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ABSTRACT Aerial networks have been widely considered a crucial component for ubiquitous cover-
age in the next-generation mobile networks. In this scenario, mobile edge computing (MEC) and rate
splitting multiple access (RSMA) are potential technologies, which are enabled at aerial platforms for
computation and communication enhancements, respectively. Motivated from this vision, we proposed a
high altitude platform-mounted MEC (HAMEC) system in such an RSMA environment, where aerial users
(e.g., unmanned aerial vehicles) can efficiently offload their tasks to the HAMEC for external computing
acquisition. To this end, a joint configuration of key parameters in HAMEC and RSMA (referred to
as HAMEC-RSMA) such as offloading decision, splitting ratio, transmit power, and decoding order was
optimally designed for a processing cost minimization in terms of response latency and energy consumption.
Subsequently, the optimization problem was transformed into a reinforcement learning model, which is
solvable using the deep deterministic policy gradient (DDPG) method. To improve the training exploration
of the algorithm, we employed parameter noises to the DDPG algorithm to enhance training performance.
Simulation results demonstrated the efficiency of the HAMEC-RSMA system with superior performances
compared to benchmark schemes.

INDEX TERMS 6G, rate splitting multiple access, edge computing, unmanned aerial vehicle, deep
reinforcement learning.

I. INTRODUCTION
Mobile network evolution has brought the Internet of
things (IoT) toward a new revolution in diverse applica-
tion scenarios, where spatial limits, geographical location,
the microworld, and the biological environment can be effi-
ciently supported by sustainable access infrastructure [1].
To support an ubiquitous coverage, aerial radio access net-
works (ARANs) appear to be a potential strategy for enhanc-
ing existing terrestrial communication infrastructures, which
is able to provide services in underserved areas [2], [3].
Particularly, owing to the high mobility, coverage capac-
ity, and the ability to reach places inaccessible to humans,
airborne platforms such as aircraft and unmanned aerial
vehicles (UAVs) can be successfully exploited in a variety
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of professional applications, including agriculture, mission-
critical services, search and rescue missions, and surveillance
systems [4], [5].

To assist the aforementioned scenarios, mobile cloudifica-
tion paradigms have changed considerably in tandemwith the
rise of IoT, particularly in mobile edge computing (MEC).
MEC enhances the cloud computing effectively by bringing
cloud services to the network edge, where they are available
nearby and have low latency to users [6]. Consequently,
an integration of MEC into aerial networks consisting of
high altitude platforms (HAPs) and UAVs provides additional
resources that significantly enhance system capabilities and
performances [7]. Due to unique characteristics of the aerial
networks, airborne platforms face several challenges such as
battery limitations and flying formation to work stably on
the air. In this study, we considered a high altitude platform-
mounted MEC (HAMEC) system, where an edge computing
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server equipped at a HAP to enhance the performance of an
aerial network. In such a HAMEC system, aerial users (AUs)
flying in a 3D space coverage harvest information from ter-
restrial devices to assist professional applications in agricul-
ture, surveillance, etc. In these scenarios, AUs can partially
offload their tasks to the HAMEC with high computation
resources for processing to reduce user costs in the network.

On the other hand, to increase the robustness in task
transmission, rate splitting multiple access (RSMA) tech-
niques are assumed for communication between AUs and
the HAMEC. RSMA is a powerful emerging multiplexing
strategy for spectral efficiency improvement by integrating
space-division multiple access and non-orthogonal multiple
access techniques [8]. Regarding our investigated scenarios,
where uplink RSMA is exploited to transmit information
from AUs to HAMEC, each transmit signal is split into
multiple sub-signals, and the successive interference cancel-
lation (SIC) technique is applied at the receiver to decode all
the sub-signals. To the best of our knowledge, a combination
of the HAMEC model and the RSMA technique is still an
open research direction, where multiple system parameter
configuration such as offloading decision, splitting ratio,
transmit power, and decoding order should be optimized for
a processing cost minimization in terms of response latency
and energy consumption. Motivated by this observation, our
paper dedicates to resolve the mentioned problem. Accord-
ingly, the main contributions of this research are as follows:
• First, we investigated a HAMEC system in a uplink
RSMA-enabled aerial network, where the AUs serve in
a 3D space coverage. In this system model, we proposed
an optimization problem of offloading decision, splitting
ratio, transmit power, and decoding order to minimize
the processing costs in terms of total latency and energy
consumption.

• Second, we transformed the problem into a reinforce-
ment learning model that can be solved by applying the
deep deterministic policy gradient (DDPG) algorithm,
referred to as HAMEC-RSMA. To cope with that the
action space noise for training exploration in DDPG
may violate the variable value range constraints in the
optimization problem, we added parameter noises to
the DDPG algorithm during training to ensure that the
exploration meets all the problem constraints.

