
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:12071  | https://doi.org/10.1038/s41598-022-16217-z

www.nature.com/scientificreports

Neural network‑based method 
for diagnosis and severity 
assessment of Graves’ orbitopathy 
using orbital computed 
tomography
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Nam Ju Moon2 & Jeong Kyu Lee 2*

Computed tomography (CT) has been widely used to diagnose Graves’ orbitopathy, and the 
utility is gradually increasing. To develop a neural network (NN)‑based method for diagnosis and 
severity assessment of Graves’ orbitopathy (GO) using orbital CT, a specific type of NN optimized 
for diagnosing GO was developed and trained using 288 orbital CT scans obtained from patients 
with mild and moderate‑to‑severe GO and normal controls. The developed NN was compared with 
three conventional NNs [GoogleNet Inception v1 (GoogLeNet), 50‑layer Deep Residual Learning 
(ResNet‑50), and 16‑layer Very Deep Convolutional Network from Visual Geometry group (VGG‑
16)]. The diagnostic performance was also compared with that of three oculoplastic specialists. The 
developed NN had an area under receiver operating curve (AUC) of 0.979 for diagnosing patients 
with moderate‑to‑severe GO. Receiver operating curve (ROC) analysis yielded AUCs of 0.827 for 
GoogLeNet, 0.611 for ResNet‑50, 0.540 for VGG‑16, and 0.975 for the oculoplastic specialists for 
diagnosing moderate‑to‑severe GO. For the diagnosis of mild GO, the developed NN yielded an AUC of 
0.895, which is better than the performances of the other NNs and oculoplastic specialists. This study 
may contribute to NN‑based interpretation of orbital CTs for diagnosing various orbital diseases

Graves’ orbitopathy (GO) is an autoimmune disorder that is mainly associated with Graves’ disease (GD). GO 
is primarily diagnosed based on its characteristic ophthalmic manifestations such as eyelid retraction, exoph-
thalmos, and extraocular muscle (EOM) involvement, along with thyroid  dysfunction1. However, inconclusive 
ophthalmic features in patients with euthyroidism or thyroiditis sometimes lead to an uncertain  diagnosis2. No 
laboratory test or clinical findings pathognomonic for GO are available currently. Various diagnostic criteria for 
GO have been  proposed3, but they remain controversial.

Computed tomography (CT) has been widely used to diagnose GO and determine appropriate treatment 
modalities. In the past, it was mainly used to provide supportive information for EOM enlargement when the 
clinical diagnosis was difficult. However, the application of CT to assess the degree of proptosis, compressive 
optic neuropathy, or even the activity of GO has been gradually  increasing4–7. Despite the method’s increased 
usability, diagnosis of GO based on orbital CT findings had some shortcomings. It is difficult to identify changes 
in orbital fat using CT, and minimal changes in EOMs from normal variants can hardly be distinguished using 
this method. As there are no widely accepted studies on the normal variants of orbital tissues, it difficult to clearly 
distinguish orbital changes based on CT findings alone. Although several software programs are being developed 
for CT  analysis8,9, but a more intuitive and easier method is needed to analyze CT findings and provide objective 
results for predicting the diagnosis and prognosis of patients with GO.

A neural network is an algorithm that aims to recognize underlying relationships in datasets through a 
process that imitates how the human brain works. Recently, several neural network (NN)-based methods have 
been developed for image analysis and were applied to diagnose various ocular disorders such as glaucoma, 
diabetic retinopathy, and age-related macular  degeneration10–13. As the NNs were developed for general image 
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analysis, they may be insufficient for diseases that require multiple specialized images to detect structural changes, 
such as orbital disorders. Diagnosis of diseases by applying NN-based methods to CT images is already being 
attempted for a few organs such as the lungs and  brain14,15. However, NN-based techniques using orbital CT 
have rarely been investigated in diagnosing GO, and the usefulness remains to be unveiled. Therefore, in this 
study, we developed and evaluated a new NN that can be applied to GO diagnosis and severity assessment by 
analyzing orbital CT images.

