Level 3). As illustrated in Fig. 4, under TOU tariff, the
EV charging optimization algorithm in the EMS calculates
the optimal charging schedules of EVs by minimizing their
electricity charging cost. For simplicity, the preferred charg-
ing window (Tw

j = dj − aj) and maximum/initial/desired
SOE (SOEmax

j /SOE I
j /SOE

D
j ) for each EV j were identically

set as Tw
j = 2.5 h, SOEmax

j = 72.6 kWh, SOE I
j = 0.2 ×

SOEmax
j kWh, and SOED

j = 0.9 × SOEmax
j kWh. In the

upper level of the bi-level optimization attack problem, the
penalty (ω) for the attack effort, the attack limit factor (τ ) of
the SOE, and the attack limit factor (κ) of arrival/departure
times were set to 0.1, 0.2, and 3, respectively. In the lower
level of the bi-level optimization attack problem, the value of
ε associated with a non-fully charging status of the EV was
set to 10−7. The values ofM s andM c associated with the EV
stay and relaxation of the complementary slackness condition
were identically set to 106. The simulation was conducted for
24 h with a 15-min scheduling resolution (i.e.,1t = 15 min)
and a predicted horizon h = 16 (i.e., 4 h). The proposed
attack strategy was simulated in a computer (AMD Rygen 7
2700X Eight-Core Processor clocking at 3.7 GHz and 32 GB
of RAM) using the IBM ILOG CPLEX Optimization Studio
12.8 solver through MATLAB R2018b.

B. ATTACK RESULTS OF ELECTRICITY COST OF EVCS AND
CHARGING ENERGY OF EV
In this subsection, we present a quantification of the impact
of the proposed EVCS attack on the total electricity cost
and the amount of charging energy scheduled by the EMS
of the EVCS. Fig. 5 illustrates two cumulative electricity
costs incurred by the EVCS without and with attack over the
entire charging scheduling period. Note from this figure that

FIGURE 4. Profile of TOU price.

FIGURE 5. Comparison results of the cumulative electricity costs suffered
by the EVCS without and with attack during one day.

FIGURE 6. Comparison results of the cumulative electricity costs of EVCS
in seven different TOU-price time blocks without and with attack.

the cumulative electricity cost with attack becomes higher
than that without attack after the scheduling period 02:30.
Eventually, the total electricity costs without and with attack
reach 183.98 $ and 196.73 $ at the end of the scheduling
period, respectively. Thus, we can conclude that the proposed
attack method can successfully increase the electricity cost
for the EVCS by stealthily injecting malicious data into the
EV user data.

Fig. 6 compares the cumulative electricity costs for the
EVCS without and with attack in seven different TOU-price
time blocks. Each of these time blocks has an identical price,
as indicated in Fig. 4. Note from this figure that a significantly
increasing electricity cost due to the attack can be identified at
two TOU-price time blocks, namely (00 : 00 ∼ 08 : 00) and
(16 : 00 ∼ 22 : 00). This result derives from the following
two characteristics of the adversary using the proposed attack
strategy:
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FIGURE 7. Charging windows (T w
j ) and charging times (T c

j ) from EV31 to
EV40 around the scheduling period 22:00 without attack.

(C1) Unbinding SOE constraint attack: The adversary
increases the amount of EV charging energy to a
level greater than its original initial/desired SOE level,
thereby generating the unbinding SOE constraint. Here,
the unbinding SOE constraint implies that SOEj,k and
SOEj,t+h do not hit their original lower limits (SOE I

j
and SOED

j ) in the constraints (22) and (23).
(C2) Time shiftable attack: The adversary moves the EV

charging schedule to a higher TOU-price time block,
thereby leading to an increase in the electricity cost
incurred by the EVCS.

An increasing electricity cost in the time period
(00 : 00 ∼ 08 : 00) due to the attack derives from attack
(C1), which increases the amount of EV charging energy
from 660.66 kWh to 718.74 kWh. In this time period, the
TOU price is identical. Thus, attack (C2) has no impact on
the electricity cost incurred by the EVCS. By contrast, the
time period (16 : 00 ∼ 22 : 00) includes two different TOU
prices: 0.12 $/kWh at (16 : 00 ∼ 21 : 00) and 0.05 $/kWh
at 22 : 00. As depicted in Fig. 6, an increase in the electricity
cost due to the attack is much higher in the time period (16 :
00 ∼ 22 : 00) than in the time period (00 : 00 ∼ 08 : 00).
This is because both attacks (C1) and (C2) occur in the time
period (16 : 00 ∼ 22 : 00), whereas only attack (C1) occurs
in the time period (00 : 00 ∼ 08 : 00). Specifically, such
attack consequence in the time period (16 : 00 ∼ 22 : 00)
results from the following two attack characteristics: i) for
attack (C1), the amount of charging energy increases from
203.28 kWh to 226.70 kWh, and ii) for attack (C2), the
charging schedules for three EVs (EV20, EV34, and EV37)
are shifted to higher TOU-price time blocks as follows: from
(16 : 00 ∼ 16 : 30) to (15 : 45 ∼ 16 : 15) for EV20,
from (22 : 00 ∼ 22 : 30) to (21 : 45 ∼ 22 : 15) for EV34,
and from (22 : 30 ∼ 23 : 00) to (21 : 00 ∼ 21 : 15) and
(22 : 00 ∼ 23 : 00) for EV37.

