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Abstract: In this paper, we present a novel low-light image enhancement method by combining
optimization-based decomposition and enhancement network for simultaneously enhancing
brightness and contrast. The proposed method works in two steps including Retinex decomposition
and illumination enhancement, and can be trained in an end-to-end manner. The first step separates
the low-light image into illumination and reflectance components based on the Retinex model.
Specifically, it performs model-based optimization followed by learning for edge-preserved
illumination smoothing and detail-preserved reflectance denoising. In the second step, the
illumination output from the first step, together with its gamma corrected and histogram equalized
versions, serves as input to illumination enhancement network (IEN) including residual squeeze
and excitation blocks (RSEBs). Extensive experiments prove that our method shows better
performance compared with state-of-the-art low-light enhancement methods in the sense of both
objective and subjective measures.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Brightness and contrast of digital images serve as a key information for various computer
vision techniques including object detection, image recognition, visual surveillance, and image
segmentation [1–6]. However, most imaging systems cannot avoid undesired artifacts such as
low-light, low contrast, motion blur and haze during the image acquisition process, and those
artifacts degrades the performance of vision tasks [7,8]. Among various image enhancement
methods, low-light image enhancement improves the brightness and contrast of images taken
under the low-light environment [9–11].

Existing contrast enhancement approaches include contextual and variational contrast en-
hancement (CVC) [12] and layed difference representation (LDR) [13] methods. They used the
difference in brightness between adjacent pixels to create a smoothed histogram. Also, there are
multi-branch low-light enhancement network (MBLLEN) and Retinex-Net methods for brightness
enhancement using deep learning methods [14]. The MBLLEN first extracted feature maps of
various levels, and then combines enhanced feature maps [14]. The Retinex-Net restored low-light
images using decomposition network to separate illumination and reflectance, enhancement
network for brightness enhancement, and additional denoising operation [15,16]. Although these
methods successfully enhanced the brightness of low-light images using deep neural networks
trained end-to-end, there is a performance limitation to simultaneously improving the brightness
and contrast. The original Retinex theory served a fundamental basis of decomposing an image
into the illuminance and reflectance components, but there was no practically optimal methods for
the decomposition for a long time. Although the Retinex-Net first presented a deep learning-based
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decomposition, it provided neither in-depth research on the enhancement network architecture
nor discussion of the training datase. To solve this problems, we present a novel method for
simultaneously enhancing brightness and contrast based on the Retinex model.

The proposed method consists of two steps: decomposition and enhancement. The decomposi-
tion step separates the low-light image into illumination and reflectance components based on the
Retinex model. Various studies of Retinex decomposition have been conducted. The model-based
optimization approach is flexible in handling various regularized restoration problems at the cost
of increased computational complexity [17]. On the other hand, the learning-based approach
has an advantage of fast inference speed and end-to-end training [17]. For that reason, the
proposed method takes the optimization approach to decompose the illumination and reflectance
components, and then uses learning-based approach to enhance the low-light illumination
component.

Even if the estimation of the illumination is successful, further visual enhancement is not
possible when the input image has a low brightness and/or contrast. To solve the under-
enhancement problem with limited brightness and contrast in the dehazing application, Ren et
al. proposed gated fusion using multiple derived inputs [18]. Originated from that idea, in the
second step of the proposed method, illumination enhancement network (IEN) takes a set of
three derived inputs including: i) the illumination component from the first decomposition step,
ii) the contrast enhanced (or histogram equalized) illumination, and iii) the gamma corrected
illumination. The IEN improves the brightness and contrast by rearranging the importance of
feature maps through residual squeeze and excitation block (RSEB) [19].

An example of low-light image enhancement results are shown in Fig. 1. Compared with
two state-of-the-art methods, the proposed method better improves both brightness and contrast.
In addition, the noise is well removed because the reflectance is estimated by combining the
optimization and learning steps. On the other hand, low-light image enhancement (LIME) and
Hao’s methods cannot completely remove the noise because they used only optimization step
[20,21].

(a) Input (b) LIME [20]

(c) Hao et al. [21] (d) Ours

Fig. 1. Visual comparison of low-light image enhancement methods.

Major contributions of the proposed method are threefold as:
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1 We proposed a combined optimization and deep learning framework for simultaneous
bright and contrast enhancement. The proposed low-light image enhancement method
can successfully decompose edge-preserved illumination and detail-preserved reflectance
components.