Results
The average age of the patients with GO was higher than that of the normal controls, and the average age of 
patients with moderate-to-severe GO was higher than that of the mild GO patients (p < 0.001). The gender ratios 
also differed among the groups, with a higher proportion of women in the control group. The margin reflex 
distance (MRD) 1 and exophthalmos were significantly different between the groups (p < 0.001). The MRD1 was 
significantly higher in moderate-to-severe GO patients than other groups, and significantly higher in mild GO 
patients than controls. The exophthalmos was significantly greater in moderate-to-severe GO patients than mild 
GO patients and controls. There were no significant differences in exophthalmos between mild GO patients and 
controls. Table 1 presents the demographic characteristics of the groups.

Table 2 presents the experimental results of the proposed and conventional NNs, reporting the values averaged 
over 30 repetitive experiments. The experimental results indicate that the proposed method achieved an AUC 
of 0.905 for moderate-to-severe GO patients vs. mild GO patients vs. normal controls. For the moderate-to-
severe GO patients vs. normal controls, the proposed NN achieved an AUC of 0.979, while yielded a relatively 
low AUC of 0.895 for the mild GO patients vs. normal controls. It is interesting to note that the combination of 
all axial, coronal, and sagittal plane images produced higher diagnostic performance in terms of AUC than the 
use of CT images of only one or two planes. In addition, when using CT images of only one or two planes, the 
axial plane images tend to produce higher AUC compared with other planes for the mild GO patients vs. normal 
controls. On the other hand, using the sagittal plane images tends to produce higher AUC compared with other 
planes for the moderate-to-severe GO patients vs. mild GO patients and moderate-to-severe GO patients vs. 

Table 1.  Clinical and demographic characteristics of participants. MRD margin reflex distance, GO Graves’ 
orbitopathy. *One-way ANOVA test. **Pearson’s chi-square test.

Characteristics Mild GO Moderate-to-severe GO Controls p value

Number of patients (N) 99 94 95

Age (years) 38.4 ± 10.4 47.6 ± 15.0 29.3 ± 8.1  < 0.001*

Sex (male/female) 13/86 45/49 37/58  < 0.001**

Exophthalmos 16.7 ± 2.02 18.7 ± 3.27 17.2 ± 1.66  < 0.001*

MRD1 3.62 ± 1.18 4.22 ± 1.61 3.01 ± 1.09  < 0.001*

Table 2.  AUCs of diagnostic ability for Graves’ orbitopathy using NNs. AUC  area under the curve, CT 
computed tomography, GO Graves’ orbitopathy, NN neural network. ▼ indicates that the corresponding 
method is significantly worse than proposed model based on paired t-test. *▼: p < 0.01, **▼: p < 0.001. 
Significant values are in bold.

Model CT plane
Moderate-to-severe GO vs. 
controls Mild GO vs. controls

Moderate-to-severe GO vs. mild 
GO

Moderate-to-severe GO vs. 
mild GO vs. controls

Proposed model

Axial 0.920 ± 0.080**▼ 0.849 ± 0.059*▼ 0.843 ± 0.052**▼ 0.781 ± 0.054**▼

Coronal 0.956 ± 0.035*▼ 0.760 ± 0.069**▼ 0.855 ± 0.048**▼ 0.797 ± 0.045**▼

Sagittal 0.963 ± 0.029 0.821 ± 0.060**▼ 0.932 ± 0.032 0.833 ± 0.059**▼

Axial + coronal 0.973 ± 0.021 0.888 ± 0.049 0.892 ± 0.043**▼ 0.865 ± 0.043**▼

Axial + sagittal 0.971 ± 0.028 0.875 ± 0.058 0.941 ± 0.035 0.889 ± 0.044

Coronal + sagittal 0.970 ± 0.029 0.821 ± 0.064**▼ 0.935 ± 0.037 0.879 ± 0.043*▼

Axial + coronal + sagittal 0.979 ± 0.020 0.895 ± 0.052 0.933 ± 0.041 0.905 ± 0.029