• Third, we simulated the environment scenario and
trained the model. Numerical results demonstrated
the efficiency of the HAMEC system in a uplink
RSMA-enabled aerial network, where the proposed
HAMEC-RSMA algorithm outperforms existing bench-
mark schemes.

The rest of this research is organized as follows. We sum-
marized some related works in Section II. Then, we intro-
duced the system model and formulated the optimization
problem in Section III and Section IV, respectively. Next,
we proposed the HAMEC-RSMA algorithm in Section V.
Simulation results were presented in Section VI. Finally,
we concluded the study in Section VII.

II. RELATED WORK
Mobile edge computing (MEC) has been recently studied
in a vast number of studies due to the rapid expansion
of the mobile network. Especially, minimizing the cost of
task processing is typically an attractive challenge [9]–[14].
For instance, the authors in [9] proposed a task offloading
model in an industrial IoT (IIoT) scenario, where they opti-
mized the user equipment’s resource allocation and binary
offloading decisions to reduce the system cost function.
Then, they designed a reinforcement learning model that
apply Q-learning algorithm to address the problem. The study
in [10] aimed to minimize the total task delay in a multi-MEC
system by optimizing the binary offloading decision, resource
allocation, and cooperative mode selection. The authors
presented an iterative technique based on Lagrangian dual
decomposition, the monotonic optimization method, and the
ShengJin Formula method to address the problem. In [11],
a stabilized green crosshaul orchestration framework is pro-
posed utilizing a Lyapunov-theory-based drift-plus-penalty
policy to optimize the offloaded data for an energy consump-
tion minimization problem. In addition, the integration of
the UAV and MEC has also been considered in [13]. The
authors introduced a UAV-assisted MEC system intending
to minimize the total cost of IoT devices. They devised the
AA-CAP algorithm to optimize binary computation offload-
ing, computation resource allocation, spectrum resource allo-
cation, and UAV placement for this purpose. The authors
in [14] investigated a scenario where the UAV established
wireless communication between themobile users (MUs) and
edge clouds. Based on the successive convex approximation
method, they developed an algorithm to optimize the UAV
placement, communication and computing resource alloca-
tion, and task partition variables for minimizing the cost in
terms of total service delay and MUs energy consumption.

Along with MEC, multiple access has recently been
an attractive research topic. The non-orthogonal multiple
access (NOMA) technique was examined to improve the
system performance in many scenarios, such as ultra-reliable
low-latency communications systems [15], and blind signal
classification and detection systems [16]. In terms of RSMA,
several recent studies have looked into various problems
related to the adoption of RSMA in wireless networks, which
considered both downlink [17]–[19] and uplink [20], [21]
transmissions. For instance, the work in [17] considered two
schemes of multiple access: NOMA and RSMA. The authors
examined the energy efficiency in a millimeter-wave down-
link system, and the results showed the outperformance of
the RSMA to NOMA in this scenario. In [18], RSMA was
applied in a downlink network to maximize user sum rates
by optimizing rate allocation and power control at the base
station (BS). The authors in [19] considered the combination
of RSMA and UAV networks. They present the integration
of RSMA with a UAV-BS downlink transmission scenario,
where a low-complexity iterative algorithm was proposed to
optimize the UAV placement, RSMA precoding, and rate
splitting decision to maximize the weighted sum rate of users.
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TABLE 1. List of notations.

Different from downlink, only a few research has focused
on RSMA in uplink systems. The paper [20] investigated the
performance of a two-source uplink RSMA network in terms
of outage probability and throughput. In [21], the authors
considered the uplink of a wireless network using RSMA.
They aim to maximize the user sum-rates by optimizing the
decoding order and power allocation at users, which is solved
by the difference of two convex function method and an
exhaustive search method.

Although the number of studies on MEC and RSMA has
grown over the past years, to the best of our knowledge,
an integration of RSMA and MEC remains an open and
attractive issue. Hence, this observation motivates us to con-
duct this study.

III. SYSTEM MODEL
We proposed the considered HAMEC system model with
the RSMA technique in this section, where the network sce-
nario, communication, computation, and offloading model
are all thoroughly investigated. Table 1 contains a list of used
notations.

A. NETWORK SCENARIO
As illustrated in Fig. 1, we consider a HAMEC system
in RSMA-enabled aerial networks consisting of an AU set
denoted by U = {1, . . . , u, . . . ,U} and its cardinality U.
In this model, AUs fly in a 3D space coverage to serve

FIGURE 1. HAMEC-enhanced aerial networking scenario.

a certain terrestrial area, where the terrestrial base station
is unavailable. To improve the quality of services, a HAP
equipped with a MEC server hovers in the air covering all
the AUs.

In this study, the time is divided into discrete time slots.
At each time slot t , each AU u is assumed to have a computa-
tion task to execute, denoted as τu[t] = (wu[t], cu[t]), where
wu[t] and cu[t] are the size and required computation resource
in bits of the task, respectively. Each AU can process its task
locally or offload the task to HAMEC for processing and
sending back the task result. To ensure generality, a partial
offloading scheme is investigated for each AU u at time slot t ,
where the offloading rate is denoted as ou[t] ∈ [0, 1]. The
rate determines that ou[t] percentage of task τu is offloaded
to HAP and (1− ou[t]) part of task τu is processed locally.