2 We created new derived inputs including the decomposed illumination, its gamma-corrected
and histogram-equalized versions to overcome the limitation of low brightness image
enhancement.

3 We proposed illumination enhancement net (IEN) including RSEB to improve the brightness
and contrast of the resulting image by readjusting the importance of feature maps.

The major advantage of an optimization-based image enhancement method is to provide the
optimal solution of a user-defined objective function. During the past decades, various objective
functions for image enhancement have been proposed and successfully employed in most image
enhancement methods. On the other hand, enhanced images should satisfy human subjective
criterion that is based on the human cognitive knowledge through experiencing many images. In
this context, learning-based methods can provide subjectively satisfying result if a training set of
images is well-prepared. Different advantages of optimization-based and learning-based methods
cannot be easily combined due to the nature of each method. The proposed method successfully
combined both advantages, and proved their performance using various ablation studies.

2. Related works

2.1. Conventional methods

Early works for low-light image enhancement used histogram equalization. Various histogram-
based enhancement methods were proposed in the literature [12,13,22,23].

The Retinex theory assumes that an image can be decomposed into reflectance and illumination,
and the amount of illumination only affects the illumination component. Early Retinex model-
based methods include single-scale Retinex (SSR) [24] and multiscale Retinex (MSR) [25].
Adaptive multiscale Retinex (AMSR) adaptively improved the brightness of the input image by
using the weight values associated with each SSR output image [24–26]. Wang et al. proposed
naturalness preserved enhancement (NPE) method for non-uniformly illuminatied images to
preserve naturalness [27]. They also proposed an improved method to mimic the human visual
system that perceives colors [28].

In addition to histogram equalization- and Retinex-based methods, various types of image
filtering were used for low-light image enhancement [29–32].

2.2. Model-based optimization methods

Various model-based optimization methods were proposed in the field of low-light image
enhancement. Cai et al. used Retinex-based joint intrinsic-extrinsic prior (JIEP) model to
decompose the illumination and reflectance components [33]. Fu et al. proposed a new
probabilistic method to simultaneously estimate the illumination and reflectance components in
the linear domain [34]. They also proposed simultaneous reflectance and illumination estimation
(SRIE) method using a weighted variational model [35]. Lee et al. solved a constrained
optimization problem for Retinex decomposition using the gray-level differences [13]. Ren et al.
proposed a joint enhancement and denoising (JED) method that sequentially performs low-light
enhancement and noise reduction [36]. They also proposed low-light image enhancement using
camera response model (LECARM) algorithm using camera characteristics-based optimization
[37]. Guo et al. proposed low-light image enhancement via illumination map estimation (LIME)
method that estimates the illumination component by finding the maximum RGB values of each
pixel and improves the illumination map using the structure of the illumination [20]. Park et al.
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proposed a Retinex-based variational optimization-based method using spatially adaptive weight
map [38]. Ren et al. proposed a robust low-light enhancement method via low-rank regularized
Retinex model (LR3M) by formulating two variational models to estimate illumination and
reflectance [39]. Li et al. created an optimization function with a new regularization terms
for jointly estimating a piece-wise smoothed illumination and a structure-revealed reflectance
[40]. Hao et al. proposed a Retinex-based low-light enhancement method using an efficient
semi-decoupled way [21].

In spite of the flexibility using various types of regularization, the optimization-base methods
have a common drawback of high computational complexity and long processing time. To solve
this problem, various deep learning-based methods were proposed using end-to-end training and
a single feedforward inference as summarized in the following subsection.

2.3. Learning-based methods

Ren et al. established a hybrid network that simultaneously estimates global content and salient
structures [41]. Ignatov et al. proposed an end-to-end residual network to learn a translation
function that improves both color rendition and image sharpness [42]. Park et al. proposed
a dual autoencoder network model consisting of stacked and convolutional autoencoders [43].
Park’s method performed both low-light enhancement and noise reduction at the same time.
Jiang et al. proposed a generative adversarial network (GAN)-based unsupervised model for
low-light image enhancement using unpaired low-light and normal-illumination data [44]. Li
et al. proposed a trainable convolutional neural network (CNNs) called Lightennet to enhance
weakly illuminated image [45]. Lore et al. presented a deep autoencoder that simultaneously
performs contrast enhancement and denoising [46]. Lv et al. propose MBLLEN proposed a
multi-branch low-light image enhancement network (MBLLEN) to extract various features of
low-light images with complex contents [14]. Shen et al. proposed a multi-scale Retinex-based
CNNs to learn end-to-end mapping between a low-light image and its corresponding enhanced
version [47]. Wei et al. proposed an end-to-end deep CNN called Retinex-Net based on the
Retinex model [15]. Wei’s method consists of decomposition network, enhancement network
and denoising operation. The decomposition network decomposes an input low-light image into
reflectance and illumination componetns, and the enhancement network brightens up illumination
and reduces noise in reflectance. Zero-reference deep curve estimation (Zero-DCE) method
showed a lightweight deep neural network for estimating the lighting enhancement curve [48].
The network used non-referenced loss functions to train without any reference images.

