
Received 29 June 2022, accepted 15 July 2022, date of publication 20 July 2022, date of current version 26 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3192517

Identifying DC Series and Parallel Arcs
Based on Deep Learning Algorithms
HOANG-LONG DANG 1, SANGSHIN KWAK 1, (Member, IEEE),
AND SEUNGDEOG CHOI 2, (Senior Member, IEEE)
1School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, South Korea
2Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS 39762, USA

Corresponding authors: Sangshin Kwak (sskwak@cau.ac.kr) and Seungdeog Choi (seungdeog@ece.msstate.edu)

This work was supported in part by the Technology Development Program to Solve Climate Changes through the National Research
Foundation of Korea (NRF) through the Ministry of Science, ICT, under Grant 2021M1A2A2060313; and in part by the Korea Electric
Power Corporation under Grant R21XA01-3.

ABSTRACT Arc phenomena are usually related to the undesired disengagement of two electrical
connections. The emission power discharge from the failure arc may damage wiring and can present a
fire hazard. Numerous studies have been proposed to detect arc events and quickly isolate them from an
electrical system. DC arc faults are often sorted into two types: series and parallel arcs. A series arc may
be the outcome of discharging links in electrical wiring. By contrast, the parallel arc occurs between two
electric wires, or between a link and a ground, owing to contamination or poor isolation. The currents in a
system with an arc fault are considerably greater when the arc parallel in nature than when the arc is series
in nature. In this paper, the electric activities of a network are investigated for the duration of series and
parallel arc failures in both the time and frequency domains. The arcing behavior investigated is selected
to allow for the identification of series and parallel arcs. The sorting of electrical arcs in an accurate and
reliable manner is useful for electrical protection schemes. The identification process used here is based on
data related to different domains, such as load current and voltage. In this study, eight learning techniques
are investigated with the aim of detecting series and parallel arc faults. The arc behaviors were studied in the
various domains. We used the load current and voltage characteristics as an statistic for categorizing a given
arc failure. This study could be beneficial to enhance the stability and reliability of arc-fault detectors.

INDEX TERMS Arc diagnosis, artificial intelligence, DC arc failure, identifying arc fault.

I. INTRODUCTION
The arc hazard posed in DC systems has become well known
over the past decade due to the widespread application of
DC networks in aircraft, the solar industry, data manage-
ment, electric transmission, and numerous fields related to
facilitated usage and high efficiency. An arcing event is a
hazardous incident that must be seriously considered in any
power network [1]. Steps should be taken to avoid system
failure, especially arc faults, in utility DC systems. In DC
systems, arc failures are categorized as series and parallel
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failures. A series type can be caused by discharging electrical
wiring links [2]. An impermanent short circuit typically
triggers the series fault. Potential causes include the releasing
of wiring contacts resulting in feeble connections [3]. If the
range of an arc current is within the range of the implemented
safety devices, the arc will not be detected. Suppose the
range of the arc currents is two to five times the safety
device limit. In that case, the arc can scorch the conductors
in an excessively extended time before the safety means
disconnecting the error from the functioning system. Parallel
arcs represent discharge events between two points that
exhibit a voltage difference. This kind of fault may occur
due to damaged insulation [4]. There is a possibility of fire
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when the arc current is smaller than the rated current of the
safety gadgets implemented in the network in the case of a
parallel arc. Furthermore, the parallel arc current increases
when an arc occurs; thus, parallel arcs are potentially more
dangerous than series arcs. The rise in current amplitude
and heat in a short time period in the case of a parallel arc
fault can induce a large flare, with the potential to destroy
conductors and electrical wiring [5]. Therefore, detecting
arc failures timely and correctly is a critical assignment in
ensuring the safety and reliability of electrical networks.
When the DC arc faults are initiated, several abnormal
behaviors can be used to diagnose an arc event, such as
current fluctuations and rapid changes in light and/or heat
output. These abnormal phenomena can be used to detect
DC arcs [6]–[11]. However, the investigation of parallel
arc in DC systems is still at a primitive step [12]–[15].
The characteristic differences between arc types in a DC
network are demonstrated in Ref. [16]. Recently, advanced
techniques have received increased research attention due to
their flexible capabilities for the variety of purposes. Artificial
intelligence (AI) models have been efficaciously utilized
in numerous fields. They supply effective approaches for
the identification of failures in many applications. Learning
algorithms have been effectively adapted for discovering arc
failures, and talented results have been obtained, for instance,
various features, such as high-frequency components and
alterations of current, can be obtained, and the weighted
least squares SVM algorithm can be used to diagnose series
arcs [17]. The sparse coding characteristics combined with an
artificial neural network for arc fault diagnosis were proposed
in Ref. [18]. In Refs. [19]–[22], numerous AI models were
employed to diagnose series arcing events using different
characteristics as inputs. The adoption of AI algorithms for
parallel arc diagnosis was proposed in [23]. Previous studies
have illustrated performance comparisons among various
AI algorithms in DC networks [24]. Commonly, mentioned
investigations concentrate simply on series or parallel types,
while the implementation of AI to identify arcing types has
not been completely explored. When an arc failure occurs
in practical systems, the type and location are unknown.
Usually, one approach is adopted to detect series fault type
and another for parallel type. For example, there are various
types of faults in the DC networks. Each type of failure
needs a different detecting approach; this could increase the
additional hardware, complexity, and cost of the systems.
Suppose it is possible to identify the type of arc fault using
a universal approach. In that case, the proper solutions
can be applied promptly to maintain the system’s safety,
stability, and economy. However, the potential capability of
AI techniques is not fully utilized. This study aims to provide
an insight into a potentially universal approach that is the
capability to detect various types of faults, especially arc
faults. In this study, the AI training models are obtained
by using the data in certain operating conditions. If the
operating conditions are changed, the AI models must be
trained again to learn new characteristics of the input signals.

