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ABSTRACT This paper investigates the problem of unknown virtual control directions in a state-quantized
adaptive recursive control design for a class of arbitrarily switched uncertain pure-feedback nonlinear
systems in a band-limited network. State quantization is considered for state feedback control in a band-
limited network. The primary contribution of this study is to provide a quantized state feedback adaptive
control strategy to address the unknown control direction and arbitrarily switched nonaffine nonlinearities.
Herein, a coupling problem between Nussbaum functions and quantization errors caused by quantized
state feedback control laws is considered in the Lyapunov-based design and stability analysis. A state-
quantized adaptive recursive control scheme using the function approximation is constructed without a priori
knowledge of the signs of the control gain functions, where the estimated parameters and Nussbaum-type
functions are adaptively updated via quantized states. Theoretical lemmas are derived to show that the
adaptive parameters and quantization errors of the closed-loop signals are bounded using the proposed
control scheme. The boundedness of the closed-loop signals and the convergence of tracking error to a
neighborhood of the origin are proved using the common Lyapunov function approach. Two simulation
examples are shown to illustrate the effectiveness of the proposed theoretical result.

INDEX TERMS State quantization, unknown control direction, switched pure-feedback nonlinear systems,
arbitrary switching, adaptive tracking.

I. INTRODUCTION
During the past few years, various control methodologies
have been developed for switched systems, which are a form
of common hybrid systems, because of their application
in the chemical industry, power control, mechanical oper-
ation, and other industrial productions ( [1]–[10] and ref-
erences therein). Among these methodologies, the common
Lyapunov function approach has been extensively studied
to control lower-triangular nonlinear systems with arbi-
trary switching. In [11]–[16], recursive and systematic
control strategies using the backstepping technique [17]
were presented for arbitrarily switched systems, where
unmatched nonlinearities were assumed to be known.
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Adaptive techniques [18]–[20] have been employed to
estimate system uncertainties in the nonlinear control
field. To deal with unknown switched nonlinearities,
approximation-based adaptive control problems of switched
nonlinear systems were studied in [21]–[25]. In [26], an adap-
tive neural fault-tolerant control problem was addressed
for uncertain switched nonstrict-feedback nonlinear sys-
tems with unmodeled dynamics and actuator faults. In [27],
a finite-time tracing problem was investigated for switched
nonlinear systems with backlash-like hysteresis and time-
varying delays. To consider control design problems in
a capacity-limited network, quantized control approaches
have been studied for uncertain switched nonlinear systems
with input quantization [28]–[34]. However, although con-
trol inputs were quantized, the reported design approaches
were based on continuous state feedback, namely, the state
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quantization problem in the sensor-to-controller channel
cannot be resolved in [28]–[34]. For the fully quantized
control of switched nonlinear systems, it is significant
to study the design and stability analysis methodologies
using quantized state feedback information, which is
discontinuous.

The signal quantization problem in the control design
and analysis of nonlinear systems is an emerging research
topic because of the increasing use of digital proces-
sors and communication networks with limited bandwidth
(see [35]–[37] and the references therein). In recent years,
function-approximation-based adaptive controllers have been
proposed to address uncertain lower-triangular nonlinear sys-
tems with input quantization [28], [38]–[41]. In these results,
input quantization was considered as one of input con-
straints and was compensated using the adaptive technique.
Contrary to input quantization, state quantization causes a
design difficulty owing to the discontinuously quantized state
feedback in the recursive design steps. To overcome this
difficulty, an adaptive backstepping control method was pre-
sented to stabilize systems with matched unknown param-
eters and known nonlinear functions [42]. By employing
the command-filtered backstepping technique [43], lower-
triangular nonlinear systems with state quantization were
considered to design adaptive trackers for dealing with var-
ious control problems such as unmatched parametric uncer-
tainties [44], state time delays [45], decentralization [46], and
switched nonlinearities [47]. Although these results [44]–[47]
provided several successful solutions to the state quantiza-
tion problems of uncertain lower-triangular nonlinear sys-
tems, there is scope for further improvement in the following
aspects. (i) The systems concerned in [44]–[47] have unity
control coefficients. That is, the virtual and actual control
gains are one and known. Thus, an unknown control direc-
tion problem remains open in the quantized state feedback
control field of lower-triangular nonlinear systems. (ii) The
systems discussed in [44]–[47] are in the strict feedback
form. Thus, an adaptive quantized state feedback control
problem for arbitrarily switched pure-feedback nonlinear sys-
tems with unknown nonaffine nonlinearities has not yet been
addressed.

The major design difficulty in dealing with these two
points lies in considering the coupling terms of Nussbaum
functions and quantization errors caused by the quantized
state feedback control laws in the Lyapunov-based design
and stability. To overcome this difficulty, technical lem-
mas for analyzing these coupling terms and a quantized-
state-based common adaptive control strategy for ensuring
the boundedness of the quantization errors should be
developed.

These observationsmotivate us to develop a state-quantized
adaptive tracking control strategy for arbitrarily switched
uncertain pure-feedback nonlinear systems with unknown
control directions in a capacity-limited network. It is assumed
that all states quantized by a uniform quantizer are only
accessible for feedback, and the pure-feedback nonlinear

functions and signs of the control gain functions induced from
the mean value theorem are unknown. Compared with related
works in the literature, the primary contributions of this study
are as follows: (i) the unknown control direction problem
is first considered in the quantized-state-based recursive
control design field of lower-triangular nonlinear systems;
and (ii) pure-feedback systems with unknown switched non-
linearities are first considered in the state-quantized control
field. To this end, a state-quantized adaptive controller is
designed using the command filtered backstepping technique
and Nussbaum functions. The learning laws for the adap-
tive parameters and Nussbaum variables are derived using
quantized states. Then, by developing technical lemmas, it is
shown that the quantization errors of the virtual and actual
control laws with Nussbaum functions are bounded. Based on
the common Lyapunov function method and the boundedenss
of quantization errors, we prove that the tracking errors are
semi-globally asymptotically bounded and converge to a
neighborhood of the origin in the sense of Lyapunov stability
criterion. Simulation examples are included to demonstrate
the effectiveness of the proposed state-quantized control
methodology.

The rest of this paper consists of the following parts.
A state-quantized adaptive control problem in the pres-
ence of unknown control directions and arbitrarily switched
pure-feedback nonlinearities is formulated in Section 2.
In Section 3, the state-quantized adaptive tracker design
and the stability analysis strategy are derived. In Section 4,
two simulations are provided to verify the effectiveness of
the proposed approach. Finally, the conclusions are drawn
in Section 5.

II. PROBLEM STATEMENT AND PRELIMINARIES
A. PROBLEM STATEMENT
Consider the following switched nonlinear pure-feedback
systems with arbitrary switching

ẋi = f ρ(t)i (x̄i, xi+1)+ d
ρ(t)
i (t), i = 1, 2, . . . , n− 1

ẋn = f ρ(t)n (x̄n, uρ(t))+ dρ(t)n (t)

y = x1 (1)

where x̄i = [x1, . . . , xi]> ∈ Ri, i = 1, . . . , n, are state
vectors, ρ(t) : [0,+∞)→ P = {1, 2, . . . , p} is the switching
signal, y ∈ R is a system output, ul ∈ R, ∀l ∈ P is a
control input of the lth subsystem, f li (x̄i, xi+1) : R

i+1
7→ R,

i = 1, . . . , n, ∀l ∈ P are unknown smooth functions of
the lth subsystem with xn+1 = ul , and d li ∈ R, i =
1, . . . , n, ∀l ∈ P, denote unknown external disturbances of
the lth subsystem.