3. Methodology

The proposed low-light enhancement framework is combined optimization-based decomposition
and learning-based enhancement network (CODEN) as shown in Fig. 2.

The proposed algorithm goes through a two-step process to enhance low-light image. In the
decomposition step, the low-light input image, f low

in , is decomposed into illumination, f low
L , and

reflectance, f low
R , components based on the Retinex model. The enhancement step first creates

a set of three derived inputs including f low
L , the gamma corrected illumination, f GC

L , and the
histogram equalized illumination, f HE

L . The illumination enhancement net (IEN) then takes as
input the set of three derived inputs to enhance the brightness and contrast of the illumination.
The enhanced illumination, f E

L , and f low
R are combined by pixelwise multiplication to produce the

enhanced output image, f E
out.

3.1. Decomposition

The decomposition process shown in Fig. 2 combines the Retinex model-based optimization and
learning-based decomposition net (DCN) as shown in Fig. 3.
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Fig. 2. The combined optimization-based decomposition and enhancement network
(CODEN).

Fig. 3. The decomposition step of the proposed framework. The number of channels are
provided for each fL and fR.

In the decomposition process, gradients of the illumination are minimized via edge-preserved
smoothing, and the reflectance is denoised while preserving detail information. The optimization
process enables flexible adjustment of parameters and regularization term [17]. On the other hand,
DCN accelerates the entire decomposition process using parallel computation of convolution
layers [17]. As a result, we can take advantage of both flexibility by the optimization process and
fast processing speed by parallel processing of the convolutional layers.

In the optimization process in Fig. 3, the reflectance and illumination are estimated by
minimizing the combined ℓ1 and ℓ2 objective function as:

arg min
fL,fR
λ1 ∥fLfR − g∥2

2 + λ2 ∥∇fL∥2
2 + λ3 ∥∇fR∥1, (1)

where fL and fR respectively represent illumination and reflectance, ∇ is the gradient opertion,
and λ1, λ2 and λ3 are regularization parameters for corresponding terms. The first term in Eq. (1)
is a data fidelity term for the input image, and minimization of ∥∇fL∥2

2 makes the illumination
smooth in the ℓ2 sense. Minimization of ∥∇fR∥1 removes noise while preserving edges. Since
the ℓ1-norm is not differentiable, minimization of Eq. (1) is transformed to the differentiable
problem using the splitting method [49] as

arg min
fL,fR
λ1 ∥fLfR − g∥2

2 + λ2 ∥∇fL∥2
2 + λ3 ∥d∥1 + λ4 ∥d − ∇fR − b∥2

2, (2)

where λ3 and λ4 represent bregman penalization parameters. The auxiliary variable d and the
Bregman variable b are computed as [49]

d = shrink(∇fR + b, λ3/λ5), b = b + ∇fR − d, (3)
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where the shrink operation is defined as

shrink(x,α) =
x
|x|

max(x − α, 0), (4)

The closed form solutions of (2) can be obtained using the Fourier transfrom as

fL = F−1
[︃

F {λ1fL}
λ1 + λ2∇T∇

]︃
, and fR = F−1

⎡⎢⎢⎢⎢⎢⎣
F
{︂
λ1

g
fL + λ4∇

T (d − b)
}︂

F
(︁
λ1 + λ4∇T∇

)︁ ⎤⎥⎥⎥⎥⎥⎦ , (5)

where fL is the smoothed illumination, and fR is the denoised reflectance with preserved edges.
More specifically, fR is obtained using the pre-estimated fL. The corresponding optimization
process repeats five times until convergence.