B. COMMUNICATION MODEL
In this scenario, the light-of-sight (LoS) channel is considered
for all communication links since the aerial network has
almost no obstacles. Hence, we adopt free space path loss
model for the channel gain between HAP and AU u, which is
calculated as [14]

gu[t] =
β0

du[t]α
, (1)

where α is the path loss exponent, β0 is the channel power
gain at reference distance 1m, and du[t] is the distance
between HAP and AU u at time slot t . We denote lu[t] =
(xu[t], yu[t], zu[t]), and lh = (xh, yh, zh) are the location of the
AU u at time slot t , and fixed location of HAP, respectively.
Then, the distance du[t] is calculated as

du[t]=
√
(xh − xu[t])2+(yh − yu[t])2+(zh − zu[t])2 (2)

To enhance the spectrum efficiency, RSMA technique is
assumed for communications between HAP and the AUs.
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In this scheme, the transmitted signal su[t] of each AU u
at time slot t is split into K sub-signals. Without loss of
generality, we choose K = 2 as in [21], and denote Ku[t] =
{su1[t], su2[t]} is the set of sub-signals of su[t], the transmitted
signal is then expressed as

su[t] =
2∑

k=1

√
puk [t]suk [t], (3)

where puk [t] ≥ 0 is the transmit power of sub-signal suk [t] at
time slot t . Then, the total offloaded signal received at HAP
is represented as

sh[t] =
U∑
u=1

√
gu[t]su[t]+ n0

=

U∑
u=1

2∑
u=1

√
gu[t]puk [t]suk [t]+ n0, (4)

where n0 is the additive white Gaussian noise with power
spectral density σ 2.
As RSMA, we denote 1o

u[t] = {δ
o
u1[t], δ

o
u2[t]} as the

splitting ratio set with two variables of the offloaded part of
task τu[t]. In case that the offloading rate is zero, the splitting
ratio variables should be zero due to no offloaded data. Then,
the splitting ratio should follow the constraints as

δouk [t] ∈ [0, dou[t]e] ,∀k, u,
2∑

k=1

δouk [t] = dou[t]e, ∀u, (5)

where δouk [t] is the ratio of the k sub-offloaded task of AU u at
time slot t , and dou[t]e is the ceiling function of ou[t], which
is equal to 1 when offloading and equal to 0 in otherwise.

Then, each sub-offloaded task k of each AU u is denoted
as τ ouk [t] =

(
wouk [t], cu[t]

)
, where wouk [t] = δ

o
uk [t]ou[t]wu[t]

is the size in bits of the sub-offloaded task k . When
δouk [t] > 0, the corresponding power puk [t] also needs to be
greater than 0 to ensure all split parts are offloaded to HAP,
otherwise, the transmit power is set to zero because of no
offloaded data. Thus, we define a RSMA offloading power
constraint as {

puk [t] > 0, if δouk [t] > 0,
puk [t] = 0, otherwise.

(6)

At HAP, the successive interference cancellation (SIC)
technique is applied for decoding all sub-signals suk [t]
from the received signal sh[t]. We denote 8[t] =

{φ11[t], . . . , φuk [t], . . . , φU2[t]} is the set of decoding order
of all sub-signals, where φuk [t] ∈ {1, 2, . . . , 2U} is the
decoding order of sub-signal k of AU u at time slot t . Then,
according to the ascending order, the uplink rate of sub-signal
suk [t] on RSMA can be calculated as

ruk [t] = Blog2

(
1+

gu[t]puk [t]∑
φvj[t]>φuk [t] gv[t]pvj[t]+ σ

2

)
, (7)

where B is the communication bandwidth of HAP, and φvj[t]
is the decoding order of sub-signal j of AU v at time slot t .

C. COMPUTATION MODEL
For the task τu[t] with offloading rate ou[t], the local execu-
tion time at the AU u is calculated as

T lu[t] =
(1− ou[t])wu[t]cu[t]

f lu
, (8)

and the execution time at the HAP is calculated as

T cu [t] =
ou[t]wu[t]cu[t]

f chu
, (9)

where f lu and f chu are the computation resource of AU u
and the computation resource that HAP allocates to AU u,
respectively. The local execution energy consumption
of AU u is then calculated as [22]

E lu[t] = (1− ou[t])wu[t]κu
(
f lu
)2
, (10)

where κu is the energy coefficient of the AU u depended on
the hardware architecture.