In this study, the system (1) and the controller are con-
nected through a capacity-limited network environment.
Thus, the measured state variables are quantized and trans-
mitted to the control part. Then, the quantized discontinuous
state variables are only available for the control design. For
state quantization, a uniform quantizer is employed as a state
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quantizer as follows:

xqi , q(xi) =


Ej, Ej − 1

2 ≤ xi < Ej + 1
2

0, −
1
2 ≤ xi <

1
2

−Ej, −Ej − 1
2 ≤ xi < −Ej +

1
2

(2)

where i = 1, . . . , n, j ∈ Z+,1 > 0 is the quantization level,
E1 = 1, and Ej+1 = Ej + 1. Then, the quantization error
zx,i = xi − x

q
i satisfies the property

∣∣zx,i∣∣ ≤ 1/2.
For the quantized state feedback design in the presence of

unknown switched pure-feedback nonlinearities, we need the
following assumptions and lemmas.

Assumption 1 ([22], [48]):
∂f li (x̄i,xi+1)
∂xi+1

6= 0, i =

1, . . . , n, ∀l ∈ P, and there exist unknown real constants

hli,0 > 0 and h̄li,0 > 0 such that hli,0 ≤

∣∣∣∣ ∂f li (x̄i,xi+1)∂xi+1

∣∣∣∣ ≤ h̄li,0.

Additionally, the signs of
∂f li (x̄i,xi+1)
∂xi+1

are unknown.

Remark 1: Assumption 1 indicates that the control gain

functions
∂f li (x̄i,xi+1)
∂xi+1

of each subsystem are strictly positive or
negative. This is a sufficient condition for the controllability

of system (1) [22], [48]. The signs of
∂f li (x̄i,xi+1)
∂xi+1

mean the vir-
tual and actual control directions induced from the recursive
control design. Thus, this study considers a state-quantized
adaptive control design problem in the presence of unknown
control directions of switched pure-feedback nonlinear
systems.
Assumption 2 ([22]): There exist unknown constants

d li,0 > 0, i = 1, . . . n, ∀l ∈ P, such that |d li (t)| ≤ d
l
i,0.

Assumption 3 ([22], [49]): The reference trajectory yr
and its time derivative ẏr are bounded, and yr is only
available.
Assumption 4 ([42]): The state variables xi are not avail-

able for feedback. Instead, the quantized state variables xqi are
only available.
Remark 2: In this paper, the network control problem

under a band-limited network is considered for switched
nonlinear systems (1). Thus, the measured state variables
are quantized before network transmission to the controller.
Thus, Assumption 4 is given for the problem formulation of
the adaptive quantized state feedback control design.
Lemma 1 ([50]): For a Hurwitz matrix A ∈ Rn×n, H is

a symmetric positive definite matrix such that A>H +HA =
−2I with an identity matrix I ∈ Rn×n. Then, it is ensured that
‖eAt‖ ≤ β1e−β2t where β1 =

√
λmax(H )/λmin(H ), and β2 =

1/λmax(H ). Here, λmax(H ) and λmin(H ) are themaximum and
minimum eigenvalues of the matrix H , respectively.
Lemma 2 ([51]): For any constant δ > 0 and ϕ ∈ R,

it holds that 0 ≤ |ϕ| − ϕ tanh(ϕ/δ) ≤ 0.2785δ
The objective of this paper is to design a common

state-quantized adaptive controller ul , u, ∀l ∈ P for
system (1) under arbitrary switching and unknown con-
trol directions such that the output y follows the desired
trajectory yr .

Remark 3: Contrary to existing studies on quantized feed-
back adaptive control [44]–[47], a quantized state feed-
back control design problem in the presence of unknown
signs of control gain functions and unknown switched
pure-feedback nonlinearities is addressed in this paper. The
main difficulty of our study is to derive a state-quantized
control design and stability methodology for ensuring that
the quantization errors of Nussbaum-functions-based vir-
tual and actual control laws are bounded regardless of
unknown switched pure-feedback nonlinearities. This dif-
ficulty has not been solved in the existing control works
related to switched lower-triangular nonlinear systems with
input quantization [28]–[34] or quantized-state-based recur-
sive designs [44]–[47].

B. NUSSBAUM-TYPE GAIN
A continuous function N (ξ ) : R→ R is called a Nussbaum-
type function if it has the following properties [52]:

lim
s→+∞

sup
1
s

∫ s

0
N (ξ )dξ = +∞

lim
s→+∞

inf
1
s

∫ s

0
N (ξ )dξ = −∞. (3)

In this paper, the Nussbaum-type function N (ξ ) = eξ
2

cos ((π/2)ξ ) is utilized to deal with the unknown control
direction problem under state quantization.
Lemma 3 ([55]): Let V (t) and ξ (t) be smooth functions

defined on [0, tf ) with V (t) ≥ 0, ∀t ∈ [0, tf ), and N (ξ ) be
an even Nussbaum-type function. If the following inequality
holds

V (t) ≤ c0 + e−c1t
∫ t

0
[g(x(τ ))N (ξ )+ 1]ξ̇ec1τdτ (4)

for ∀t ∈ [0, tf ) where c0 > 0 and c1 > 0 are constants
and g(x(t)) is a time-varying parameter that takes values in
unknown closed intervals L := [l−, l+] with 0 /∈ L, then
V (t), ξ (t), and

∫ t
0 g(x(τ ))N (ξ )ξ̇dτ are bounded on [0, tf ).

C. RADIAL BASIS FUNCTION NEURAL NETWORKS
Radial basis function neural networks (RBFNNs) have been
widely used to approximate unknown nonlinear functions
derived from controller design procedures (see [53]–[58]).
Let us consider unknown continuous functions Fi(χi) ∈
�i→ Rwith compact sets�i and i = 1, . . . , n. According to
the universal approximation property of RBFNN [53], if the
number of neural nodes is sufficiently large and the basis
functions are chosen appropriately, there exist ideal bounded
weight vectorsW ∗i ∈ RNi such that

Fi(χi) = W ∗>i Bi(χi)+ εi(χi), χi ∈ �i (5)

where χi = [χi,1, . . . , χi,Mi ]
> are the input vectors, Bi(χi) ∈

RNi are the Gaussian basis function vectors with network
nodes Ni, εi are the network reconstruction errors bounded
by |εi| ≤ ε∗i with constants ε∗i , and ‖W

∗
i ‖ ≤ W̄i are

satisfied with constants W̄i. Due to the inherent property
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of Gaussion functions, there exist constants B∗i such that
‖Bi(χi)‖ ≤ B∗i [54], [56].

III. MAIN RESULTS
A. SYSTEM TRANSFORMATION
For recursive tracker design using the command-filtered
backstepping technique, system (1) is transformed into an
affine form. Using Assumption 1 and the implicit function
theorem [56], for ∀x̄i ∈ Ri, there exists a smooth ideal input
xi+1 = v∗li (x̄i) such that f

l
i (x̄i, v

∗l
i ) = 0. From the mean value

theorem, it is obtained that [59]

f li (x̄i, xi+1) = f li (x̄i, v
∗l
i )

+

∫ 1

0

∂f li (x̄i, xi+1,λ)

∂xi+1,λ
dλ(xi+1 − v∗li ) (6)

where i = 1, . . . , n, xi+1,λ = λxi+1 + (1− λ)v∗li ; λ ∈ [0, 1],

∀l ∈ P, and xn+1 = u. By defining hli =
∫ 1
0
∂f li (x̄i,xi+1,λ)
∂xi+1,λ

dλ,
system (1) is represented by [22]

ẋi = hlixi+1 − h
l
iv
∗l
i + d

l
i (t), i = 1, 2, . . . , n− 1

ẋn = hlnu− h
l
nv
∗l
n + d

l
n(t). (7)

B. DESIGN OF STATE-QUANTIZED ADAPTIVE TRACKER
For the command filtered backstepping design of the pro-
posed state-quantized adaptive controller, the error signals are
defined as

s1 = x1 − yr (8)

si+1 = xi+1 − α̂i,1 (9)

α̃i,1 = α̂i,1 − αi (10)

where i = 1, . . . , n− 1, s1 and si+1 are error surfaces, αi are
intermediate signals, and α̂i,1 and α̃i,1 are filtered signals and
filtering errors of the intermediate signals, respectively. The
command filtered signals are given by the following second-
order low-pass filters

˙̂αi,1 = α̂i,2
˙̂αi,2 = −2ζiωiα̂i,2 − ω2

i (α̂i,1 − αi) (11)

with α̂i,1(0) = αi(0) and α̂i,2(0) = 0, and positive constants
ζi and ωi.
Remark 4: Because the quantized state variables that are

non-differentiable cannot be directly utilized in the recursive
design using the common Lyapunov function, we present the
state-quantized control design steps of switched nonlinear
systems with unknown control directions. In this subsec-
tion, we first derive intermediate signals αi using unquan-
tized state signals. Then, a state-quantized adaptive tracker
u is designed using the structure of the intermediate signals.
Thus, the errors between the unquantized and quantized sig-
nals (i.e., quantization errors) are analyzed for guaranteeing
closed-loop stability in the next subsection. In the proposed
state-quantized adaptive tracker, the dynamics of the Nuss-
baum variables using quantized states are designed to ensure
that the quantization errors are bounded. It is shown that

the unknown control direction problem can be overcome by
quantized state feedback.
Step 1: Consider the first error surface s1 = x1 − yr .