The decomposition net (DCN) takes two inputs: i) the reflectance estimated by the optimization
method and ii) a set of three derived illumination inputs including, the estimated, histogram
equalized, and gamma corrected illuminations. For fast computation and acceptable performance,
the DCN has three convolutional layers to generate the denoised reflectance with preserved
details and the smoothed illumination with a wide dynamic range and high contrast. To train the
DCN, we used edge-preserving smoothing datasets [50] as shown in Fig. 4. Since the reflectance
has three channels in the DCN input, we combined three illumination channels estimated by the
optimization process. By making the reflectance and illumination inputs have the same number
of channels, we can share the first conv layer of the DCN. For learning the illumination, the
grayscale of ground truth (GT) was used. On the other hand for learning the reflectance, an
additive white Gaussian noise of range [0, 50] was added to the input data.

Fig. 4. Pair of input (top row) and edge-preserving smoothing images (bottom row) in the
dataset [50].

The loss function to train the DCN consists of two terms: illumination estimation loss and
reflectance estimation loss as

LDCN = LfL + LfR , (6)

where

LfL =
1
N

N∑︂
i

∥︁∥︁fL − f gr
GT

∥︁∥︁2 , and LfR =
1
N

N∑︂
i
∥fR − fin∥2 , (7)

where fL, fR, f gr
GT , and fin respectively represent the estimated illumination, estimated reflectance,

grayscale GT, and input images of the datasets in [50]. Minimization of LfL removes texture
components from the illumination component and learns GT images from the edge-preserving
smoothing dataset [50], whereas minimization of LfR removes noise in the reflectance component
preserving edge details using the input images in the dataset.
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In order to prove the efficiency of our decomposition method, an ablations study was performed
on both learning and optimization steps as shown in Fig. 5. For the illumination, the learning step
failed in complete smoothing in some textured regions. For the illumination, the learning step
failed in complete smoothing in some textured regions, which results in incompletely estimating
the details in the reflectance. On the other hand, for the reflectance, the learning step successfully
removed noise as shown in the cropped sky region while it could not preserve the details in the
cropped cliff region. The optimization step succeeded in globally smoothing the illumination,
but lost some important structures, which might result in halo artifacts in the final output image.
For the reflectance, the optimization step could not completely remove the noise. On the other
hand, the combined optimization and learning steps produced well-smoothed illumination while
preserving structures, and well removed noise in the reflectance while preserving edges.

Fig. 5. Comparison of decomposed illumination and reflectance according to ablation study
of learning and optimization steps.

3.2. Enhancement

In the enhancement step, the brightness and contrast of the illumination, which is one of the two
outputs from the decomposition step, are enhanced. Since there is a limit to enhancing both
brightness and contrast with the decomposed illumination alone, gamma correction (GC) and
histogram equalization (HE) illuminations are additionally combined to create the set of derived
inputs as shown in Fig. 6. The GC input helps improving and adjusting the brightness of the
result image, and the HE input helps improving the contrast of the result image.

Results of gamma-corrected images with four different gamma values are shown in Fig. 7. By
changing the value of γ in f GC

L = (f low
L )γ, the gamma value of GC is adjusted. As γ decreases,

the brightness of the result image increases.
The illumination enhancement net (IEN) takes as input the set of derived illumination inputs,

and produces the resulting illumination with enhanced brightness and contrast. As shown in
Fig. 2, the IEN consists of two convolutional layers and six RSEBs. Although Gu et al. used 20
RSEBs to improve the performance of remote sensing super-resolution in their original work,
we used only six RSEBs to speep up learning without gradient vanishing. We experimentally
observed that more than six RSEBs did not further improve the enhancement performance.
An RSEB takes local residual learning, which improves learning speed and prevents gradient
vanishing as shown in Fig. 8(a). The squeeze and excitation block (SEB) has squeezing and
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(a) Input (b) GC (c) HE

Fig. 6. Three derived inputs: (a) the decomposed illumination, (b) the gamma-corrected
(GC) illumination, and (c) the histogram-equalized (HE) illumination.

Fig. 7. Comparison of brightness of result image according to gamma value of GC of
derived inputs.

Fig. 8. Residual squeeze and excitation block (RSEB) and squeeze and excitation block
(SEB) included in Enhance-Net.

excitation operations [51] as shown in Fig. 8(b). In the squeezing operation, a channel descriptor
is created for each channel through average pooling. In the excitation operation, the number
of dimensions of the feature map is reduced by the reduction ratio and the importance of the
channel is readjusted. After that, the dimension of the feature map is restored to its original
size. The SEB can help the proposed network to learn more in the process of compressing and
expanding the scalar representing the feature map.