All the AI techniques in this research belong to supervised AI
algorithms. Therefore, the trained models need adjustments
from supervisors for any changes in working conditions to
maintain high performance.

This paper implements eight AI algorithms with the
aim of detecting arc events and identifying the arc type.
Furthermore, this study recommends the most suitable input
that returns the best result for the different AI algorithms and
arc types. In addition, the operation of the AI models and
inputs is compared and discussed. This research is arranged
as follows: Part 2 describes the experimental setup and the
characteristics of arcing and normal states of both parallel
and series arcs. Part 3 describes the learning algorithms
and inputs utilized for arc recognition. Part 4 compares
the identification performances of the eight algorithms
using different combinations of features for arc events that
occur in various operating situations. Finally, in Part 5,
we discuss recommendations for arc failure detection and the
identification diagnosis rates.

II. PROPERTIES OF DC ARCING FAILURES
The arc setup was formed to gather arc data conforming to
the UL1699B standard; the setup used is shown in Figure 1.
The arc generation setup includes a DC source, an arc
generator, and an inverter load [3]. The amplitude of the
supply voltage used in the arc experiment was 300 V for
both the arc failures. The power source used in the parallel
and series arc experiments was the KEYSIGHT N8741A
(maximum current: 11 A, maximum voltage: 300 V, and
maximum power: 3.3 kW). The parameter iarc represents
the arc current flowing through the bars. The step motor
slowly splits the bars to make the arcing failure safely.
The gap was monitored with an electrical meter, which was
set up parallel to the bars. An inductor and a resistor of
10 mH and 10 �, respectively, were behaved as the loads
of the inverter. The parallel and series arc circuits used
the same load parameters. In the parallel arc experiment,
the arc generator was connected in series with the resistor
Rlimit to ensure the safe operation of the circuit. This was
done because the amount of source current, is, increases
rapidly when an arc is generated. Table 1 shows the values
of the parameters that characterize the parallel and series arc
faults.

The experimental process used was the same for both
the parallel and series arcs. The load voltage (vL), load
current (iL), and arc current were stored using an oscilloscope
with a sample rate of 250 kHz. In practical applications, the
measurement of the arc current, especially in the case of a
parallel arc fault, is unachievable because the position of the
fault is unidentified. Thus, the arc current is not utilized in the
identification procedure of this study. Instead, the load current
and the load voltage could be utilized for arc identification.
For the various applications, the load current is measured
for controlled purposes. Therefore, the current sensors are
already implemented. The demand for additional sensors is
neglected using the load current as a parameter. When the
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FIGURE 1. DC arc setup. The circuit used for (a) parallel and (b) series arc
faults.