GoogLeNet

Axial 0.827 ± 0.135**▼ 0.706 ± 0.091**▼ 0.754 ± 0.133**▼ 0.666 ± 0.065**▼

Coronal 0.774 ± 0.161**▼ 0.636 ± 0.063**▼ 0.714 ± 0.119**▼ 0.581 ± 0.027**▼

Sagittal 0.710 ± 0.189**▼ 0.800 ± 0.120**▼ 0.632 ± 0.189**▼ 0.673 ± 0.038**▼

ResNet-50

Axial 0.526 ± 0.070**▼ 0.528 ± 0.084**▼ 0.536 ± 0.111**▼ 0.534 ± 0.047**▼

Coronal 0.512 ± 0.091**▼ 0.499 ± 0.005**▼ 0.487 ± 0.058**▼ 0.509 ± 0.025**▼

Sagittal 0.611 ± 0.147**▼ 0.526 ± 0.120**▼ 0.491 ± 0.063**▼ 0.580 ± 0.072**▼

VGG-16

Axial 0.495 ± 0.043**▼ 0.512 ± 0.042**▼ 0.499 ± 0.006**▼ 0.508 ± 0.005**▼

Coronal 0.504 ± 0.019**▼ 0.498 ± 0.013**▼ 0.499 ± 0.007**▼ 0.508 ± 0.005**▼

Sagittal 0.540 ± 0.096**▼ 0.509 ± 0.058**▼ 0.531 ± 0.083**▼ 0.512 ± 0.009**▼
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mild GO patients vs. normal controls. We also validated the accuracy of the proposed NN. In the 30 repeated 
experiments, the proposed NN achieved accuracies of 0.930 for the moderate-to-severe GO patients vs. normal 
controls, 0.868 for the moderate-to-severe GO patients vs. mild GO patients, 0.826 for the mild GO patients vs. 
normal controls, and 0.842 for the moderate-to-severe GO patients vs. mild GO patients vs. normal controls.

The performance of GoogLeNet, which has the best diagnostic performance among the three conventional 
NNs, was much lower than that of the proposed model (p < 0.001). The AUC for discriminating between moder-
ate-to-severe GO patients vs. mild GO patients vs. normal controls was 0.673. In the diagnosis of moderate-to-
severe GO patients vs. normal controls, ROC curve analysis revealed 0.827 for GoogLeNet, 0.611 for ResNet-50, 
and 0.540 for VGG-16, respectively. Since each of the conventional NNs has only one input node, only single-
plane CT images were selected for each analysis.

Furthermore, we specified an ablation study of NN structure by changing the primary components from a 
baseline NN structure until the proposed structure is achieved. Table 3 presents the results of the ablation study, 
reporting the AUC values averaged over ten repetitive experiments for the moderate-to-severe GO patients 
vs. mild GO patients vs. normal controls. Specifically, Stage1 NN is the baseline structure and consists of three 
standard convolutional layers and one fully connected layer, reporting baseline performance. Stage2 NN, includ-
ing depthwise convolutions, exhibited considerable AUC improvement compared to Stage1 NN. Compared with 
the Stage2 NN, Stage3 NN improved AUC by including half depthwise convolution for orbit comparison. Finally, 
the proposed NN further improved AUC by separating the parameters of the half depthwise convolution into 
parts for the left and right orbits.

Figure 1 shows ROC curves representing the diagnostic performance of the oculoplastic specialists. The 
AUCs were determined to be 0.898 for the moderate-to-severe GO patients vs. mild GO patients, 0.975 for 
moderate-to-severe GO patients vs. normal controls, 0.781 for mild GO patients vs. normal controls, and 0.820 
for moderate-to-severe GO patients vs. mild GO patients vs. normal controls. The experimental results indicate 
that the performance of the proposed NN is comparable to that of the oculoplastic specialists for the case of 
moderate-to-severe GO patients vs. normal controls.

In NN studies, it is important to review the learning curves of the models during training to diagnose learn-
ing issues such as overfitting. Figure 2 depicts the learning curves of the proposed NN at each epoch averaged 
over 30 experiments. To obtain reliable results, we used the repetitive holdout cross-validation with random split 
whenever conducting each experiment because the learning curves can vary according to test sets. The figure 
indicates stable learning that the learning curves increase monotonically and then reach the best performance 
at the 10th epoch without oscillation.