Figs. 7 and 8 depict the charging windows (Tw
j ) and charg-

ing times (T c
j ) around 22 : 00 along with the assigned

charging poles for EV31∼EV40 without and with attack,
respectively. Note in these figures that the scheduling time
22 : 00 is a boundary between a high TOU price (before 22 :
00) and a low TOU price (after 22 : 00). We first verify from
a comparison of Figs. 7 and 8 that Tw

34 for EV34 shrinks with

FIGURE 8. Charging windows (T w
j ) and charging times (T c

j ) from EV31 to
EV40 around the scheduling period 22:00 with attack.

TABLE 1. Results with varying penalties (ω) of the attack effort and
attack limit factors (τ ) of the initial and desired SOE data.

the reduced departure time of EV34 owing to the attack. In the
shrunken charging window, the charging schedule of EV34
is shifted from a low TOU-price time period to a high one
without changing the charging pole and charging duration.
By contrast, no manipulation of Tw

37 for EV37 is conducted
by the adversary as illustrated in Figs. 7 and 8. However,
T c
37 for EV37 becomes longer and includes a high TOU-price

time period. This phenomenon stems from the fact that Tw
40

for EV40 shrinks by the adversary, which requires a faster
charging pole to maintain the desired SOE level of EV40.
Consequently, Level-1 and Level-3 charging poles allocated
for EV40 and EV37 prior to the attack are switched with each
other by the adversary to provide EV40 with a satisfactory
charging service. Evidently, EV37 spends a longer charging
time via the slower Level-1 charging pole.

C. IMPACT OF PARAMETERS IN THE UPPER-LEVEL
PROBLEM ON THE EVCS ATTACK
In this subsection, we present an assessment of the attack
performance subject to the parameters associated with the
attack capability of the adversary in the upper-level prob-
lem. Table 1 lists the results of the attack performance with
different attack effort penalties (ω) and attack limit factors
(τ ) of the initial and desired SOE data in terms of the total
electricity cost/charging energy and the number of attacked
EVs. As expected, the results in this table indicate that a
smaller ω leads to a larger total electricity cost and charging
energy at the expense of the attack effort with an increasing
number of attacked EVs. Another observation is that for
an attack with ω = 0.3, the adversary manipulates data
of 28 EVs out of 40 EVs, whereas no attack occurs on 12 EVs
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(EVs1∼12). The reason for this fact can be explained as
follows. In the simulation setup, the charging windows of
EVs1∼10 belonged to the cheapest TOU-price time block,
i.e., (00 : 00 ∼ 08 : 00), prior to the attack. Because
their charging windows only shrink within the cheapest price
time block due to the attack, no time-shiftable attack (C2),
described in Section IV-B, was initiated to increase the total
electricity cost for the EVCS. In addition, the charging win-
dows of EV11 and EV12 prior to the attack were identi-
cally set to (05 : 45 ∼ 08 : 15), which includes two
different TOU prices. Even if the adversary obtains a room
(i.e., time interval with higher TOU price) to initiate a time-
shiftable attack, the attack room (08 : 00 ∼ 08 : 15) for
EV11 and EV12 will be smaller than that for the other EVs
(e.g., (20 : 00 ∼ 21 : 45) for EV34 and EV37). Further-
more, given that most of the charging windows for EVs1∼12
correspond to the cheapest TOU-price time block, the impact
of the unbinding SOE constraint attack (C1) defined in
Section IV-B is not very significant.

Note also fromTable 1 that a larger τ results in a larger total
electricity cost and charging energy along with an increasing
number of attacked EVs. This observation is natural because
more manipulation of the initial/desired SOE data owing to
larger τ leads to more charging of EVs, thereby increasing
the total electricity cost for the EVCS. In addition, Table 1
indicates that the number of attacked EVs with τ = 0.1 is
smaller than that with τ = 0.2 and τ = 0.3. Our simulation
results demonstrate that the adversary with τ = 0.1 per-
forms no attack on EVs1∼12, which is consistent with the
result when ω = 0.3. This observation implies that the
adversary with insufficiently manipulated SOE data fails to
completely conduct the unbinding SOE constraint attack (C1)
and time-shiftable attack (C2).

D. IMPACT OF PARAMETERS IN THE LOWER-LEVEL
PROBLEM ON THE EVCS ATTACK
In this subsection, we present an investigation of the attack
performance subject to the parameters in the EV charging
optimization problem associated with the lower-level prob-
lem. Fig. 9 illustrates the results of the total electricity cost
and charging energy under different initial and desired SOE
conditions without and with attack. In this figure, the x-axis
corresponds to five pairs of (aD, aI) that represent multiplica-
tive coefficients for the calculation of the desired and initial
SOEs, respectively. Using these multiplicative coefficients,
SOED

j and SOE I
j are computed as SOED

j = aD × SOEmax
j

and SOE I
j = aI × SOEmax

j . According to the gap between
SOED

j and SOE I
j , five labels along the x-axis are categorized

into three groups each of which takes an identical value of
aD − aI as follows: (aD, aI) = (0.9, 0.25), (0.85, 0.2) for
Group I, (aD, aI) = (0.9, 0.2) for Group II, and (aD, aI) =
(0.95, 0.2), (0.9, 0.15) for Group III.
First, note from Fig. 9 that the total electricity cost and

charging energy increase significantly because of the attack
for the five different pairs of initial and desired SOEs. Note

FIGURE 9. Comparison results of the total electricity cost and charging
energy under different initial and desired SOE conditions without and
with attack.