TABLE 1. Characterization of the experiments.

amplitudes of load current are changed, the training stage
must be repeated for the new data. So that AI models can
learn the new characteristic to maintain high performance.
The identification procedure was then performed using codes
written in MATLAB. The range of sample rate (250 kHz)
was chosen regarding recent studies of arc faults in DC
networks [25]–[29], thus, the number of data in 2 ms period
is 500. A higher sampling rate could result in more data in
every duration. Nevertheless, it might grow the performance
time and computation weight; one of the highest primacies
of arc diagnosis is identifying faults in a timely manner
in order to quickly isolate the error from the network.
Hence, the sample rate of 250 kHz was considered to be
sufficiently high to ensure a balance between efficiency and
execution time. Additionally, the recent arc fault research
selected similar data durations (arrangements of 2, 3, or 4 ms
periods) [21]–[25]. Therefore, this study chooses the window

duration at a 2 ms period. The experimental waveforms were
split into altered arrangements of 2 ms periods; these signals
were then used for test and training procedures in the AI
methods. This research utilized space vector modulation to
control the inverter load. Figure 2 shows the experimental
signals corresponding to the arcing and normal states of
the series and parallel arcs under different settings (load
voltage: 300 V, load current: 5 A, arc current: 1 A, and
switching frequency: 15 kHz in the case of the parallel arc;
load voltage: 300 V, 8 A load and arc current, and switching
frequency: 15 kHz in the case of the series arc). As shown
in Figure 2, the shapes of waveforms were steady and alike
before the arcs were induced. When the arcs were instigated,
however, various unusual characteristics were induced in the
waveforms, such as harmonic elements, distortions, and the
fluctuations of thewaveforms. These unusual behaviors led to
the initiation of enormous negative oscillations in the parallel
types [Figure 2(a)]. Some over-current detection schemes
could detect the enormous oscillations in load current and
voltage of parallel arc fault. However, there were also slight
decreases in the load current and the voltage in the case
of the series arc [Figure 2(b)]. These slight decreases in
the load current and voltage of series cases can not be
detected using the same parallel case detection schemes.
Using different detection schemes for different arc-type
faults could increase the additional hardware, complexity,
and cost of the systems. Therefore, a universal scheme
is more beneficial in identifying the types of arc faults.
This research aims to provide an insight into the universal
approach that is the capability to detect various types of
arc faults. Thus, the influences of different load types are
omitted in this study. These influences will be the future
work of this research because each load type shows different
characteristics.When applying the new load types, the data of
the new load type must be trained so that the AI models can
learn the unique features of each load type. If the data of load
type are not trained, AI models’ performance could degrade
considerably.

III. ARTIFICIAL LEARNING ALGORITHMS AND FEATURE
ANALYSIS
A. ARTIFICIAL LEARNING PRINCIPLES
Figure 3 demonstrates the concept and construction of several
AI models. The intention of SVM model is to discover
the greatest boundary hyperplane, which is then utilized
to categorize the elements into different classes [30]. The
K-nearest neighbor (KNN) method presupposes the same
objects located in adjacent familiarity. In other words, the
same objects encircle their relatives [31]. A decision tree (DT)
structure represents the workflow; this workflow considers
all possible decisions and the outcomes of those decisions.
This structure shows the predictions resulting from different
nodes. The root node represents the start of the DT, and
the structure is terminated with the conclusion made at the
‘‘leaves’’ [32]. The random forest (RF) technique contains
numerous separate DTs; this method works as an ensemble of
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FIGURE 2. The load current and voltage waveforms in the case of parallel and series arcs. In the case of (a) a parallel arc with a 5 A load current and
a 300 V load voltage and (b) a series arc with an 8 A load current and a 300 V load voltage.