Discussion
In a previous study, it has been reported that NN can be applied to the classification of GO patients and prog-
nosis  prediction16. Our results demonstrated the possibility of applying machine learning techniques to orbital 
CT images to discriminate patients with GO from normal controls effectively. The diagnosis of GO is usually 
unambiguous in patients with a history of GD and typical clinical features. However, if there are atypical features, 
CT or magnetic resonance imaging (MRI) is required to rule out other important diagnose. MRI can accurately 
reflect changes in soft tissue, but can be more expensive. The criteria for diagnosing GO patients with CT alone 
has not yet been established. However, there are many reports that abnormal findings such as extraocular muscle 
hypertrophy have been reported on CT images of GO  patients7,17. Therefore, if GO patients can be accurately 
diagnosed using CT scan, the risk of missing a diagnosis or unnecessary treatment can be avoided. We developed 
a novel convolutional NN that is specialized for GO diagnosis, and the AUC for diagnosing moderate-to-severe 
GO patients in comparison with normal controls was found to be the highest at 0.979, while it was 0.941 for dis-
criminating patients with moderate-to-severe and mild GO. In addition, the proposed NN demonstrated much 
higher performance than conventional NNs such as GoogLeNet, ResNet-50, and VGG-16. The performance of 
the proposed NN was comparable to or even higher than that of oculoplastic specialists, introducing the pos-
sibility of clinical use in ophthalmic practice.

Our proposed NN contained three convolutional layers with three input channels followed by one fully 
connected layer and a final sigmoid classification layer for binary classification and softmax layer for multi-
classification. Considering that more than 100 CT images with different planes must be analyzed for each patient, 
the configuration of multiple input channels ensures that all relevant features are available without  loss18. The 
proposed NN has main differences compared with the conventional NNs. First, the proposed NN could improve 

Table 3.  Ablation study of proposed NN for Graves’ orbitopathy in terms of AUC. AUC  area under the curve, 
GO Graves’ orbitopathy, NN neural network. Significant values are in bold.

Model Description Moderate-to-severe GO vs. mild GO vs. controls

Stage1 NN All the 3 layers of NN were composed of standard convolutions 0.774 ± 0.128

Stage2 NN The second and third layer’s convolutions of NN were replaced with 
depthwise convolutions 0.899 ± 0.020

Stage3 NN Depthwise convolutions were replaced with half depthwise convolu-
tions for the left and right orbits 0.902 ± 0.027

Proposed NN Unlike the Stage3 NN, half depthwise convolutions for the left and 
right orbits were separately trained 0.905 ± 0.029
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the diagnostic performance by including information processing pipelines for CT images of each plane and 
combining them, a technique not implemented in other NNs. Second, the proposed NN involves a novel process 
of binocular comparison that may be beneficial for diagnosing other orbital diseases. Meanwhile, the features 
in the proposed NN are extracted with two-dimensional (2D) approaches rather than three-dimensional (3D) 
techniques. Since CT images are 3D, 2D techniques may lack 3D spatial and volume information significant 
for classification. Nevertheless, most convolutional NNs so far have been designed for natural 2D  images19. A 
comparison of 3D and 2D convolutional NNs will be necessary in the future.

The NNs were less effective in distinguishing patients with mild GO from normal controls than patients with 
moderate-to-severe GO form normal controls. This result may be due to the limitation of relying solely on orbital 
CT findings to diagnose mild GO patients. Although there have been no reports of the diagnostic accuracy of 
orbital CT alone for mild GO, this approach may not be accurate in diagnosing mild GO with eyelid retraction 
of less than 2 mm or exophthalmos less than 3 mm. As such patients are usually diagnosed based on clinical 
findings rather than orbital CT, NN using orbital CT images may be less effective. Nevertheless, the proposed 
NN showed higher diagnostic performance than oculoplastic specialists in discriminating patients with mild 
GO from normal controls. Substantial inconsistency in image assessment among observers has been reported in 
previous studies, and the classification of CT findings for orbital diseases may also be prone to high intra- and 
inter-observer  fluctuations20,21. Therefore, it can be assumed that NNs are able to detect subtle and early changes 
that are difficult for humans to judge visually or consistently. Mild GO patients are often misdiagnosed as normal 
when their symptoms are not typical, and these patients can benefit most from NN in the diagnostic process. NNs 
can be helpful when there is a need to determine whether a patient has mild GO, such as when clinical features 
are inconclusive or when establishing a Graves’ disease treatment policy.