TABLE 2. Results with varying prediction horizons (h) in the EV charging
optimization model.

also that as the gap between SOED
j and SOE I

j increases, the
total electricity cost and charging energy for both scenarios
without and with attack increase; the three groups can be
ranked in the decreasing order of total electricity cost and
charging energy as follows: Group III> Group II> Group I.
Additionally, for Groups I and III without attack, no change
in the total electricity cost and charging energy occurs even
if the values of aI and aD vary. This is because the gap
between SOED

j and SOE I
j for each Group I and III is identical.

However, as illustrated in the attack results for Groups I
and III in Fig. 9, a change in the total electricity cost and
charging energy takes place due to the attack even if the
identical gap between SOED

j and SOE I
j is maintained with

varying aI and aD.
Table 2 presents the gap between the total electricity cost

for with and without attack scenarios along with the average
computation time of the proposed bilevel attack optimization
method in terms of prediction horizon h for the EV charging
optimization problem. Note from this table that the electricity
cost gap due to the attack increases with increasing h. This
is because the adversary can obtain more attack room to
manipulate the EV user data in a longer prediction horizon.
In addition, as expected, Table 2 indicates that the average
computation time for the proposed bilevel attack optimization
problem during the entire scheduling periods increases as the
value of h increases. From the perspective of computational
complexity, the proposed attackmethod is feasible because its
computation time presents a scheduling resolution of below
15 min for the EV charging optimization problem.

Lastly, our proposed bi-level attack optimization problem
is limited to provide suboptimal solutions due to the following
two aspects i) the utilization of the KKT conditions of the
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relaxed MILP problem at the lower level and ii) non-optimal
selection of the value of M in the big-M method as reported
in [23], [24]. An important extension of our work here would
be to develop a more optimal attack strategy that addresses
the aforementioned limitations, and it is referred to as a future
work.

The main observations from the simulation analysis can be
summarized as follows:
• The proposed attack successfully increases the total
electricity cost for the EVCS while stealthily bypassing
the EVCS operator and EV users under undetectable
conditions of SOE data manipulation.

• An increase in the total electricity cost for the EVCS due
to the proposed attack derives from two types of attack
characteristics: i) unbinding SOE constraint attack and
ii) time-shiftable attack.

• An unbinding SOE constraint attack increases the
amount of EV charging energy, whereas a time-shiftable
attack shifts the EV charging time period to a higher
TOU-price time period; therefore, both attacks increase
the total electricity cost incurred by the EVCS.

• The increase in the attack effort and attack limit factor
results in less and more electricity cost suffered by the
EVCS, respectively.

• The proposed attack leads to higher electricity costs for
the EVCS as the gap between the desired SOE and initial
SOE becomes larger prior to the attack.

• The EV charging optimization problem with a larger
value of the prediction horizon is more susceptible to the
proposed attack and requires more computation time to
solve the proposed bilevel attack optimization problem.

V. CONCLUSION
In this study, we considered a situation in which EVCS
purchases power from the distribution grid under the TOU
pricing tariff sent by DSO and supplies it to EVs connected
to the EVCS. In this situation, we proposed a cyber attack
on EVCS, which increases the total electricity cost incurred
by the EVCS by causing a malfunction in the EV charging
optimization algorithm through the manipulation of EV user
data (arrival/departure times and initial/desired SOE of EVs
at the EVCS) transmitted from the EVs to the EVCS. We for-
mulated such a cyber attack in terms of a bi-level optimization
problem comprising upper- and lower-level problems. In the
upper-level problem, malicious data injected into the EV
user data are calculated to simultaneously maximize the total
electricity cost for the EVCS and minimize the attack effort.
In the lower-level problem, the EV charging optimization
algorithm yields the distorted charging schedules of EVs
using manipulated EV user data delivered from the upper
level. Subsequently, we transformed the bi-level attack opti-
mization problem into a single-level optimization problem by
replacing the lower-level problem with its KKT conditions.
Simulation results indicate the feasibility and detrimental
impact of the proposed attack strategy on the EVCS operation
in terms of the total electricity cost of EVCS, the charging

schedule and initial/desired SOE of EVs, attack effort, and
computation time of the proposed attack strategy.

In the future, we plan to present a new cyber attack on
multiple EVCSs located in a realistic power distribution
system. Vulnerability assessment of both EVCS and power
distribution system operations for such a cyber attack will be
conducted in terms of the real and reactive charging powers
of EVs as well as the nodal voltage magnitude along the
distribution feeder.
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