To train the IEN, we used the low-light (LOL) datasets as shown in Fig. 9 [20]. The LOL
dataset consist of 500 pairs of low- and normal-light images taken from real scenes including 485
train data and 15 evaluation data. We added 485 synthetic data by applying gamma correction to
the normal-light image of train data of LOL datasets to increase the number of train data. A total
of 970 paired data were used for training by combining real data and synthetic data.

The loss function for the IEN uses mean squared error (MSE) as

LIEN =
1
N

N∑︂
i

∥︁∥︁f E
L − f LOL

GT
∥︁∥︁2 , (8)

where f E
L represents the enhanced illumination, that is the output of the IEN, and f LOL

GT the
normal-light image of the LOL dataset.

To train the IEN, we made derived inputs including gamma-corrected and histogram equalized
low-light images, and made the grayscale of normal-light images for the IEN output. Since the
IEN enhances only brightness and contrast, it does not perform the decomposition step for the
LOL dataset.
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Fig. 9. Normal / Low(real) / Low(synthetic)-light pairs of the LOL dataset that is available
publicly [15].

4. Experiment results

The proposed method is compared with the existing method from a qualitative and quantitative
point of view through extensive experiments. For comparison, we use the published code for
the existing methods. Overall, we conducted the experiment from three perspectives. 1) We
compare the proposed method with existing methods including optimization methods, deep
learning methods, contrast enhancement methods, etc. in the low-light enhancement task. 2) We
prove the superiority of the proposed method through qualitative and quantitative evaluation. 3)
We explain the necessity of each element of the proposed method through an ablation study.

The optimization method and learning method used in this paper were implemented in Python
3.8. We also used pytorch open source machine learning framework for deep learning model
inference. All the algorithms were run on Nvidia GeForce RTX 3090 GPU and Intel Core
i7-8700K CPU equipped with 88 GB of RAM.

For training Decom-Net and Enhance-Net, adam optimizer is used for back-propagation,
learning rate is set to be 1e−4, batch size is set to be 4 and patch-size to be 224 x 224. The (6), (8)
loss functions are used to train Decom-Net and Enhance-Net penalizing the network for creating
output that similar to target. The learning-based methods are trained on Nvidia GeForce RTX
3090 GPU. The training code ran for about 3 hours to train Decom-Net and about 6 hours to train
Enhance-Net. In decomposition step, when model-based optimization is used, λ1, λ2, λ3 and λ4
are set to 100, 100, 1 and 1 respectively.

4.1. Ablation study

In this paper, we propose Enhance-Net to improve the brightness and contrast of decomposed
illumination based on the Retinex model. Enhance-Net includes derived inputs and RSEB.
Figure 10 shows the results of performing an ablation study for two features. In the case of
removing the derived inputs, it was replaced with three channels of same decomposed illumination,
and in the case of removing the RSEB, that was replaced with a plain CNNs with the same
number of layers. In the case of (b), when all are removed, the result shows that the brightness
is not significantly improved. In the case of (c), when only the derived inputs were used, the
brightness was greatly improved, but the contrast was not preserved. In the case of (d), when
only RSEB is used, the contrast is excessively improved, showing the result that the detail of the
bird’s wing is saturated. In the case of (e), when both are used, both the brightness and contrast
are properly improved, showing a visually excellent result. The blind/referenceless image spatial
quality evaluator (BRISQUE) [52] metric was used to quantitatively evaluate the result of each
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case. The BRISQUE is a method to numerically measure the degree of distortion of natural
images through mean subtracted contrast normalized (MSCN) processing. Accordingly, it can be
said that the lower the BRISQUE score, the closer to a natural image without distortion. The
case of (e) using both RSEB and derived inputs shows the lowest BRISQUE score.

Fig. 10. Comparison of brightness and contrast of the resulting image according to the
ablation study of the derived inputs and RSEB: (b) Without all (BRISQUE:24.07), (c)
Only derived inputs (BRISQUE:15.68), (d) Only RSEB (BRISQUE:27.05), (e) With both
(BRISQUE:10.98)