Overfitting, in which a model is trained too well and represents a poor model for unseen data, is a common 
issue when training a model with a small dataset. Most medical data are limited in number due to prevalence 
and acquisition costs, and overfitting was also an issue in our study. To overcome this problem, we reduced the 
number of features by preprocessing and validated the learning procedure using cross-validation and a learning 

Figure 1.  ROC curves of proposed NN and oculoplastic specialists. GO Graves’ orbitopathy, AUC  area under 
the curve.
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curve. When these methods were applied, the validation metric improved until a certain number of epochs was 
reached, then remained constant without decreasing, suggesting that no overfitting occurred.

Although we developed an NN, it is difficult to elucidate how the NN classifies orbital CT images as normal 
or GO. We attempted to evaluate the logic structure through which the NN works by classifying the feature map 
patterns, but owing to the nature of NNs as black boxes, no further tracking was possible. Previous studies have 
reported that changes in the size of the extraocular muscle or lacrimal gland in orbital CT are important for 
predicting activity or severity in GO  patients17,22. It is hard to know whether the NN classified orbital images 
according to changes in extraocular muscle or lacrimal gland in our study. It may be necessary to infer the diag-
nostic process of NN through segmentation of intra-orbital tissues and supervised training. Interpretability is 
important, and if it is impossible for a clinician to verify the logical mechanism or approach of NN, it is difficult 
to accept computer-aided diagnosis using NNs in clinical  practice19. Therefore, further study is needed to visual-
ize the convolutional layers and filters to form an idea of how machines classify images.

Our study has several limitations. First, there could have been selection bias due to the nature of the datasets, 
which were selected from a single tertiary hospital. As there is no standardized dataset of orbital CTs for GO, 
it was necessary to rely on the available hospital data. Further, the normal controls included patients who were 
evaluated for exophthalmos; therefore, the controls may not have accurately represented the normal population 
owing to the inclusion of patients with high myopia. However, there was no significant difference in the exoph-
thalmos between mild GO patients and controls. Considering the fact that it is difficult to obtain an orbital CT 
scan of a normal subject without any ocular symptoms, the controls can be designated as a normal control group. 
Furthermore, this study was based on only one imaging modality. The current algorithm does not incorporate 
clinical information. The severity of GO is mainly determined by clinical findings, and there are no criteria for 
orbital CT diagnosis. Therefore, if other information such as age, sex, and clinical pictures are also used for judg-
ment, further improvements in diagnostic performance can be expected.

In conclusion, we demonstrated the applicability of NNs to diagnosis of GO and its severity assessment using 
clinically routine orbital CTs. The proposed NN can reliably distinguish patients with moderate-to-severe GO 
from normal controls, although it is less effective in discriminating between patients with mild GO patients 
and normal controls. The performance of our technique is comparable to that of oculoplastic specialists. This 
research may contribute to NN-based interpretation of orbital CTs for diagnosing various orbital diseases. The 
code is publicly available at https:// github. com/ laymo nd1/ Graves- Orbit opathy- Diagn osis- using- Neural- Netwo 

Figure 2.  Learning curves of proposed neural network at each epoch averaged over 30 experiments. The blue 
and red lines correspond to the training and test datasets, respectively. Both lines in each case indicate the best 
performance at the 10th epoch without oscillation, and the area under the receiver operating characteristic 
curves (AUC) of all the learning curves increase monotonically. GO Graves’ orbitopathy.

https://github.com/laymond1/Graves-Orbitopathy-Diagnosis-using-Neural-Network
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rk. Further research is necessary to automate orbital CT analysis to develop a diagnosis system that is fully 
independent of human effort.

Materials and methods
The Institutional Review Board (IRB) of Chung-Ang University Hospital approved this study. This was a ret-
rospective study, and the requirement for informed consent was waived by the IRB of Chung-Ang university 
Hospital (IRB No. 1912-004-358). This study was conducted in accordance with the ethical standards outlined 
in the Declaration of Helsinki.