From (7), (9) and (10), we have

ṡ1 = hl1s2 + h
l
1α̃1,1 + h

l
1α1 − h

l
1v
∗l
1 + d

l
1 − ẏr . (12)

A common Lyapunov function is defined as V1 =

s21/(2h1,m) with h1,m = maxl∈P{h̄l1,0}. For any l ∈ P, the
time derivative of V1 is obtained as

V̇1 =
1

h1,m
s1(hl1s2 + h

l
1α̃1,1 + h

l
1α1 − h

l
1v
∗l
1 + d

l
1 − ẏr ).

(13)

Adding and subtracting s41 into (13) yields

V̇1 =
1

h1,m
s1(hl1s2 + h

l
1α̃1,1 + h

l
1α1 + h1,mg

l
1 + d

l
1)− s

4
1

(14)

where gl1 = −(h
l
1/h1,m)v

∗l
1 (x1)+ s

3
1 − ẏr/h1,m.

Using Assumptions 1 and 3, and Young’s inequalities,
there exist a continuous function F1(χ1) and a constant
ι1 > 0 such that [22]

s1gl1 ≤ s1F1(χ1)+ ι1, ∀l ∈ P (15)

where χ1 = [x1, s1]> and F1(χ1) = (1/(2ι1))[(v̄∗1(x1))
2
+

(M/h1,m)2]s1 + s31; v̄
∗

1(x1) = maxl∈P{v∗l1 (x1)} and a constant
M satisfying |ẏr | ≤ M . Using (5), it holds that F1(χ1) =
W ∗>1 B1(χ1) + ε1(χ1) where W ∗1 , B1, and ε1 are the ideal
weighting vector, the Gaussian basis function vector, and
the reconstruction error of the RBFNN, respectively. Using
Young’s inequality

s1W ∗>1 B1(χ1) ≤ s21θ1 +
κ1

4
(16)

where θ1 = (W̄1B∗1)
2/κ1 with a constant κ1 > 0, the

following inequality holds

V̇1 ≤
hl1
h1,m

s1(s2 + α̃1,1)− s41 +
κ1

4
+ ι1

+
1

h1,m
s1(hl1α1 + h1,ms1θ1 + h1,mε1 + d

l
1). (17)

The first intermediate signal α1 is given by

α1 = N (ξ1)

(
k1s1 + s1θ̂1 + s1ψ̂1 tanh

(
s21
δ1

))
(18)

where N (ξ1) is a Nussbaum function, θ̂1 and ψ̂1 are the
estimates of θ1 and a constant ψ∗1 to be determined later,
respectively, and k1 > 0 and δ1 > 0 are design parameters.
The tuning laws of ξ1, θ̂1, and ψ̂1 are designed using quan-
tized state feedback signals at the last step. Then, from (18),
the inequality (17) becomes

V̇1 ≤ −k1s21 +
hl1
h1,m

s1(s2 + α̃1,1)

+
1

h1,m
s1(h1,mε1 + d l1)− s

4
1 +

κ1

4
+ ι1
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+

(
hl1
h1,m

N (ξ1)+ 1
)[
k1s21 + s

2
1θ̂1 + s

2
1ψ̂1 tanh

(
s21
δ1

)]
−s21θ̃1 − s

2
1ψ̃1 tanh

(
s21
δ1

)
− s21ψ

∗

1 tanh
(
s21
δ1

)
(19)

where θ̃1 = θ̂1 − θ1 and ψ̃1 = ψ̂1 − ψ
∗

1 .
Step i (i = 2, . . . , n − 1): From (7), (9), (10), and (11),

we have

ṡi = hlisi+1 + h
l
i α̃i,1 + h

l
iαi − h

l
iv
∗l
i + d

l
i − α̂i−1,2. (20)

For any l ∈ P, the time derivative of a common Lyapunov
function candidate Vi = s2i /(2hi,m) with hi,m = maxl∈P{h̄li,0}
is represented by

V̇i =
1
hi,m

si(hlisi+1 + h
l
i α̃i,1 + h

l
iαi − h

l
iv
∗l
i

+d li − α̂i−1,2). (21)

Adding and subtracting s4i into (21) yields

V̇i =
1
hi,m

si(hlisi+1 + h
l
i α̃i,1 + h

l
iαi + hi,mg

l
i + d

l
i )− s

4
i

(22)

where gli(χi) = −(h
l
i/hi,m)v

∗l
i + s

3
i − α̂i−1,2/hi,m with χi =

[x̄i, si, α̂i−1,2]>.
Then, there exist a continuous function Fi(χi) and a con-

stant ιi > 0 such that

sigli ≤ siFi(χi)+ ιi, ∀l ∈ P. (23)

The nonlinear functionFi(χi) is approximated by the RBFNN
as follows: Fi(χi) = W ∗>i Bi(χi) + εi(χi) where W ∗i , Bi, and
εi are the ideal weighting vector, the Gaussian basis function
vector, and the reconstruction error of the RBFNN, respec-
tively. Using Young’s inequality, we have siW ∗>i Bi(χi) ≤
s2i θi + κi/4 where θi = (W̄iB∗i )

2/κi and κi > 0 is a constant.
Then, the following inequality holds

V̇i ≤
hli
hi,m

si(si+1 + α̃i,1)− s4i +
κi

4
+ ιi

+
1
hi,m

si(hliαi + hi,msiθi + hi,mεi + d
l
i ). (24)

The ith intermediate signal αi is designed as

αi = N (ξi)

(
kisi + siθ̂i + siψ̂i tanh

(
s2i
δi

))
(25)

where N (ξi) is a Nussbaum function, θ̂i and ψ̂i are estimates
of θi and a constant ψ∗i to be determined later, respectively,
and ki > 0 and δi > 0 are design parameters. Then,
substituting (25) into (24) gives

V̇i ≤ −kis2i +
hli
hi,m

si(si+1 + α̃i,1)

+
1
hi,m

si(hi,mεi + d li )− s
4
i +

κi

4
+ ιi

+

(
hli
hi,m

N (ξi)+ 1
)[
kis2i + s

2
i θ̂i + s

2
i ψ̂i tanh

(
s2i
δi

)]

−s2i θ̃i − s
2
i ψ̃i tanh

(
s2i
δi

)
− s2i ψ

∗
i tanh

(
s2i
δi

)
(26)

where θ̃i = θ̂i − θi and ψ̃i = ψ̂i − ψ∗i .
Step n: Using (7) and (9), the time derivative of a common

Lyapunov function candidate Vn = s2n/(2hn,m) with hn,m =
maxl∈P{h̄ln,0} is obtained as

V̇n =
1

hn,m
sn(hln(u− αn)+ h

l
nαn + hn,mg

l
n + d

l
n)− s

4
n (27)

where l ∈ P, αn is an intermediate signal, gln(χn) =
−(hln/hn,m)v

∗l
n +s

3
n−α̂n−1,2/hn,mwithχn = [x̄n, sn, α̂n−1,2]>.