DTs. Each DT in a RF yields a prediction, and the prediction
generated by the RF is given by the most popular prediction
from each of the individual DTs [33]. The Naïve Bayes (NB)
models are a family of procedures based on Bayes’ statement;
all of the classifiers considered are based on a mutual
assumption. In order to reduce the computational burden, this
theorem assumes all features are separate from others [34].
On the other hand, deep learning (DL) trains processores to
mimic the natural computational ability of humans, including
learning, by example. In DL, a processing model is adopted
to train and classify elements based on various types of
data, such as text, sound, or images. DL models can achieve
superior accuracy and exceed human-level performance in
some tasks. A large data set is usually employed to train
DL models. One of the most widely used DL models is
the neural network (NN) model. There are various layers in
NN’s structure, and they are the input layer, hidden layers,
and output layer. The hidden structure consists of several
layers. There are various neurons in each layer. The input of
a given neuron in the nth layer could be the output of a neuron
in the n-1th layer [35]. Table 2 lists the hidden structures
of DL methods (Gated Recurrent Unit (GRU), Long-Short
Term Memory (LSTM) and Deep Neural Network (DNN))
utilized in this study. The trial and error method chooses
the hidden layer arrangements. The selected structures of the

TABLE 2. Hidden layers in deep learning models.

DL methods provided the highest efficiency across several
arrangements. However, other possible arrangements, which
may also be appropriate, exist [36].

B. FEATURE ANALYSIS
Features can be considered in the frequency or time domains.
However, they require significant computational effort and
high sample rates to use feature analysis in the frequency
domain effectively. For example, the feature could be directly
extracted using the time domain signal. In contrast, it must
be transformed to the frequency domain before extracting
features. Generally, the data for the training stage of AI
models should be large to obtain high performance. The
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FIGURE 3. Concepts and configurations of the AI models.

time for transforming data from the time domain to the
frequency domain increase with the increase of data quan-
tities. Therefore, the additional frequency-domain transform
would increase the performance time and adversely affect
performance when a fault occurs in actual systems. This
study employed time-domain inputs for the identification
of parallel and series arcs. Figure 4 displays the feature
investigation of the parallel and series arc load currents
under the operating conditions represented in Figure 2.
Figure 4 shows that the feature waveforms of both parallel
and series arcs were different in the arcing states. When the
arc fault was generated, many changes between the normal
and fault states could be observed in the characteristics of
signals recorded here. These abnormal characteristics are
well suited to arc fault identification. In addition, we note
that the parallel arc amplifies the load current when the arc
happens. As a result, the distortions in the failure state are
greater than those observed in the normal state. By contrast,
the load current in a series arc tends to decrease when an
arc event occurs. Thus, the harmonics in the series arc are
much smaller than those observed in the parallel arc. The
data were first stored at a sample rate of 250 kHz in this
work. After that, the stored data were split into altered data
sets of 2 ms in duration. Then, the features for each data
set were obtained to construct a five-feature group. The raw
signals and feature analysis were then used as inputs for

the eight advanced learning algorithms to identify the arc
type.

IV. ARTIFICIAL LEARNING ALGORITHMS IN DC ARC
DIAGNOSIS
Figure 5 shows the diagnosis scheme for identifying the arc
type. First, the load current and voltage data are collected
and processed to obtain the features. There are three cases
with three different inputs: features, raw data, and features
and raw data combined. These inputs are then used in the DL
and ML techniques to identify the arc type. Case 1 uses only
the features obtained from the experimental data as input, and
case 2 uses the corresponding raw data. In the third case,
both the obtained features and the raw data are input into
the learning algorithms. The training set is constructed from
1,000 data sets from each experimental case, and there are
16,000 data set in each training case (cases 1, 2, and 3).
Similarly, the test set is constructed from 800 data sets for
each experimental case, and there are 12,800 data set in each
test case (including cases 1, 2, and 3). The same data sets
do not appear in both the test and training data. Additionally,
eight experimental cases for each parallel or series arc exist
in Table 1. Therefore, there exist 64 possible pairs between
parallel and series arcs in each case for the test process.
Because the number of test pairs is large, the performance
of the test pairs is given by the average performance of
the test pairs with the same load and arc currents with
different switching frequencies, as shown in Figure 6. The
ratio data corresponding to an arc state (either parallel or
series) and a normal state is 1:1 in both the training and test
processes.