D. OFFLOADING MODEL
When offloading a sub-task, it must be uploaded to HAP
before execution. The time for uploading sub-offloaded task
τ ouk [t] is calculated as

T up
uk [t] =

wouk [t]

ruk [t]
, (11)

and the energy consumption of AU u for uploading
sub-offloaded task τ ouk [t] is calculated as

Eup
uk [t] = puk [t]T

up
uk [t] =

puk [t]wouk [t]

ruk [t]
. (12)

Consequently, the total time for uploading the offloaded part
of task τu[t] is calculated as

T up
u [t] =

2∑
k=1

T up
uk [t] =

2∑
k=1

wouk [t]

ruk [t]

=

2∑
k=1

δouk [t]ou[t]wu[t]

ruk [t]
. (13)

The computation tasks in this study are considered with
small size results enough that the downloading results time
can be neglected. Accordingly, the total latency for process-
ing the offloaded part of task τu[t] consists of uploading time
T up
u [t] and execution time T cu [t], which can be calculated as

T off
u [t] = T up

u [t]+ T cu [t]

=

2∑
k=1

δouk [t]ou[t]wu[t]

ruk [t]
+
ou[t]wu[t]cu[t]

f chu

= ou[t]wu[t]

(
cu[t]
f chu
+

2∑
k=1

δouk [t]

ruk [t]

)
, (14)

and the energy consumption of AU u for completing the
offloaded part of task τu[t] is the energy consumption for
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uploading, which is calculated as

Eoff
u [t] =

2∑
k=1

Eup
uk [t] =

2∑
k=1

puk [t]wouk [t]

ruk [t]

=

2∑
k=1

puk [t]δouk [t]ou[t]wu[t]

ruk [t]
. (15)

IV. PROBLEM FORMULATION
A. COST FUNCTION
According to the partial offloading scheme, the total task
latency of task τu[t], Tu[t], is determined as the longest time
between the local execution time and offloaded time, which
is provided as

Tu[t] = max
(
T lu[t],T

off
u [t]

)
, (16)

and the energy consumption Eu[t] of AU u for processing the
task τu[t] is computed as the total energy consumption for
local computing and offloading, which is provided as

Eu[t] = E lu[t]+ E
off
u [t]. (17)

In addition, we examine a task processing cost function of
all AUs in terms of energy consumption and the total latency,
which is calculated by the sum of energy consumption of all
AUs and the total task latency with weight parameters. The
cost function at each time slot t is given as

C[t] =
∑
u∈U

(ηeEu[t]+ ηtTu[t]) , (18)

where ηe, ηt ∈ [0, 1] are the weight parameter of the
energy consumption and latency, respectively, which satisfy
ηt + ηe = 1.

B. PROBLEM FORMULATION
The goal of this study is to minimize the cost function by
optimizing the offloading rates, transmission powers, and
splitting ratios of AUs, as well as the decoding order at HAP.
We denote pu[t] = {pu1[t], pu2[t]} is the set of transmit power
of each AU u, the optimization problem can be formulated as

(P1) : min
8[t]{ou[t],1o

u[t],pu[t]},u∈U
C[t], (19a)

s.t. (6), puk [t] ∈ pu[t], u ∈ U,
(19b)

Tu[t] ≤ ζt , u ∈ U, (19c)
φuk [t] ∈ {1, 2, . . . , 2U},
φuk [t] ∈ 8[t], (19d)
ou[t] ∈ [0, 1], u ∈ U, (19e)
δouk [t]∈ [0, dou[t]e], δouk [t]∈1

o
u[t],

u ∈ U, (19f)
2∑

k=1

δouk [t] = dou[t]e, u ∈ U, (19g)

2∑
k=1

puk [t] ≤ Pmax
u , u ∈ U, (19h)

where (19d) and (19e) are the value range constraints of the
decoding order and the offloading rate, respectively; con-
straints (19f) and (19g) specify the value range of splitting
ratio; (19b) and (19h) indicate the value constraints of the
transmit power of each sub-signal, where Pmax

u is the maxi-
mum power of each AU u, and the constraint (19b) is to make
sure that all split parts are offloaded; the tasks at time slot t
need to be completely executed before the next tasks to ensure
system capacity, hence, we set a constraint in (19c), where
ζt is the time slot duration.

The problem (19h) is non-convex due to the combination
of continuous variables and the decoding order. In addition,
the dynamic environment yields a large number of possi-
ble model observations in real-time. Therefore, we design
a reinforcement learning framework named HAMEC-RSMA
for solving the problem, which trains the agent using the
DDPG algorithm.

V. PROPOSED DEEP REINFORCEMENT LEARNING
FRAMEWORK
A. HAMEC-RSMA FRAMEWORK
Before transforming the problem to the RL model, we first
change the decoding order variables to continuous variables
so that all the actions have continuous values. We denote
5[t] = {π11[t], . . . , πuk [t], . . . , πU2[t]} is the set of decod-
ing priority of all sub-signals, where πuk [t] ∈ [0, 1] is the
decoding priority of sub-signal k of AU u at time slot t . Then,
according to the ascending order of the decoding priority, the
uplink rate of sub-signal suk [t] is calculated as

ruk [t]=Blog2

(
1+

gu[t]puk [t]∑
πvj[t]>πuk [t] gv[t]pvj[t]+ σ

2

)
, (20)

where πvj[t] is the decoding priority of sub-signal j of AU v
at time slot t .