Study participants. The orbital CTs used in this study were obtained from 200 patients with GO and 100 
normal controls between December 2010 and December 2018. The GO patients were diagnosed based on Bar-
tley’s  criteria23, and the severity of GO (mild or moderate-to-severe) was evaluated according to the severity scale 
of the European Group on Graves Orbitopathy (EUGOGO)  consensus24. The patients with mild GO have one or 
more of the following: minor lid retraction (< 2 mm), mild soft-tissue involvement, exophthalmos < 3 mm above 
normal, no or intermittent diplopia and corneal exposure responsive to lubricants. The patients with moderate-
to-severe GO were defined as those with more severe clinical features without visual impairment than patients 
with mild GO. Normal controls were participants who visited the clinic for exophthalmos evaluation without 
any disease history and were confirmed to have no disease other than myopia. Exclusion criteria were an age of 
18 years or less, previous orbital surgery, axial length greater than 27 mm in either eye, and other orbital pathol-
ogy that may affect CT findings including myasthenia grave and progressive external ophthalmoplegia. The data 
of the patients including age, sex, MRD1, and exophthalmometry were recorded for analysis. CT images were 
obtained with one of the three following scanners: Brilliance CT 64 (Philips Medical Systems, Cleveland, OH, 
USA), Optima CT660 Freedom Edition (General Electric Medical Systems, Milwaukee, WI, USA), or IQon 
Elite Spectral CT (Philips Medical Systems, Cleveland, OH, USA). Continuous scanning with a slice thickness 
of 1.0 mm and slice increment of 1.0 mm was performed. All images were deidentified prior to transfer to the 
study investigators.

The CT images were jointly evaluated by an ophthalmologist and a radiologist, and images that were incom-
plete or inconsistent with the clinical findings were excluded. In total, 288 CT image sets were obtained, including 
99 cases of mild GO, 94 of moderate-to-severe GO, and 95 of normal controls.

Data preparation. The obtained CT images in the axial, coronal, and sagittal planes were uploaded to a 
RadiAnt DICOM viewer (Medixant Co., Poznan, Poland). To overcome the variations caused by differences in 
CT equipment, spline interpolation was used to fix the number of images in each plane to 32. Then, we manu-
ally cropped the region of interest (ROI) and removed the remaining black margin. To meet the fixed-size input 
requirement for NNs, the CT images were then zoom-interpolated, enlarging the region of interest, to 128 × 128 
for the axial (128, 128, 32) and sagittal (128, 128, 32) planes, and 64 × 128 for the coronal plane (64, 128, 32). The 
CT images were scaled to Hounsfield unit (HU) values, and fat and EOMs were selected in the ranges of −110 to 
−10, and 0–40 HU, respectively, to remove unnecessary  pixels17. Finally, all images were normalized by scaling 
between 0 and 1. Figure 3 shows a schematic overview of our preprocessing steps.

All 288 cases were separated and combined into four experimental groups: (1) moderate-to-severe GO vs. 
normal controls, (2) mild GO vs. normal controls, (3) moderate-to-severe GO vs. mild GO, and (4) moderate-
to-severe GO vs. mild GO vs. normal controls. Next, each experimental group was represented as an isolated 
dataset. To mitigate the effects of selection bias due to sex and age, we used holdout cross-validation with 
random split regardless of the clinical or demographic characteristics of the participants; for each dataset, 80% 
were used as a training set to train the NNs and the remaining 20% were used as a test set to evaluate the trained 
NNs. The final performances of the proposed NN and existing NNs were measured by averaging the results of 
30 repetitive experiments.

Convolutional NN. In practice, it is preferable to consider CT images from axial, coronal, and sagittal 
planes because they deliver different information for diagnosing GO. However, conventional NN is designed 
to accept three-channel inputs such as RGB color images. Although a single image plane may be handled by 
increasing the number of input channels of existing NNs, the conventional NNs are unable to utilize these three 
image planes concurrently with their original input layer. To deal with this issue, we design a new NN that 
is able to accept three image planes concurrently. Figure 4 shows an overview of the proposed NN. Each cell 
describes the behavior of the operator and the shapes of input and output nodes. The proposed NN has three 
input layers consisting of 32-bit single-precision floating point elements that take axial (128 × 128 × 32), sagit-
tal (128 × 128 × 32), and coronal images (64 × 128 × 32), which are handled independently before the final fully 
connected layer. In the proposed NN, first, features are extracted from convolutional and depth-wise convo-
lutional layers based on the input CT images of the maximum three different planes. A max pooling layer fol-
lows each convolution operation. After the first step, the sizes of the axial and coronal images are reduced to 
32 × 32 × 16 and 16 × 32 × 16, respectively. Since only one orbit is included in each sagittal image, the reduced 
size (32 × 32 × 32) was larger than those of the axial and coronal CT images. Next, feature maps are separately 
extracted from the left and right orbits of each image to compare the orbits to detect asymmetry or unilateral 
GO. For this purpose, we use depthwise convolution, where the filter size was set to half of the image size. Each 
convolutional filter extracts a real value from the separated left or right orbit image. Specifically, 16 convolutional 
filters are used for each orbit to produce the input values for the subsequent 16 × 2 nodes. Third, each group of 
16 × 2 nodes is flattened to 32 × 1 nodes, which are fully connected to the subsequent 4 × 1 nodes. Finally, the 
output values of 4 × 1 nodes are transferred to the output layer. The output layer includes one sigmoid node to 