Then, there exist a continuous function Fn(χn) and a constant
ιn > 0 such that

sngln ≤ snFn(χn)+ ιn, ∀l ∈ P. (28)

The nonlinear function Fi(χi) is approximated by the
RBFNN as follows: Fn(χn) = W ∗>n Bn(χn) + εn(χn) where
W ∗n , Bn, and εn are the ideal weighting vector, the Gaus-
sian basis function vector, and the reconstruction error of
the RBFNN, respectively.
Using Young’s inequality snW ∗>n Bn(χn) ≤ s2nθn +

κn/4 with θn = (W̄nB∗n)
2/κn and a constant κn, it holds that

V̇n ≤
hln
hn,m

sn(u− αn)− s4n +
κn

4
+ ιn

+
1

hn,m
sn(hlnαn + hn,msnθn + hn,mεn + d

l
n). (29)

The intermediate signal αn is selected as

αn = N (ξn)
(
knsn + snθ̂n + snψ̂n tanh

(
s2n
δn

))
(30)

where N (ξn) is a Nussbaum function, θ̂n and ψ̂n are esti-
mates of θn and ψ∗n to be determined later, respectively, and
kn > 0 and δn > 0 are design parameters.
Substituting (30) into (29) yields

V̇n ≤ −kns2n +
hln
hn,m

sn(u− αn)

+
1

hn,m
sn(hn,mεn + d ln)− s

4
n +

κn

4
+ ιn

+

(
hln
hn,m

N (ξn)+ 1
)[
kns2n + s

2
nθ̂n + s

2
nψ̂n tanh

(
s2n
δn

)]
−s2nθ̃n − s

2
nψ̃n tanh

(
s2n
δn

)
−s2nψ

∗
n tanh

(
s2n
δn

)
(31)

where θ̃n = θ̂n − θn and ψ̃n = ψ̂n − ψ∗n .
To design the state-quantized adaptive tracker u using

Nussbaum functions, we first define the quantized-state-
based error surfaces s′i as

s′1 = xq1 − yr
s′i+1 = xqi+1 − α̂

′

i,1 (32)
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where i = 1, . . . , n − 1 and α̂′i,1 are filtered signals of
virtual control laws α′i which are obtained from the following
second-order command filters

˙̂α′i,1 = α̂
′

i,2
˙̂α′i,2 = −2ζiωiα̂

′

i,2 − ω
2
i (α̂
′

i,1 − α
′
j) (33)

with α̂′i,1(0) = α
′
i(0) and α̂

′

i,2(0) = 0.
The common virtual control laws α′i and the actual control

law u using quantized state feedback signals are presented as

α′i = N (ξi)

(
kis′i + s

′
iθ̂i + s

′
iψ̂i tanh

(
s′2i
δi

))
(34)

u = α′n (35)

ξ̇i = γξ,i

(
kis′2i + s

′2
i θ̂i + s

′2
i ψ̂i tanh

(
s′2i
δi

)
−σξ,is′2i ξi

)
(36)

˙̂
θi = γθ,i

(
s′2i − σθ,is

′2
i θ̂i

)
(37)

˙̂
ψi = γψ,i

(
s′2i tanh

(
s′2i
δi

)
− σψ,is′2i ψ̂i

)
(38)

where i = 1, . . . , n and γξ,i, γθ,i, γψ,i, σξ,i, σθ,i, and σψ,i are
the positive design parameters.
Remark 5: In the existing studies on quantized state feed-

back adaptive control [42], [44]–[47], the signs of the control
coefficient functions were assumed to be known. That is,
the signs of nonlinear control gains were known in [42] and
nonlinear strict-feedback systems with unity control gains
were considered in [44]–[47]. However, in this paper, the
control directions (i.e., the signs of the control coefficient
functions hli) are assumed to be unknown. To deal with this
problem, the state-quantized adaptive tracking scheme using
Nussbaum functions is presented in (34)-(38). In (36)-(38),
the tuning laws of the adaptive parameters and Nussbaum
variables are derived using the quantized states.

C. STABILITY ANALYSIS USING QUANTIZATION ERRORS
Let us define the quantization errors of the recursively
induced closed-loop signals as

zs,i = si − s′i, zα,j = αj − α′j,

zα̂,j,1 = α̂j,1 − α̂
′

j,1, zα̂,j,2 = α̂j,2 − α̂
′

j,2,

zu = αn − u = αn − α′n (39)

where i = 1, . . . , n and j = 1, . . . , n− 1.
Then, we derive the following lemmas to show the bound-

edness of quantization errors.
Lemma 4: For any constant δ > 0 and any ϕ1, ϕ2 ∈ R,

it holds that
1) |ϕ1 tanh (ϕ21/δ)− ϕ2 tanh (ϕ

2
2/δ)| ≤ 1.6017|ϕ1 − ϕ2|

2) |ϕ21 tanh (ϕ
2
1/δ)− ϕ

2
2 tanh (ϕ

2
2/δ)| ≤ 1.1997|ϕ21 − ϕ

2
2 |

Proof: See Appendix I.
Lemma 5: Consider the adaptive laws (36)-(38).

(i) For any initial conditions such that θ̃i(0) ∈ �θ̃ ,i, it holds
that θ̃i(t) ∈ �θ̃ ,i, ∀t ≥ 0 where i = 1, . . . , n and
�θ̃ ,i = {θ̃i| |θ̃i| ≤ 3θ̃ ,i} are compact sets with unknown
constants 3θ̃ ,i.

(ii) For any initial conditions such that ψ̃i(0) ∈ �ψ̃,i,
it holds that ψ̃i(t) ∈ �ψ̃,i, ∀t ≥ 0 where i = 1, . . . , n
and �ψ̃,i = {ψ̃i| |ψ̃i| ≤ 3ψ̃,i} are compact sets with
unknown constants 3ψ̃,i.

(iii) For any initial conditions such that ξi(0) ∈ �ξ,i, it holds
that ξi(t) ∈ �ξ,i, ∀t ≥ 0 where i = 1, . . . , n and
�ξ,i = {ξi| |ξi| ≤ 3ξ,i} are compact sets with unknown
constants 3ξ,i.
Proof: See Appendix II.

Remark 6: To analyze the closed-loop stability using the
state-quantized adaptive tracking scheme (34)-(38), we need
to prove that the quantization error term u − αn in (31) is
bounded by the proposed state-quantized control scheme.
To this end, we derive Lemma 5. Lemma 5 indicates that
the proposed adaptive laws (36)-(38) ensure the bound-
edness of the parameter estimation errors θ̃i(t) and ψ̃i(t),
and the tuning parameter ξi(t). Lemma 5 is used to prove
the closed-loop stability using the state-quantized adaptive
tracking scheme (34)-(38) in Theorem 1.
Lemma 6: Consider the quantization errors zs,i, zα,j, zα̂,j,1,

zα̂,j,2, zu, and the uniform quantizer (2). There exist positive
constants Zs,i, Zα,j, Zα̂,j, and Zu such that |zs,i| ≤ Zs,i, |zα,j| ≤
Zα,j, ‖zα̂,j‖ ≤ Zα̂,j, and |zu| ≤ Zu where i = 1, . . . , n, j =
1, . . . , n− 1, and zα̂,j = [zα̂,j,1, zα̂,j,2]>.