To simplify the optimization variables, we reform the split-
ting ratio set of offloaded task τu[t] to εou[t], where ε

o
u[t] ∈

[0, 1] denotes the splitting ratio variable of each task τu[t].
As a result, the values the splitting ratios of each task τu[t]
are calculated as

δou1[t] = ε
o
u[t]dou[t]e,

δou2[t] = (1− εou[t])dou[t]e. (21)

Besides, with the transmission power, given the value
of pu1[t], according to (19h), the value of pu2[t] must satisfy

pu2[t] ≤ Pmax
u − pu1[t]. (22)

We denote εpu1[t], ε
p
u2[t] ∈ [0, 1] are the power variables of

pu1[t], pu2[t], respectively. According to (22), the values of
pu1[t] and pu2[t] are then calculated as

pu1[t] = ε
p
u1[t]P

max
u ,

pu2[t] = ε
p
u2[t](P

max
u − pu1[t]). (23)

Hence, according to the constraints (19b) and (19h),
the sub-signal transmit powers pu1[t] and pu2[t] are
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calculated as

pu1[t] = dδou1[t]eε
p
u1[t]P

max
u ,

pu2[t] = dδou2[t]eε
p
u2[t](P

max
u − pu1[t]). (24)

In summary, the decoding order 8[t] is changed to decod-
ing priority5[t], the splitting ratio 1o

u[t] is reduced to ε
o
u[t],

and the transmission powers of each AU u at time slot t are
changed to εpu1[t] and ε

p
u2[t]. Thus, the optimization problem

is rewritten as

(P2) : min{
πu1[t], πu2[t], ou[t],
εou[t], ε

p
u1[t], ε

p
u2[t]

}
,u∈U

C[t], (25a)

s.t. (19b), (19c). (25b)

πuk [t] ∈ [0, 1], πuk [t] ∈ 5[t],

(25c)

ou[t], εou[t], ε
p
u1[t], ε

p
u2[t] ∈ [0, 1],

u ∈ U, (25d)

We transform the problem into an RL model, in which
the agent is the HAP with high energy and computational
resources, and the environment is the whole system. At each
time slot t , based on the system state s[t], the agent decides
the action a[t] interacting with the environment, then receives
back the reward r[t] and the next state s[t+1]. The state space,
action space, and reward function are defined as follows.

1) STATE SPACE
The state space determines dynamic parameters of the envi-
ronment that affect the reward of the RL model. In this
environment, the state space consists of the location and the
task information of all AUs, which is represented as

s[t] =


x1[t], . . . , xu[t], . . . , xU [t],

y1[t], . . . , yu[t], . . . , yU [t],

w1[t], . . . ,wu[t], . . . ,wU [t],

c1[t], . . . , cu[t], . . . , cU [t]

 . (26)

The number of location indexes, task sizes, and task required
computation resources are U . Then, the total number of
entries in state space is 4U .

2) ACTION SPACE
The action space includes all the optimization variables,
which are the decoding priorities, offloading rates, splitting
variables, and transmit power variables. At each time slot t ,
the action space is represented as

a[t] =



π11[t], . . . , πu1[t], . . . , πU1[t],

π12[t], . . . , πu2[t], . . . , πU2[t],

o1[t], . . . , ou[t], . . . , oU [t],

εo1[t], . . . , ε
o
u[t], . . . , ε

o
U [t],

ε
p
11[t], . . . , ε

p
u1[t], . . . , ε

p
U1[t],

ε
p
12[t], . . . , ε

p
u2[t], . . . , ε

p
U2[t]


, (27)

where all the constraints in (25) need to be satisfied. The
number of decoding priorities, offloading rates, splitting vari-
ables, and transmit power variables are 2U , U , U , and 2U ,
respectively. Therefore, the total number of entries in action
space is 6U . All actions are designed to have a value range
of [0, 1], which satisfies the value ranges in (25).

3) REWARD FUNCTION
The reward determines the effect of action a[t] on the envi-
ronment at state s[t]. Since this study aims to minimize the
task processing cost function, a negative cost value is added
to the reward function. In addition, if the constraint (25b)
is violated, the task τu[t] will not be successfully executed.
Thus, we add a penalty reward to penalize the action violating
the constraints in (25b). In summary, the reward function at
time slot t can be represented as

r[t] = λ[t]∇ − (1− λ[t])C[t], (28)

where ∇ and λ[t] are the negative penalty value and the
corresponding binary variable, which is given by

λ[t] =

{
1, if constraints (25b) are not satisfied,
0, otherwise.