4.2. Visual and subjective comparisons

For the qualitative evaluation of the proposed method, a comparison of the results of several
different methods is shown in Fig. 11. Figure 11 presents a comparison of three natural low-light
images. When viewed as a whole or in detail, our method achieves visually pleasing results by
showing enhanced results in both brightness and contrast with fewer artifacts. As shown in the
part cropped by the red square, our method improves the brightness for the part where the dark
and bright regions of the input image are together, while preserving the contrast well. On the other
hand, CVC and LDR methods do not improve brightness significantly because they only improve
contrast [12,13]. Since MBLLEN and Retinex-Net methods are brightness enhancement methods
by deep learning networks, they show a result that does not preserve contrast by significantly
improving the brightness of dark areas [14,15]. In addition, the Retinex-Net method and Park’s
method have limitations in smoothing the texture during decomposition based on the Retinex
model if you look at the cropped image, you can see that the detail of the texture part of the result
image is lost [15,38]. If the illumination is further smoothed for preserving detail in the texture
part of the result image, a halo effect can be occurred in the structure part of the result image.
However, proposed method smoothes the edges while preserving the edges of the illumination
when decomposed based on Retinex model, thereby preserves the detail of the texture part of the
result image and minimizes the halo effect of the structure part.

4.3. Quantitative comparisons

We demonstrate the objective performance of ours using quantitative comparison of the proposed
method with 11 other methods (CVC, LDR, MBLLEN, Zero-DCE, LIME, Retinex-Net, Park
et al., and Hao et al.) A fusion-based enhancing method (MF), robust Retinex model (RRM),
LECARM) using two kind of metrics, no reference image quality assessment (IQA) and full
reference IQA [12–15,20,21,37,40,43,48,53]. No-reference IQA requires only one image for
quality measurement, and full reference IQA requires a pair of images for quality measurement
and original images.

Table 1 shows values measured by natural image quality evaluator (NIQE) and perception-based
image quality evaluator (PIQE) metrics, that are non-reference measurement IQA [54,55]. The
NIQE is predicted as the gap between a multivariate Gaussian (MVG) fit of the NSS features
derived from the test image, and a MVG model of the quality aware features derived from clean
images without distortion. The PIQE is a measurement method that indicates the degree of
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Fig. 11. Comparison with other methods for images with dark area.

distortion of a test image by using the human visual system. Therefore, the lower the NIQE and
PIQE scores, the better the image quality. A total of 40 data from DICM, Fusion, LIME, and
MEF datasets were used for measurement. It can be seen that ours has the lowest values for both
NIQE and PIQE.

Table 1. Average NIQE, PIQE value for randomly selected 40 images of DICM,
Fusion, LIME, MEF datasets [13,20,55,57,58].

Metrics CVC LDR MBLLEN Zero-DCE LIME Retinex-Net

NIQE 3.331 3.215 3.008 3.390 3.283 4.927

PIQE 35.603 33.637 31.35 33.456 44.243 39.838

Metrics Park et al. Hao et al. MF RRM LECARM Ours

NIQE 3.689 3.267 3.139 3.836 3.261 2.862
PIQE 46.822 38.396 32.618 41.168 31.903 28.410

Table 2 shows the values measured by PSNR and SSIM metric, which are full reference
IQA [56]. PSNR is a measurement method representing the value of noise with respect to the
maximum value that a signal can have. SSIM is a method of measuring the degree of structural
distortion by comparing a test image with an original image. The higher PSNR and SSIM values,
the better image quality. For measurement data, 15 test images of LOL datasets were used. Also,
it can be seen that ours has the highest values for both PSNR and SSIM.
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Table 2. Average PSNR, SSIM value for 15 test images of LOL datasets.

Metrics CVC LDR MBLLEN Zero-DCE LIME Retinex-Net

PSNR 10.48 14.443 12.863 13.547 14.521 15.145

SSIM 0.23 0.433 0.431 0.449 0.325 0.325

Metrics Park et al. Hao et al. MF RRM LECARM Ours

PSNR 13.028 12.046 15.236 12.514 12.863 15.394
SSIM 0.395 0.528 0.389 0.567 0.431 0.577

5. Conclusion

To enhance low-light images by optimally adjusting both brightness and contrast, we combined
optimization-based decomposition and learning-based enhancement network. The proposed
method is divided into decomposition and enhancement steps. In the decomposition step, an
input image is decomposed into illumination and reflectance using both optimization and learning
methods. In the enhancement step, the brightness and contrast of the decomposed illumination
are simultaneously enhanced by the illumination enhancement net (IEN). The proposed method
improves low-light images in an end-to-end manner. The several experiments showed the
effectiveness of each component of the proposed framework. The proposed DCN and IEN used
paired low/normal-light datasets for training with additional synthetic data. In the future, we will
try to design an unsupervised learning method using unpaired images.
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