Proof: The recursive proof steps are derived to show the
boundedness of the quantization errors.
i) Since |zx,i| ≤ 1/2 is ensured from the definition of the

quantizer (2), zs,1 is bounded as

|zs,1| = |zx,1| ≤ 1/2 , Zs,1. (40)

From (18) and (34), zα,1 is obtained as

zα,1 = N (ξ1)
[
k1(s1 − s′1)+ θ̂1(s1 − s

′

1)

+ψ̂1

{
s1 tanh

(
s21
δ1

)
− s′1 tanh

(
s′21
δ1

)}]
. (41)

From Lemma 5, it is satisfied that

|ξi| ≤ 3
∗
ξ,i, |θ̃i| ≤ 3

∗

θ̃ ,i
, |ψ̃i| ≤ 3

∗

ψ̃,i
(42)

where i = 1, . . . , n, 3∗ξ,i = max {|ξi(0)|,3ξ,i}, 3∗
θ̃ ,i
=

max {|θ̃i(0)|,3θ̃ ,i}, and 3
∗

ψ̃,i
= max {|ψ̃i(0)|,3ψ̃,i} are

constants. From the boundedness of ξi, there exists a
positive constant 3N ,i such that

|N (ξi)| ≤ 3N ,i, i = 1, . . . , n. (43)

In addition, using Lemma 4-(i) and |zs,1| ≤ Zs,1, we have
the inequality∣∣s1 tanh (s21/δ1)− s′1 tanh (s′21 /δ1)∣∣

≤ 1.6017 Zs,1 , Ztanh,1. (44)
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By substituting θ̂1 = θ̃1+θ1 and ψ̂1 = ψ̃1+ψ
∗

1 into (41),
it is obtained that

|zα,1| ≤ 3N ,1
[
k1Zs,1 + (3∗

θ̃ ,1
+ θ1)Zs,1

+(3∗
ψ̃,1
+ ψ∗1 )Ztanh,1

]
, Zα,1. (45)

From (11) and (33), the dynamics of the quantization
error zα̂,1 = [zα̂,1,1, zα̂,1,2]> is given by

żα̂,1 = A1zα̂,1 + D1zα,1 (46)

whereA1 =
[

0 1
−ω2

1 −2ζ1ω1

]
is a stable matrix andD1 =

[0, ω2
1]
>. The solution of the differential equation (46) is

represented by

zα̂,1(t) = eA1tzα̂,1(0)

+

∫ t

0
eA1(t−τ )D1zα,1(τ )dτ. (47)

Since the matrix A1 is invertible and |zα,1| ≤ Zα,1, it is
satisfied that for all t ≥ 0,

‖zα̂,1(t)‖ ≤ ‖e
A1t‖‖zα̂,1(0)‖

+Zα,1‖D1‖‖A
−1
1 (I − eA1t )‖. (48)

According to Lemma 1, ‖eA1t‖ ≤ β1,1e−β1,2t is satis-
fied with constants β1,1 > 0 and β1,2 > 0. Owing
to zα̂,1,1(0) = zα,1(0) and zα̂,1,2(0) = 0, we have
‖zα̂,1(0)‖ = |zα,1(0)|. Then, it holds that

‖zα̂,1(t)‖ ≤ β1,1|zα,1(0)|

+Zα,1‖D1‖‖A
−1
1 ‖(1+ β1,1)

, Zα̂,1 (49)

for all t ≥ 0. Thus, the inequalities |zα̂,1,1| ≤ Zα̂,1 and
|zα̂,1,2| ≤ Zα̂,1 hold.

ii) Using |zx,i| ≤ 1/2, |zα̂,i−1,1| ≤ Zα̂,i−1, (42), (43), and
Lemma 4-(i), zs,i and zα,i are bounded as

|zs,i| ≤ |zx,i| + |zα̂,i−1,1|

≤ 1/2+ Zα̂,i−1 , Zs,i (50)

|zα,i| ≤ 3N ,i
[
kiZs,i + (3∗

θ̃ ,i
+ θi)Zs,i

+(3∗
ψ̃,i
+ ψ∗i )Ztanh,i

]
, Zα,i (51)

where i = 2, . . . , n − 1, and Zs,i and Zα,i are positive
constants.
From (11) and (33), the dynamics of zα̂,i = [zα̂,i,1,
zα̂,i,2]> is given by

żα̂,i = Aizα̂,i + Dizα,i (52)

where i = 2, . . . , n − 1, Ai =
[

0 1
−ω2

i −2ζiωi

]
, and

Di = [0, ω2
i ]
>. Using the similar procedures

to (47)-(49), zα̂,i is bounded as

‖zα̂,i(t)‖ ≤ Zα̂,i, ∀t ≥ 0 (53)

where i = 2, . . . , n − 1 and Zα̂,i = β1,i|zα̂,i(0)| +
Zα,i‖Di‖‖A

−1
i ‖(1+β1,i) with a constant β1,i > 0. Thus,

the inequalities |zα̂,i,1| ≤ Zα̂,i and |zα̂,i,2| ≤ Zα̂,i hold.
iii) Using zu = αn − α′n, |zs,n| ≤ Zs,n, |zα̂,n−1,1| ≤ Zα̂,n−1,

(42), (43), and Lemma 4-(i) yields

|zu| ≤ 3N ,n
[
knZs,n + (3∗

θ̃ ,n
+ θn)Zs,n

+(3∗
ψ̃,n
+ ψ∗n )Ztanh,n

]
, Zu (54)

with a constant Zu.

This completes the proof of Lemma 6.
Consider an overall Lyapunov candidate V as

V =
n∑
i=1

Vi +
n−1∑
i=1

α̃>i Giα̃i (55)

where α̃i = [α̃i,1, α̃i,2]>; α̃i,2 = α̂i,2.
Theorem 1: Consider uncertain switched nonlinear pure-

feedback systems (1) with the state quantizer (2) and
unknown control directions. For initial conditions satisfying
V (0) ≤ µ with a positive constant µ, the state-quantized
adaptive controller (i.e., (34)-(38)) guarantees that all sig-
nals of the closed-loop system are semi-globally uniformly
ultimately bounded and the tracking error s1 converges to an
adjustable compact set including the origin.

Proof: Let us define ¯̃αj,1 = [α̃1,1, . . . , α̃j,1] and s̄i =
[s1, . . . , si]> for j = 1, . . . , n− 1 and i = 1, . . . , n. The time
derivative of α̃i is obtained as

˙̃αi = Aiα̃i + D4i i = 1, . . . , n− 1 (56)

where Ai =
[

0 1
−ω2

i −2ζiωi

]
are Hurwitz matrices, D =

[1, 0]>, and

41(ξ1, s̄2, α̃1,1, yr , ẏr , θ̂1, ψ̂1)

=
∂N (ξ1)
∂ξ1

ξ̇1

(
k1s1 + s1θ̂1 + s1ψ̂1 tanh

(
s21
δ1

))
+N (ξ1)

[
k1ṡ1 + ṡ1θ̂1 + s1

˙̂
θ1 + ṡ1ψ̂1 tanh

(
s21
δ1

)
+s1
˙̂
ψ1 tanh

(
s21
δ1

)
+ 2

s21
δ1
ψ̂1 sech2

(
s21
δ1

)]
4j(ξj, s̄j+1, ¯̃αj,1, yr , α̃j−1,2, θ̂j, ψ̂j)

=
∂N (ξj)
∂ξj

ξ̇j

(
kjsj + sjθ̂j + sjψ̂j tanh

( s2j
δj

))
+N (ξj)

[
kjṡj + ṡjθ̂j + sj

˙̂
θj + ṡjψ̂j tanh

( s2j
δj

)
+sj
˙̂
ψj tanh

( s2j
δj

)
+ 2

s2j
δj
ψ̂j sech2

( s2j
δj

)]
for j = 2, . . . , n − 1. For any positive definite matrix Qi,
the equation A>i Gi + GiAi = −Qi is satisfied with a positive
definite symmetric matrix Gi.
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Substituting (19), (26), (31), and (56) into the time deriva-
tive of V gives

V̇ ≤
n∑
i=1

[
− kis2i +

1
γξ,i

(
hli
hi,m

N (ξi)+ 1
)
ξ̇i

+
1
hi,m

si(hi,mεi + d li )− s
4
i +

κi

4
+ ιi

−s2i θ̃i − s
2
i ψ̃i tanh

(
s2i
δi

)
− s2i ψ

∗
i tanh

(
s2i
δi

)
+

(
hli
hi,m

N (ξi)+ 1
){(

kis2i + s
2
i θ̂i

+s2i ψ̂i tanh
(
s2i
δi

))
−

ξ̇i

γξ,i

}]
+

n−1∑
i=1

[
hli
hi,m

si(si+1 + α̃i,1)
]
+

hln
hn,m

sn(u− αn)

+

n−1∑
i=1

[−α̃>i Qiα̃i + 2α̃>i GiD4i]. (57)