(29)

B. HAMEC-RSMA ALGORITHM
1) APPLIED DDPG ALGORITHM
The DDPG algorithm proposed in [23] is an actor-critic algo-
rithm that handles the continuous action domain in reinforce-
ment learning. It includes an actor-network, µ(s|θµ) with the
parameter θµ, defining the policy for the agent to decide the
action a at each time step according to the observed state s
from the environment. The algorithm also includes a critic-
network, Q(s, a|θQ) with the parameter θQ, measuring each
action a at each state s to determine how effective it is in
this corresponding state. In updating the networks, the DDPG
algorithm employs a target actor-network, µ′(s|θµ

′

) with the
parameter θµ

′

, and a target critic-network, Q′(s, a|θQ
′

) with
the parameter θQ

′

, to improve model training stability.
At each training step, using batch learning, the parameter

of the main critic-network is updated by minimizing the
loss (L) between the action-value function, Q(si, ai|θQ), and
the target value yi, which is calculated as

L =
1
B

B∑
i=1

(
Q(si, ai|θQ)− yi

)2
, (30)

where B is the mini-batch size, si and ai are the state and
action of sample i in the mini-batch, respectively. The target
value of sample i, yi, is calculated as

yi = ri + γQ′
(
si+1, µ′(si+1|θµ

′

)|θQ
′
)
, (31)

where ri and si+1 are the reward and next state of the sample i,
respectively, and γ is the discount factor. Besides, the param-
eter of the main actor-network is updated using the policy
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FIGURE 2. PDF of action with noise.

gradient as

∇θµJ =
1
B

B∑
i=1

(
∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(si|θ

µ)
)
.

(32)

Then, the target network parameters are updated using the
soft update with a small constant, τ , which are calculated as

θµ
′

← τθµ + (1− τ )θµ
′

, (33)

θQ
′

← τθQ + (1− τ )θQ
′

. (34)

Owing to ensure exploration in the training samples, the
DDPG adds noise samples to the actor policy to produce
action interacting with the environment. This method can be
called action space noise. In training, the produced action at
time slot t can be given as

a[t] = µ
(
s[t]|θµ

)
+N [t], (35)

whereN [t] can be chosen fromOrnstein-Uhlenbeck process.
Remark 1: The decided actions have to satisfy the value

range of [0, 1] as mentioned in subsection V-A2. Therefore,
the decided action from the policy have to be in the range
of [0, 1], which can be presented as

0 ≤ µ
(
s[t]|θµ

)
≤ 1, ∀s[t]. (36)

However, the additional noise in the exploration in (35)
may violate the action value ranges in (25). Specifically,
we generate random action in the value range of [0,1] in
5e6 steps and perform the noise using theOrnstein-Uhlenbeck
process to the action. The probability density functions (PDF)
of the action and action with noise are illustrated in Fig. 2.
Although the action varies from 0 to 1, the action plus noise
can go out of the range and hit the new value range of (-1,2),
which violate the constraints in (25).

Therefore, we employ another way to explore the training
samples in this study. Instead of using the additional noise,

we embed the parameter space noise to the DDPG algorithm
for exploration as proposed in [24].

2) PARAMETER NOISE IN THE DDPG ALGORITHM
This method explores the training samples by adding noise
to the network parameters instead of the action space. The

agent employs a perturbed actor-network, µ̃
(
s|θ̃µ

)
with the

parameter θ̃µ, to decide action interacting with the environ-
ment and trains the non-perturbed actor-network, µ(s|θµ).
Then, the decided action is given as

a[t] = µ̃
(
s[t]|θ̃µ

)
. (37)

The parameter of the perturbed actor-network is achieved
by applying additive Gaussian noise to the non-perturbed
actor-network, which can be given as

θ̃µ = θµ +N (0, 1), (38)

whereN (0, 1) is the additive Gaussian noise with mean 0 and
variance 1.

In addition, the parameter space noise requires a scale
value ρ to adjust the variance in the action space. The noise
scale value is adapted over time and can be calculated as

ρk+1 =


ςρk , if d(µ, µ̃) ≤ ϑ ,

1
ς
ρk , otherwise,

(39)

Algorithm 1 HAMEC-RSMA Algorithm
1: Set up the environment and model parameters.
2: Initialize the neural network parameters
θµ, ˜θµ, θQ, θQ

′

, θµ
′

.
3: Set the number of episodes E and number of steps in

episode.
4: for e = 1, . . . ,E do
5: Perturb the actor-network parameter as (41).
6: Observe initial state s[t] of the episode as (26).
7: while in episode do
8: Interacting:
9: Decide action a[t] = µ̃

(
s[t]|θ̃µ

)
.

10: Perform a[t] and get r[t], s[t + 1].
11: Store the tuple < s[t], a[t], r[t], s[t + 1] > into

buffer.
12: Update next state s[t]← s[t + 1].
13: Training:
14: Randomly sample experiences from replay

buffer.
15: Update parameter θQ by minimizing loss in (30).