The accuracy metric used here is adapted to measure
the proficiency of the identification performance. The
identification judgment rate is given by the proportion of the
data sets that are correctly predicted and the total number of
test data sets. The effectiveness of parallel arc identification
is expressed as:

Parallel Acc.

=
# of correctly predicted parallel data sets

total # of parallel data sets
(1)

Seires Acc.

=
# of wrong predicted parallel data sets as series arc

total # of parallel data sets
(2)

Normal Acc.

=
# of wrong predicted parallel data sets as normal

total # of parallel data sets
(3)

Using the above similar manners, the effectiveness identifi-
cations of series and normal states could be obtained. The best
learning algorithm is that which has the highest identification
and lowest wrong prediction rates.

Figure 7 demonstrates the average identification perfor-
mance of the various AI models in case 1 with the test
pair of parallel arcs with a 3 A load current, a 0.5 A arc
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FIGURE 4. Feature analysis from load current related to parallel (left) and series (right) arcs. These features are
(a) Peak-to-peak values, (b) average values, (c) median values, (d) rms values, and (e) variance values.
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FIGURE 5. Fraction of data.

FIGURE 6. Possible test pairs involving parallel and series arcs.

current, and a series arc at 5 A load current. All AI techniques
show high performance in the identification of the normal,
parallel, and series arcing states, with the exception of the

FIGURE 7. Identification performance of AI models in case 1 with the test
pair of parallel arc at 3 A load current, 0.5 A arc current, and series arc
at 5 A load current.

DNN and SVM algorithms. The RF, LSTM, DT, and KNN
algorithms were found to have superior performances than
the alternative techniques. Their accuracies were above 96%
for all the considered states. The performances of the GRU
and NB algorithms were high (above 90%). Figure 8 shows
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FIGURE 8. Identification performance of the AI models in case 1 with the
test pair of parallel arc at 3 A load current, 0.5 A arc current, and series
arc at 8 A load current.

results obtained considering the same values of load and
arc currents of a parallel arc as were used to obtain the
data represented in Figure 7, whereas the load current of
the series arc was increased to 8 A. The DT, KNN, RF,
and LSTM algorithms were found to detect the states with

FIGURE 9. Identification performance of AI models in case 1 with the test
pair of parallel arc at 3 A load current, 1 A arc current, and series arc
at 5 A load current.

the highest grades (above 96%) compared with the other
AI models considered here. The identifying accuracies of
the SVM and GRU methods were also high (above 87%).
The NB and DNN algorithms were found to have mediocre
performance; the identification accuracies of the DNN and
NB methods were the lowest for detecting series arcing state.
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FIGURE 10. Identification performance of AI models in case 1 with the
test pair of parallel arc at 3 A load current, 1 A arc current, and series arc
at 8 A load current.

In the following, we report results obtained for a parallel arc
with an increased arc current of 1 A; the load currents of
parallel and series arc were equal to those used to generate
the data shown in Figure 7. The identification accuracy rates
of the eight learning techniques are presented in Figure 9.

FIGURE 11. Identification performance of AI models in case 1 with the
test pair of parallel arc at 5 A load current, 0.5 A arc current, and series
arc at 5 A load current.

The RF, LSTM, KNN, and DT techniques were found to
have the best diagnosis rates (above 96%). The performance
of the NB algorithm was found to be mediocre, and the
accuracies of the SVM and DNN techniques were the lowest
of the techniques considered here. Next, we consider results
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FIGURE 12. Identification performance of AI models in case 1 with the
test pair of parallel arc at 5 A load current, 0.5 A arc current, and series
arc at 8 A load current.

corresponding to a series arc with an increased load current
of 8 A; the condition of the parallel arc was the same as
that in Figure 9. The identifying accuracy rates of eight
learning techniques are presented in Figure 10. The RF, KNN,
LSTM, and DT algorithms were found to have excellent
identification rates for all states, whereas the NB, SVM, and

FIGURE 13. Identification performance of AI models in case 1 with the
test pair of parallel arc at 5 A load current, 1 A arc current, and series arc
at 5 A load current.