Then, by applying (36), we have(
hli
hi,m

N (ξi)+ 1
){(

kis2i + s
2
i θ̂i + s

2
i ψ̂i tanh

(
s2i
δi

))
−

ξ̇i

γξ,i

}
=

(
hli
hi,m

N (ξi)+ 1
)[

(ki + θ̂i − σξ,iξi)(s2i − s
′2
i )

+ψ̂i

{
s2i tanh

(
s2i
δi

)
− s′2i tanh

(
s′2i
δi

)}]
+

(
hli
hi,m

N (ξi)+ 1

)
σξ,is2i ξi. (58)

Lemma 4-(ii) leads to |s2i tanh (s
2
i /δi) − s′2i tanh (s′2i /δi)| ≤

1.1997|s2i − s′2i |. From θ̂i = θ̃i + θi, ψ̂i = ψ̃i + ψ∗i ,
Lemmas 5 and 6, and s2i − s′2i = 2(si − s′i)si − (si − s′i)

2,
there exist positive constants 31,i and 32,i such that(

hli
hi,m

N (ξi)+ 1

)[
(ki + θ̂i − σξ,iξi)(s2i − s

′2
i )

+ψ̂i

{
s2i tanh

(
s2i
δi

)
− s′2i tanh

(
s′2i
δi

)}]
≤

∣∣∣∣ hlihi,mN (ξi)+ 1

∣∣∣∣|s2i − s′2i |(ki + |θ̂i| + σξ,i|ξi|
+1.1997|ψ̂i|)

≤ 31,i|si| +32,i (59)

where 31,i , 2Zs,i(3N ,i + 1)(ki + (3∗
θ̃ ,i
+ θi) + σξ,i3∗ξ,i +

1.1997(3∗
ψ̃,i
+ ψ∗i )) and 32,i , Z2

s,i(3N ,i + 1)(ki + (3∗
θ̃ ,i
+

θi)+ σξ,i3∗ξ,i + 1.1997(3∗
ψ̃,i
+ ψ∗i )).

Using (58) and (59), (57) becomes

V̇ ≤
n∑
i=1

[
− kis2i +

1
γξ,i

(
hli
hi,m

N (ξi)+ 1
)
ξ̇i

+
1
hi,m

si(hi,mεi + d li )− s
4
i +

κi

4
+ ιi

−s2i θ̃i − s
2
i ψ̃i tanh

(
s2i
δi

)
− s2i ψ

∗
i tanh

(
s2i
δi

)
+31,i|si| +32,i +

(
hli
hi,m

N (ξi)+ 1
)
σξ,is2i ξi

]
+

n−1∑
i=1

[
hli
hi,m

si(si+1 + α̃i,1)
]
+

hln
hn,m

sn(u− αn)

+

n−1∑
i=1

[
− α̃>i Qiα̃i + 2α̃>i GiD4i

]
. (60)

Since θ̃i, ψ̃i, and ξi are bounded from Lemma 5, there exist
positive functions 4∗1 and 4

∗
j such that

|41(ξ1, s̄2, α̃1,1, yr , ẏr , θ̂1, ψ̂1)|
≤ 4∗1(s̄2, α̃1,1, yr , ẏr )

|4j(ξj, s̄j+1, ¯̃αj,1, yr , α̃j−1,2, θ̂j, ψ̂j)|
≤ 4∗j (s̄j+1, ¯̃αj,1, yr , α̃j−1,2) (61)

for j = 2, . . . , n− 1. Then, using Lemmas 5 and 6, we have

hli
hi,m

si(si+1 + α̃i,1) ≤ s2i +
1
2
s2i+1 +

1
2
‖α̃i‖

2 (62)

hln
hn,m

sn(u− αn) ≤
s2nZ

2
u

ε̄1
+
ε̄1

4
(63)

|2α̃>i GiD4i| ≤
4∗2i ‖Gi‖

2
‖α̃i‖

2

εi,1
+ εi,1 (64)

31,i|si| ≤
32

1,is
2
i

εi,2
+
εi,2

4
(65)(

hli
hi,m

N (ξi)+ 1
)
σξ,is2i ξi ≤

1
2
s4i +

1
2
(3N ,i + 1)2σ 2

ξ,i3
∗2
ξ,i

(66)

−s2i ψ̃i tanh

(
s2i
δi

)
≤

1
2
s4i +

1
2
3∗2
ψ̃,i

(67)

1
hi,m

si(hi,mεi + d li ) ≤
s2i ε

2
i

ε̄i,2
+

1

ε̄i,2h2i,m
s2i d

l2
i +

ε̄i,2

2

(68)

where εi,1, εi,2, ε̄1 and ε̄i,2 are positive constants.
Applying these inequalities to (57) yields

V̇ ≤ − (k1 − 1) s21 −
n−1∑
i=2

(
ki −

3
2

)
s2i −

(
kn −

1
2

)
s2n

−

n−1∑
i=1

(
qi −

1
2

)
‖α̃i‖

2
+

n−1∑
i=1

4∗2i ‖Gi‖
2
‖α̃i‖

2

εi,1

+

n∑
i=1

1
γξ,i

(
hli
hi,m

N (ξi)+ 1

)
ξ̇i

+

n∑
i=1

[
s2i ψi − s

2
i ψ
∗
i tanh

(
s2i
δi

)]
+ C1 (69)
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where qi = λmin(Qi), ψj = 32
1,j/εj,2 + ε2j /ε̄j,2 +

d l2j /(ε̄j,2h
2
j,m) − θ̃j, j = 1, . . . , n − 1, ψn = 32

1,n/εn,2 +

ε2n/ε̄n,2 + d l2n /(ε̄n,2h
2
n,m) − θ̃n + Z2

u , and C1 =
∑n

i=1
[(1/2)(3N ,i+1)2σ 2

ξ,i3
2
ξ,i+(1/2)3

∗2
ψ̃,i
+32,i+(κi+εi,2)/4+

ιi]+
∑n−1

i=1 (εi,1 + ε̄i,2/2)+ ε̄1/4.
From Assumption 2 and the boundedness of θ̃i, ψ̃i, and εi,

it holds that

|ψj| ≤ 3
2
1,j/εj,2 + ε

∗2
j /ε̄j,2 + d

∗2
j /(ε̄j,2h

2
j,m)+3

∗

θ̃ ,j
, ψ∗j

|ψn| ≤ 3
2
1,n/εn,2 + ε

∗2
n /ε̄n,2 + d

∗2
n /(ε̄n,2h

2
n,m)+3

∗

θ̃ ,n

+Z2
u , ψ∗n (70)

where j = 1, . . . , n− 1 and d∗i = maxl∈P{d li,0}, i = 1, . . . , n.
Then, from Lemma 2, we have the following inequality

|s2i ψi| ≤ s
2
i ψ
∗
i ≤ s

2
i ψ
∗
i tanh

(
s2i
δi

)
+ 0.2785ψ∗i δi (71)

for i = 1, . . . , n.
Consider the compact sets �i ∈ R2(i−1)+1, i = 1, . . . , n

and �R ∈ R2 as �i = {s21/(2h1,m)+
∑i−1

j=1[s
2
j+1/(2hj+1,m)+

α̃>j Gjα̃j] ≤ µ} and �R = {y2r + ẏ2r ≤ R} with a positive
constant R. Since the sets �i and �R are compact, �i × �R
are also compact sets. Then, there exist constants 4̆i such that
|4∗i | ≤ 4̆i on�i×�R for i = 1, . . . , n−1. Setting the design
parameters k1 = η̄1 + 1, kj = η̄j + (3/2), j = 2, . . . , n − 1,
kn = η̄n + (1/2), and qi = (1/2) + 4̆2

i ‖Gi‖
2/εi,1 + q̄i, i =

1, . . . , n − 1, with positive constants η̄1, η̄j, η̄n, and q̄i, it is
satisfied that