16: Update parameter θµ by policy gradient in (32).
17: Target networks soft update as (33)
18: end while
19: Adapt noise scale value as (39).
20: end for
21: return the trained networks θµ

∗

.
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FIGURE 3. HAMEC-RSMA framework.

where ς and ϑ are a scaling factor and a threshold
value, respectively, d(µ, µ̃) denotes the distance between the
non-perturbed and perturbed policy, which can be calculated
as

d(µ, µ̃) =

√√√√ 1
N

N∑
i=1

Es
[
(µ(s)i − µ̃(s)i)2

]
, (40)

whereN is the dimension of the action space, andEs[.] is esti-
mated from a batch of states from the replay buffer. Then, the
perturbed actor-network parameter at episode k is calculated
as

θ̃µ = θµ + ρkN (0, 1), (41)

We illustrate the whole framework in the Fig. 3, which
has five neural networks: two critic-networks and three actor-
networks. The perturbed actor-network is used to decide
the action a[t] to interact with the observed state from the
environment s[t] during exploration. Then, The samples are
stored into the replay buffer and used for training the agent
using the DDPG algorithm. The procedure is described in the
algorithm 1.
At the beginning of each episode, the actor-network is

perturbed with the noise scale value using (41). Based on
observation s[t] at each step, the perturbed actor-network
decides an action a[t] interacting with the environment and
gets back the reward r[t] and the next state s[t + 1]. A tuple
including s[t], a[t], r[t], and s[t + 1] is then stored to the
replay buffer for training the agent. In each training step, the
agent randomly samples a mini-batch of experiences from
the replay buffer and calculates to update the parameter of
the critic-network and the non-perturbed actor-network by
minimizing the loss as (30) and policy gradient as (32),

TABLE 2. Simulation parameters.

respectively. Accordingly, the target networks are updated
using the soft update as (33). At the end of each episode,
the agent calculates the distance between the non-perturbed
and perturbed policy by (40) to update the noise scale value
using (39). After training, the trained non-perturbed actor-
network is obtained to test the model.

VI. PERFORMANCE EVALUATION
A. SIMULATION SETTINGS
To evaluate the performance of the proposed HAMEC-RSMA
framework, we simulate an environment including a HAP
hovers at an altitude of 20 (Km) that serves 4 AUs flying
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FIGURE 4. Convergence concerning hyper-parameter.

FIGURE 5. Comparison training exploration of parameter space noise and
action space noise.

in a range of 500 (m) at an altitude of 200 (m). Each AU
is assumed to fly randomly with a velocity of 15 (m/s) in
a certain area without violating the others. The networks in
this model have two hidden layers, which include 512 and
1024 nodes in the critic-networks, and 128 and 256 nodes in
the actor-networks. The model parameters, and the environ-
ment parameters are given in the table 2. To demonstrate the
efficiency of the proposed framework, we compare the per-
formance of the proposed framework with some benchmark
schemes, which are defined as follows.

• HAMEC-NOMA: In this scheme, the communication
between the AUs and the HAP using the non-orthogonal
multiple access (NOMA) technique is applied for com-
parison to demonstrate the efficiency of the RSMA

technique.We also use the DDPG algorithmwith param-
eter noise to solve the problem.

• Full local executing (FLE): We define this scheme
for comparison to demonstrate the efficiency of the
HAMEC model to the network. In this scheme, all the
tasks are executed locally at the AUs, implying that there
is no HAMEC in the aerial network.

• DDPG with additional noise (DDPG-AN): In this
scheme, we apply the original DDPG algorithm pro-
posed in [23] to the model, where the exploration is
ensured by the additional noise as (36). To deal with
the training samples violation issue as analyzed in sub-
sectionV-B1, we directly trim the action to the constraint
range. Then, the decided action can be presented as

a[t]=


1, if µ (s[t]|θµ)+N [t]>1,
0, if µ (s[t]|θµ)+N [t]<0,
µ (s[t]|θµ)+N [t], otherwise.

(42)

• Random action (RA): In this scheme, the actions are
chosen randomly within the constraint value range to
interact with the environment.

B. CONVERGENCE ANALYSIS
Firstly, we evaluate the proposed algorithm convergence by
varying some training hyper-parameters. The environment in
this training is a scenario with 4 AUs moving randomly, the
task size and the required computation resource are chosen
randomly in the range of [1-1.5] (Mbits) and [1000-1200]
(cycles/bit), respectively. The training reward of the model
when changing the learning rate and the mini-batch size are
illustrated in Fig. 4.

The learning rates of the actor-network (lra) and
the critic-network (lrc) are chosen in three cases
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FIGURE 6. Performance in testing 100 episodes.

FIGURE 7. Cost value when changing the task.