https://github.com/laymond1/Graves-Orbitopathy-Diagnosis-using-Neural-Network
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calculate the significance value if the dataset consists of two classes, such as mild GO patients vs. normal con-
trols. For multi-class classification, such as moderate-to-severe GO patients vs. mild GO patients vs. normal 
controls, the output layer includes three softmax nodes.

Figure 5 shows a schematic block diagram of the proposed NN. As shown in Fig. 5, the proposed NN is 
divided into three parts of convolution layers, the fully connected layer, and the classifier. The parts up to the 
fully connected layer are calculated independently for each plane, and after concatenation, the extracted features 
are combined and used for prediction. In addition, Supplementary Fig. S1 visualizes the learned convolutional 

Figure 3.  Data preparation process. The soft tissue thresholds were set at −100 to + 40 attenuation values in 
Hounsfield units (HU) to remove unnecessary pixels. Manual cropping was performed, and the extracted region 
of interests (ROI) were unified in size by interpolation.
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Figure 4.  Overview of neural network modeling. The neural network consists of convolutional operators with a 
half depth-wise convolution layer for binocular comparison that reduces the number of parameters compared to 
that in a convolutional neural network.
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filters of the proposed NN. For simplicity, only the first 10 filters from each CT plane are shown, and the half 
depthwise convolutional filters are visualized by calculating the average for each of eight-by-eight grid areas.

NN evaluation. The performance of the proposed NN was evaluated by comparing it with three conven-
tional NNs: GoogLeNet Inception v1 (GoogLeNet), 50-layer Deep Residual Learning (ResNet-50), and 16-layer 
Very Deep Convolutional Network from Visual Geometry group (VGG-16)25–27. The NNs were implemented 
using the Tensorflow (2.1.0) and Keras (2.3.1) APIs, and overall experiments were executed on a GTX 1080Ti 
11 GB GPU. For a fair comparison, we used the well-known Xavier initialization method supported as default 
in the APIs for all  networks28. Specifically, because conventional NNs can train only one of image planes, we 
reported the performance values for the conventional NNs when CT images in a single plane were used as the 
input data. Each sample in the ImageNet dataset has 3 channels, which is RGB color scale, on the other hand, 
each sample of the medical data used in the experiment has 32 input channels. Thus, these convolutional net-
works were trained from scratch.

For comparison, three oculoplastic specialists were asked to perform four independent experiments in which 
they compared three experimental groups with full CT sets without any clinical information, as was done with 
the proposed and conventional NNs. The final grading was decided by the majority, and the diagnostic perfor-
mance in terms of the area under the receiver operating characteristic (ROC) curve was compared with that of 
the proposed NN.

Statistical analysis. All statistical analyses were performed using the open-source software R 3.4.0 (R 
Foundation for Statistical Computing, Vienna, Austria). The data were expressed as averages with standard 
deviations for the continuous variables and as sample numbers for the categorical variables. The differences in 
age, sex, and clinical features between the clinical groups were analyzed by one-way analysis of variance with 
Games-Howell post-hoc analyses and Pearson’s chi-square test, respectively. A value of p < 0.05 was considered 
statistically significant. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the 
diagnostic performances of the various NNs and those of the oculoplastic specialists in terms of area under the 
ROC curve (AUC).

Data availability
The datasets used and analysed during the current study are available from the corresponding author on reason-
able request.
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Figure 5.  The schematic block diagram of the proposed NN. The size of feature maps and the types of 
operations for each layer are described sequentially according to the data flow.
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