GRU algorithm identification performances were mediocre,
and the identification accuracy of the DNN technique was the
lowest of the techniques considered here. Figure 11 shows
the average identification performance of the AI algorithms
using the data of case 1 with the test pair comprising a
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FIGURE 14. Identification performance of AI models in case 1 with the
test pair of parallel arc at 5 A load current, 1 A arc current, and series arc
at 8 A load current.

parallel arc with a 5 A load current and a 0.5 A arc current
and series arc with a 5 A load current. The RF, DT, and
KNN algorithms detected the states with the highest accuracy.
The identification accuracies of the NB, LSTM, and GRU
algorithms were also high. The identification accuracies of

the DNN and SVM techniques were lowest for the detection
of series arcing states. Figure 12 shows the identification
accuracies of the techniques for a load current in the series
arc of 8 A; the load and arc currents of the parallel arc used to
generate the data in Figure 12 are equal to those considered
in Figure 11. The identification accuracy rates of the eight
learning techniques are presented in Figure 12. The RF and
DT algorithms were found to have the best diagnosis rates.
The identification accuracies of the KNN, LSTM, SVM, and
GRU techniques were also high. The performance of the NB
method was mediocre, and the accuracy of the DNN method
was the lowest of the techniques considered here. For the
generation of the data represented in Figure 13, the load
currents of both arcs were 5 A, whereas the arc current of
the parallel arc was increased to 1 A. The GRU, KNN, RF,
and LSTMmethods detected the states with the extraordinary
accuracy rates (above 90 %). The DT and NB algorithms
exhibited high and mediocre performances, respectively. The
identifying accuracies obtained using the DNN and SVM
methods were lowest for the detection of series arcing states.
Figure 14 shows the average identification performance of the
AI algorithms for case 1 with the test pair of parallel arcs with
a 5 A load current and a 1 A arc current, and series arc with an
8 A load current. The RF, KNN, and LSTM algorithms show
excellent identification rates for all states. The identification
accuracies of the DT and GRU methods were also high,
whereas the identification performances of theNB, SVM, and
GRU algorithms were found to be mediocre. The identifying
accuracies of the DNN algorithm were the lowest of the
techniques considered here. Table 3 summarizes the average
identification accuracies of all the AI techniques for data
related to case 1. The SVM, DNN, and LSTM algorithms
were found to be the best three techniques in terms of
normal detection rates, and the LSTM algorithm also showed
excellent identification rates for parallel and series arcs.
By contrast, the SVM and DNN algorithms showed poor
performance in the identification of other states. The RF, DT,
and NB methods detected the parallel arcs with excellent
accuracy. In addition, the RF and DT techniques could
identify the normal and series arc states with low error rates,
whereas the NB algorithm showed mediocre performance in
identifying other states. The remaining techniques (KNN and
GRU) detected the states with a high accuracy. Generally,
using feature analysis, ML (RF, KNN, DT), and DL (GRU,
LSTM) techniques were able to identify the states with high
performance in the case of data corresponding to case 1.
Table 4 shows the average identification precisions of all the
AI models for data related to case 2. The RF, KNN, and
LSTM techniques were found to be the best three techniques
for detection of the normal state, and the LSTM algorithm
also showed excellent identification rates of the arc faults.
In addition, the RF technique showed high detection rates
in the identification of the arc type, whereas the KNN
algorithm showed poor and high performances in identifying
parallel and series arcs, respectively. The DT and GRU
algorithms detected the parallel arcs with high accuracy.
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TABLE 3. The average identification rates of DC arc faults in case 1.

TABLE 4. The average identification rates of DC arc faults in case 2.

In addition, the GRU algorithm identified the normal and
series arc states with a low error rate, whereas the DT
method showed mediocre performance in identifying other
states. The remaining techniques (SVM, NB, and DNN)
detected the states with high rates. Generally, using the
raw data, the performance of ML (SVM, KNN, NB, and
DT) techniques were low, except for the RF algorithm; DL
(GRU, LSTM) techniques, however, were able to identify
the states with excellent accuracy. Table 5 illustrates the

average identification accuracy of all the AI techniques using
the data of case 3. The RF, NB, and LSTM techniques
were found to be the best three techniques for the detection
of normal states. The RF and LSTM algorithms also
showed high identification rates for parallel and series arcs.
By contrast, the NB technique showed poor performance
when detecting the other states. The RF, DT, and GRU
algorithms detected the parallel arc with high accuracy.
In addition, the DT algorithm was able to identify normal and
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TABLE 5. The average identification rates of DC arc faults in case 3.