V̇ ≤ −
n∑
i=1

η̄is2i −
n−1∑
i=1

q̄i‖α̃i‖2

−

n−1∑
i=1

(
1−

4∗2i

4̆2
i

)
4̆2
i ‖Gi‖

2
‖α̃i‖

2

εi,1

+

n∑
i=1

1
γξ,i

(
hli
hi,m

N (ξi)+ 1

)
ξ̇i + C2 (72)

where C2 = C1 +
∑n

i=1 0.2785ψ
∗
i δi. Since |4

∗
i | ≤ 4̆i on

�i ×�R, for i = 1, . . . , n− 1, the inequality (72) becomes

V̇ ≤ −ηV +
n∑
i=1

1
γξ,i

(
hli
hi,m

N (ξi)+ 1

)
ξ̇i + C2 (73)

where η = mini=1,...,n,j=1,...,n−1{2hi,mη̄i, q̄j/λmax(Gj)}.
Solving the above inequality, we have

V (t) ≤ e−ηt
∫ t

0

n∑
i=1

1
γξ,i

(
hli
hi,m

N (ξi)+ 1

)
ξ̇ieηςdς + C3

(74)

where C3 = V (0) + C2/η. By Assumption 1, we have
|hli/hi,m| ≤ 1. Then, from Lemma 3, it is ensured that

V (t), ξi(t), i = 1, . . . , n, and
∫ t
0
∑n

i=1
1
γξ,i

hli
hi,m

N (ξi)ξ̇idς are
bounded for ∀t ∈ [0, tf ). According to Proposition 2 in [60],

it also holds that tf = ∞. Thus, all the closed-loop signals
are bounded. This implies that si, αi, α̂j,1, α̂j,2, and αn are
bounded for i = 1, . . . , n and j = 1, . . . , n − 1. From
Lemma 6, s′i, α

′
i , α̂
′

j,1, α̂
′

j,2, and u are also bounded. Thus,
there exist constants 3̄ such that |

∑n
i=1((h

l
i/hi,m)N (ξi) +

1)ξ̇i/γξ,i| ≤ 3̄ on �n ×�R where i = 1, . . . , n.
Thus, the inequality (73) becomes

V̇ ≤ −ηV + C4 (75)

whereC4 = C2+3̄. Thus, the time derivative ofV is negative
for V = µ when η > C4/µ. This implies that V ≤ µ is an
invariant set. Moreover, the inequality (74) can be rewritten
as

V (t) ≤ (V (0)− C4/η)e−ηt + C4/η. (76)

Owing to (1/(2h1,m))s21 ≤ V , the tracking error s1 converges
to a compact set �O = {s1| |s1| ≤

√
2h1,mC4/η}. By adjust-

ing η, the compact set �O can be made arbitrarily small.
Remark 7: The design parameters presented in the proof

of Theorem 1 are sufficient conditions. The guidelines for
setting design parameters are provided as follows.
(i) Increasing ki helps to increase η. Thus, the conver-

gence bound
√
2h1,mC4/η of the tracking error can be

reduced.
(ii) Setting σψ,i, σθ,i, and σξ,i to be small constants and

increasing γψ,i, γθ,i, and γξ,i results in the faster learn-
ing speed of ψ̂i, θ̂i, and ξi respectively.

(iii) As δi decreases, C4 also decreases. Thus, the conver-
gence bound of the tracking error can be reduced.

IV. SIMULATION EXAMPLE
A. EXAMPLE 1
Consider the following switched second-order nonlinear
system:

ẋ1 = f ρ(t)1 (x̄2)+ d
ρ(t)
1 (t)

ẋ2 = f ρ(t)2 (x̄2, uρ(t))+ d
ρ(t)
2 (t)

y = x1 (77)

where ρ(t) : [0,+∞) → P = {1, 2}, f 11 = (2 +
0.2 cos (x1))x2 + 0.2x21 , f

2
1 = (2 + 0.1ex1 )x2 + 0.5 sin (x1),

f 12 = (2 + 0.2 cos (x1x2))u, f 22 = (2 + 0.1ex1x2 )u + 0.5x1x2,
d11 = d21 = 0.1 sin (π t), and d12 = d22 = 0.1 cos (π t). The
nonlinear functions f 11 , f

2
1 , f

1
2 , and f

2
2 , and the disturbances

d11 , d
2
1 , d

1
2 , and d22 are assumed to be unknown. For the

simulation, the initial conditions are set to x̄2 = [0, 0]>, the
quantization interval is given as 1 = 0.01, and the reference
signal is defined as yr (t) = 0.5 cos (0.5t)+0.5 cos (1.1t). The
proposed common quantized state feedback controller for this
simulation is given by

α′1 = N (ξ1)

(
k1s′1 + s

′

1θ̂1 + s
′

1ψ̂1 tanh

(
s′21
δ1

))

u = N (ξ2)

(
k2s′2 + s

′

2θ̂2 + s
′

2ψ̂2 tanh

(
s′22
δ2

))
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FIGURE 1. Comparison of the simulation results for Example 1
(a) Switching signal ρ (b) Tracking result (i.e., x1 and yr ) (c) Control input
u (d) Tracking error s1.

ξ̇i = γξ,i

(
kis′2i + s

′2
i θ̂i + s

′2
i ψ̂i tanh

(
s′2i
δi

)
− σξ,is′2i ξi

)
˙̂
θi = γθ,i

(
s′2i − σθ,is

′2
i θ̂i

)
˙̂
ψi = γψ,i

(
s′2i tanh

(
s′2i
δi

)
− σψ,is′2i ψ̂i

)

FIGURE 2. Quantized states of the proposed approach for Example 1.

FIGURE 3. Outputs of Nussbaum functions N(ξ1) and N(ξ2) of the
proposed approach for Example 1.

FIGURE 4. Estimates of θi and ψi of the proposed approach for
Example 1 (a) θ̂1 and θ̂2 (c) ψ̂1 and ψ̂2.

˙̂α′1,1 = α̂
′

1,2
˙̂α′1,2 = −2ζ1ω1α̂

′

1,2 − ω
2
1(α̂
′

1,1 − α
′

1) (78)

where i = 1, 2, k1 = 1.1, k2 = 2, δ1 = δ2 = 0.1,
γξ,1 = 4,γξ,2 = 1, γθ,1 = γθ,2 = 1, γψ,1 = γψ,2 = 0.1,
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FIGURE 5. Comparison of the simulation results for Example 2
(a) Switching signal ρ (b) Tracking result (i.e., x1 and yr ) (c) Control input
u (d) Tracking error s1.

σξ,1 = σξ,2 = σθ,1 = σθ,2 = σψ,1 = σψ,2 = 0.01,
ζ1 = 0.707, and ω1 = 30.

The simulation results using the proposed approach
are compared with the results obtained by the neural
network-based adaptive tracker designed without signal
quantization in [22]. The design parameters of the previ-
ous controller [22] are set to be the same as those for the

FIGURE 6. Quantized states of the proposed approach for Example 2.

FIGURE 7. Outputs of Nussbaum functions N(ξ1) and N(ξ2) of the
proposed approach for Example 2.

proposed controller. The switching signal is given in Fig. 1(a).
The tracking results, control inputs, and tracking errors are
compared in Fig. 1(b)-(d). Although the proposed tracker
is designed based on quantized state feedback, the tracking
performance of the proposed approach is comparable to that
of the unquantized state feedback controller [22] for switched
nonlinear systems. Fig. 2 displays the time responses of the
quantized states of the proposed approach. The outputs of the
Nussbaum functions for the proposed approach are plotted in
Fig. 3. The estimates of θ1, θ2, ψ1, and ψ2 for the proposed
approach are shown in Fig. 4. Based on these simulation
results, we can see that the tracking error converges to the
neighborhood of the origin. This means that the proposed
quantized feedback control strategy ensures good tracking
performance even if all the states are quantized for feedback
and the control directions and pure-feedback nonlinearities
are unknown under arbitrary switching.