(lra, lrc)= {(5e−4, 5e−4), (1e−4, 5e−4), (1e−4, 1e−4)}. As the
results in Fig. 4a, the rewards converge to a definite range
after several hundred episodes and then slightly increase in
all three cases. However, the case (lra, lrc) = (1e−4, 5e−4)
gives better performance than the others when it reaches
the definite range after about 300 episodes and achieves the
highest reward value in three cases. Therefore, we choose this
case of learning rate for the simulation.

To evaluate the efficiency of the mini-batch size to the
training, we train the model with threes values as B = {16,
32, 64} and get the result in Fig. 4b. In the case B = 64, the
model starts to converge after about 950 episodes, which is
very slow compared to the others. Because of the dynamic

environment, the large mini-batch size causes noise in the
training data and leads to slow convergence. In the remaining
cases, the model converges earlier, and the case B= 32 gives
the best performance. Hence, we select B = 32 to train this
model.

Then, we compare the efficiency of the parameter space
noise and action space noise (DDPG-AN) to the exploration
in training. The training rewards are illustrated in Fig. 5.
According to the results, the reward for employing action
space noise grows over time and stabilizes around 1150 train-
ing episodes. The reward when utilizing parameter space
noise, on the other hand, is not consistent during training,
implying that it is still exploring new experiences. Further-
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more, the reward of parameter space noise is higher than
the reward of action space noise. Because in DDPG-AN,
we explicitly trim the action to the constraint range, which
limits the exploration and may lead the model to become
stuck at a local point, reducing the model performance. How-
ever, parameter space noise can improve this issue, and the
results reveal that parameter space noise performs better than
action space noise in this scenario.

C. PERFORMANCE EVALUATION
The performance of the proposed HAMEC-RSMA framework
is compared to the other schemes in this sub-section. We test
the model in 100 episodes, and the results are illustrated
in Fig. 6. The episode rewards of the schemes are given in
Fig. 6a, with HAMEC-RSMA consistently having the highest
reward. The results indicate that the RSMA technique can
improve the performance of the NOMA technique, where
the reward of HAMEC-RSMA is about 5.1% greater than
HAMEC-NOMA. The result also demonstrates the efficiency
of the parameter space noise compared to the action space
noise, where the proposed framework gives the result approx-
imately 32.11% better than DDPG-AN. In addition, the
HAMEC model significantly improve the network perfor-
mance, where it is about 65.57% and 83.56% higher than FLE
and RA schemes, respectively.

Besides, we evaluate the energy cost fairness between the
AUs by measuring the energy costs in 100 testing episodes,
which are illustrated in Fig. 6b. The average energy cost of
each AU in the HAMEC-RSMA and HAMEC-NOMA is low
compared with the others. Furthermore, HAMEC-RSMA gives
better fairness thanHAMEC-NOMA.Because in the NOMA,
an AUwith poor channel gain has to use more transmit power
to increase the data rate, resulting in an imbalance in transmit
power. In the RSMA, each AU can have a high rate path and
a low rate path, depending on the splitting ratio and decoding
order, which makes data transmission fair. As a result, the
total power used to transmit data will be fair among the AUs.

Next, we examine the system performance when increas-
ing the task size, where the task size increases from 1.0 to
1.5 (Mbits), with the cost values shown in Fig. 7a. Firstly, the
proposed framework performs best in all cases where the cost
value is the lowest. In addition, the cost value rises as the task
size increase, where the cost increase approximately 9.81%
when the task size increases 100 (Kbits) in the HAMEC-RSMA
scheme. Because with a given capacity, increasing the task
size leads to an addition in the time for processing or the
need for more power to process the task, which grows the
cost value of competing for the task.

Also, Fig. 7b illustrates the impact of the required compu-
tation resource of the task on the system performance. Our
proposed framework also yields the lowest cost compared
with the other schemes in all the evaluation cases. Similar to
the task size, increasing the task required resource makes the
cost value higher due to an increase in the processing time or
the power. In particular, the cost increase approximately 4%

when the task required resource increases 100 (cycles/bit) in
the HAMEC-RSMA scheme.

VII. CONCLUSION
In this research, we have considered the HAMEC-enhanced
aerial system with uplink RSMA communication. Here,
we formulated an optimization problem involving the
offloading decision, splitting ratio, transmit power, and
decoding order to minimize task processing costs in terms
of the total latency and energy consumption. To overcome
the problem, we deployed a reinforcement learning model
named HAMEC-RSMA, which trains the agent using the
DDPG algorithm. Since the action space noise in the DDPG
algorithm may violate variable constraints of the problems,
we applied the parameter space noise for exploration to
improve the training performance. Numerical results demon-
strated the efficiency of the proposed HAMEC-RSMA frame-
work, where it outperforms the existing benchmark schemes.
As future work, the integration of RSMA and MEC should
be considered in an industrial IoT scenario with dense user
equipment. In addition, a combination of HAMEC-RSMA
with other emerging technologies potential in 6G networks
such as intelligent reflecting surface, massive multiple-input
and multiple-output (MIMO) deserves to be investigated
thoroughly.
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