series arc states with low errors, whereas the GRU technique
showed mediocre and high performances in the identification
of normal and series arc states, respectively. The remaining
techniques (SVM, DNN) detected the states with high error
rates with the exception of the KNN technique. Generally,
when using both the feature and raw data, the accuracy of
the ML (RF, KNN, and DT) and DL (LSTM and GRU)
techniques were found to be high with the exception of the
SVM, DNN, and NB methods, which showed mediocre and
poor performance. This research focuses on identifying the
types of arc faults. Thus, the comparison for detection time
is omitted. However, the expected detection time of all AI
models should be lower than conventional techniques because
the AI techniques determine the arcing or normal events
based on the trainingmodels, whichwere already trained. The
training stage is time-consuming, but the decision stage only
takes a few milliseconds.

V. CONCLUSION
We demonstrated the identification of DC arcs using different
combinations of different input and advanced ML and DL
algorithms. DL algorithms were found to be more effective
when raw signal inputs were used compared with ML
methods for the detection of any given state. On the other
hand, the identification rates ofMLmethods were found to be
higher than those obtained using DL techniques when feature
analysis inputs were used. The combination of inputs yielded
a balance in the proficiency of DL and ML methods for all
states. In general, the RF and LSTM algorithms were found
to be the are the best AI techniques to identify the normal
or failed states in DC systems. These algorithms provided
excellent performances with various input parameters. This

research offers insight into the failure diagnosis of DC arcs.
Nevertheless, this research was executed in a research labo-
ratory and therefore appropriate testing and adaptation must
be undertaken before applying these techniques to practical
systems or applications. One of the limitations of this work is
that this paper did not study the hyperparameter adjustments
of the AI models. As a result, the same AI model might
deliver altered precision grades for the same data set with
different quantities of hyperparameters. The hyperparameters
in all learning algorithms were chosen based on the trial
and error method. Numerous examinations are mandatory
to discover the finest hyperparameters. Nevertheless, there
is no way to ensure that the selected hyperparameters
return the best performance for all cases. Additionally, the
performance of all AI algorithms varies with the operative
conditions (load type, current amplitudes, and switching
frequency). This means that the optimum hyperparameters
in one specific condition are not optimal for others. From
the above diagnosis rates, some learning techniques offer
high performance in several cases, while their performance
was mediocre or poor in other cases. Another limitation of
this work is that it did not investigate feature analysis in
the frequency domain. The reason for this omission is that
such analysis entails high computational cost and sample
rates. These shortcomings would extend the performance
time and reduce the precision in the identification of a fault
in actual systems. The time-domain signals could be handled
using a lower sample rate than the frequency domain signals,
which results in a fast algorithm for a given computational
cost.

The above results indicate that machine learning tech-
niques should use feature extractions in order to sustain

76398 VOLUME 10, 2022



H.-L. Dang et al.: Identifying DC Series and Parallel Arcs Based on Deep Learning Algorithms

a high diagnosis rate. Alternatively, DL methods need an
enormous data set and high computational effort owing to
deep hidden structure compared with ML techniques. The
detection rates show that DL algorithms performed better
than the other AI techniques when the raw data in the time
domain was considered. By contrast, their performance was
reduced when the raw signals were removed from the input
data.

This study aims to classify the arc type when an arc event
occurs. Because the protection scheme for each type of arc
fault is different, if the type of fault is not classified, the proper
protection acts may not be applied correctly. Furthermore,
there are various parallel and series arc combinations in
practical applications. Therefore, the training stage is vital
when the new combinations are integrated into the system.
For the practical systems, if there is any change, such as
load types and current amplitudes, training new data is vital
to maintain the high performance of AI models. Otherwise,
the detection rates might be poor or false detections could
be made. This study provides insight into different AI
methods. This research may be of interest when selecting AI
techniques, input types, and feature extraction methods; this
work may therefore contribute to constructing safer and more
stable systems involving arc fault recognition schemes related
to altered priorities, such as robustness, reliability, execution
time, and costs.
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