B. EXAMPLE 2
In this simulation, we consider the tracking problem of the
Van der Pol oscillator that represents various types of electri-
cal circuits [61]. The following dynamics of the oscillator is
given by

ẋ1 = f ρ(t)1 (x̄2)+ d
ρ(t)
1 (t)

ẋ2 = f ρ(t)2 (x̄2, uρ(t))+ d
ρ(t)
2 (t)

y = x1 (79)

where ρ(t) : [0,+∞) → P = {1, 2, 3}, f 11 = f 21 =
f 31 = x2, f 12 = −2(x

2
1 − 1)x2 − x1 + (2 + sin (x1x2))
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FIGURE 8. Estimates of θi and ψi of the proposed approach for
Example 2 (a) θ̂1 and θ̂2 (b) ψ̂1 and ψ̂2.

[u + (1/3)u3 + sin (u)], f 22 = cos (x1x2) + (2 +
sin (x1x2))[(1/3)u3 + cos (u)], and f 32 = sin (x22 ) + (2 +
cos (x1x2))[3u3 + sin (u)], d11 = d21 = d31 = 0.1 cos (t) and
d12 = d22 = d32 = 0.2 sin (t). Here, f 11 and f 12 represent the
inherent nonlinearities of the Van der Pol oscillator. To con-
sider the switched pure-feedback nonlinearities, it is assumed
that the nonlinear function f 12 is switched to f 22 and f 32 . For the
simulation, the initial conditions are set to x̄2 = [0, 0]>, the
quantization interval is given as 1 = 0.01, and the reference
signal is defined as yr (t) = 0.5 cos (0.5t)+0.5 cos (1.1t). The
design parameters for this simulation are chosen as k1 = 1.1,
k2 = 1, δ1 = δ2 = 0.1, γξ,1 = 3,γξ,2 = 1, γθ,1 = γθ,2 = 1,
γψ,1 = γψ,2 = 0.1, σξ,1 = σξ,2 = σθ,1 = σθ,2 = σψ,1 =

σψ,2 = 0.01, ζ1 = 0.707, and ω1 = 30.
A comparison of the simulation results is presented in

Fig. 5. It is observed that the performance of the proposed
quantized feedback tracker is similar to that of the unquan-
tized state feedback controller [22], regardless of state quan-
tization. Fig. 6 displays the time responses of the quantized
states of the proposed approach. The outputs of the Nussbaum
functions for the proposed approach are given in Fig. 7.
The boundedness of the estimated parameters θ̂1, θ̂2, ψ̂1,
and ψ̂2 for the proposed approach is illustrated in Fig. 8.
These figures demonstrate the effectiveness of the proposed
theoretical result.

V. CONCLUSION
We have addressed a state-quantized adaptive tracker design
problem for arbitrarily switched uncertain pure-feedback
nonlinear systems with unknown control directions. Contrary
to the related results in literature, our major contributions lie

in the use of the quantized state feedback information and
the analysis of quantization errors to derive an adaptive track-
ing controller in the presence of unknown control directions
and switched nonaffine nonlinearities. The stability of the
closed-loop system has been proved by inducing bounding
lemmas and using the common Lyapunov function method,
Simulation results have successfully verified the proposed
theoretical approach. Further studies on the quantized-state-
based prescribed performance control problem [62]–[64] of
switched nonlinear systems can be recommended as future
work.

APPENDIX I: PROOF OF LEMMA 4
(i) Consider the function T1(ϕ) = ϕ tanh

(
ϕ2/δ

)
with a

constant δ > 0 and any ϕ ∈ R. Then, from the
straightforward algebraic manipulation, the derivative
of T1(ϕ) with respect to ϕ is bounded as

dT1(ϕ)
dϕ

= tanh
(
ϕ2

δ

)
+ 2

ϕ2

δ
sech2

(
ϕ2

δ

)
≤ 1.6017. (80)

Using (80), we obtain the following inequality

T1(ϕ1)− T1(ϕ2)

=

∫ ϕ1

ϕ2

[
tanh

(
ϕ2

δ

)
+ 2

ϕ2

δ
sech2

(
ϕ2

δ

)]
dϕ,

|T1(ϕ1)− T1(ϕ2)|

≤

∣∣∣∣ ∫ ϕ1

ϕ2

1.6017dϕ

∣∣∣∣
= 1.6017|ϕ1 − ϕ2|. (81)

The above inequality leads to∣∣∣∣∣ϕ1 tanh
(
ϕ21

δ

)
− ϕ2 tanh

(
ϕ22

δ

)∣∣∣∣∣
≤ 1.6017|ϕ1 − ϕ2|. (82)

(ii) Consider the function T2(ϕ) = ϕ tanh (ϕ/δ) with a
constant δ > 0 and any ϕ ∈ R. Then, the derivative
of T2(ϕ) with respect to ϕ is bounded as

dT2(ϕ)
dϕ

= tanh
(ϕ
δ

)
+
ϕ

δ
sech2

(ϕ
δ

)
≤ 1.1997. (83)

Then it holds that

T2(ϕ21 )− T2(ϕ
2
2 ) =

∫ ϕ21

ϕ22

[
tanh

(ϕ
δ

)
+
ϕ

δ
sech2

(ϕ
δ

)]
dϕ,

|T2(ϕ21 )− T2(ϕ
2
2 )| ≤

∣∣∣∣ ∫ ϕ21

ϕ22

1.1997dϕ

∣∣∣∣
= 1.1997|ϕ21 − ϕ

2
2 |. (84)
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The above inequality leads to∣∣∣∣ϕ21 tanh
(
ϕ21

δ

)
− ϕ22 tanh

(
ϕ22

δ

) ∣∣∣∣
≤ 1.1997|ϕ21 − ϕ

2
2 |. (85)

Then, Lemma 4 is proved.

APPENDIX II: PROOF OF LEMMA 5
(i) Let us define a Lyapunov functionVθ,i = (1/(2γθ,i))θ̃>i θ̃i.

Then, the time derivative of Vθ,i is

V̇θ,i = θ̃>i
(
s′2i − σθ,is

′2
i θ̂i

)
= θ̃>i

(
s′2i − σθ,is

′2
i (θi + θ̃i)

)
. (86)

Then, it holds that

V̇θ,i ≤ ‖θ̃i‖s′2i
(
1+ σθ,iθi − σθ,i‖θ̃i‖

)
. (87)

V̇θ,i is negative when ‖θ̃i‖ > 3θ̃ ,i where 3θ̃ ,i , (1 +
σθ,iθi)/σθ,i. Therefore, if θ̃i(0) ∈ �θ̃ ,i, it is ensured that
θ̃i(t) ∈ �θ̃ ,i, ∀t ≥ 0.

(ii) Consider Vψ,i = (1/(2γψ,i))ψ̃2
i . From tanh (·) ≤ 1 and

ψ̂i = ψ
∗
i + ψ̃i, V̇ψ,i satisfies

V̇ψ,i ≤ |ψ̃i|s′2i
(
1+ σψ,iψ∗i − σψ,i|ψ̃i|

)
. (88)

From the inequality (88), V̇ψ,i is negative when |ψ̃i| >
3ψ̃,i with 3ψ̃,i , (1 + σψ,iψ

∗
i )/σψ,i. Therefore,

if ψ̃i(0) ∈ �ψ̃,i, it is guaranteed that ψ̃i(t) ∈ �ψ̃,i,
∀t ≥ 0.

(iii) Consider Vξ,i = (1/(2γξ,i))ξ2i . The boundedness of θ̃i
and ψ̃i are shown in i and ii. Therefore, it holds that

V̇ξ,i ≤ |ξi|s′2i
(
ki + (θi +3∗θ̃ ,i)

+(ψ∗i +3
∗

ψ̃,i
)− σξ,i|ξi|

)
(89)

where 3∗
θ̃ ,i
= max {|θ̃i(0)|,3θ̃ ,i} and 3

∗

ψ̃,i
= max

{|ψ̃i(0)|,3ψ̃,i}. Then, by defining 3ξ,i , (ki + (θi +
3∗
θ̃ ,i
)+ (ψ∗i +3

∗

ψ̃,i
))/σξ,i, we have that if ξi(0) ∈ �ξ,i,

then ξi(t) ∈ �ξ,i, ∀t ≥ 0.
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