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ABSTRACT Recent studies on energy efficiency and scheduling of power-saving mode have been consid-
ered as key technologies for reducing the energy consumption of device-to-device (D2D) communication.
Wi-Fi Direct (P2P), one of the key protocols for D2D communication, defines the on-off power saving
mechanic called the notice of absence (NoA) power-saving mode that can be applied to the multimedia
video traffic. The on-off power saving mechanic enables the user to transmit or receive the real-time video
frame during the awake interval in which the video frame rate should meet the requirement. When the user
can wholly transmit one video frame before the end time of a required inter-frame interval, it can switch
to the sleep mode to save the power consumption. However, the challenge remaining for the NoA method
is the fixed length of awake/sleep interval, even if the traffic load is varied. Therefore, in this study, we
proposed a reinforcement learning-based power saving (RLPS) method to enhance the performance of the
notice of absence (NoA) power-saving mode in Wi-Fi direct with taking the multimedia video transmission
and the network delay jitter into consideration. The proposed RLPS method enables the Wi-Fi direct device
to dynamically estimate the length of awake interval for transmitting the future video frame in real-time.
In addition, the Wi-Fi direct device may wake up too early before the arrival of the video frame, which
is caused by the network delay jitter. Thus, the client device has to wait for receiving the video frame.
To tackle this challenge, the proposed RLPS method enables the device to predict the start time of awake
interval for the purpose of reducing the delay time for receiving the upcoming video frame. Results show
that the proposed RLPS method outperforms the existing NoA power-saving mode in terms of the outage
probability, energy consumption, and transmission delay of Wi-Fi Direct devices.

INDEX TERMS Wi-Fi Direct, opportunistic power saving, NoA, reinforcement learning, network delay
jitter.

I. INTRODUCTION

W ITH drastic increase of mobile data communication
and emergence of smart devices, it has become an

urgent problem to improve system capacity and strengthen
the quality of service (QoS) of users. D2D communication
is a key technology for the upcoming future communication
systems, which is designed to solve this problem by increas-
ing the system capacity, reducing the transmission delay, and
improving the overall spectrum efficiency [1]. However, how

to improve energy efficiency is crucial for D2D communi-
cation because D2D user typically uses handheld equipment
with energy-limited battery.

Since the Wi-Fi direct device uses handheld equipment
with energy-limited battery, the method to reduce the energy
consumption has become the potential research direction.
Wi-Fi Alliance defined the notice of absence (NoA) power-
saving method to improve the energy consumption of the
device via switching the radio circuitry to the sleep mode
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whenever there is no data to be transmitted [2], [3]. Although
the original NoA method has some success in reducing the
energy consumption, the various studies have attempted to
modify the NoA method in the different ways to enhance the
energy efficiency because the existing power saving methods
do not provide sufficient functions to dynamically cope with
varying traffic load [4]. The authors of [5] proved that the
performances of the NoA and opportunistic (Opp) power
save modes vary according to the type of future wireless
USB (WSB) applications. Therefore, the authors proposed an
effective method that is capable of dynamically selecting one
of two power saving modes (i.e., NoA or Opp power saving
modes) based on the WSB application to enhance the energy
efficiency. Through the NS-3 simulator, the results verify that
the performances of the proposed method (i.e., QoS of vari-
ous WSB applications and energy efficiency) are better than
those of existing NoA and Opp power saving approaches.
The authors of [6] optimizes the position of an unmanned
aerial vehicles (UAV) in 3-dimensional space to reduce the
distance between the UAV and its clients, and thus it can
maintain the connectivity of client devices, increase the over-
all network throughput, and improve energy efficiency. In
addition, the authors assume that the P2P group owner (GO)
is installed over an UAV, which connects to several clients,
so that the UAU and its clients can employ the traditional
power saving mechanism in Wi-Fi direct (i.e., opportunistic
or notice of absence power saving mode) to enhance the
energy efficiency. The con of the traditional power saving
mode in Wi-Fi direct is that the length of sleep/awake interval
is fixed. Being different from [6], the authors of [7] proposed
a Dynamically Synchronized Power Management (DSPM)
method that is capable of synchronizing the active time slots
with the data transmission intervals. In addition, the DSPM
method adjusts the sleep and awake interval according to the
traffic pattern in order to increase the energy efficiency. The
NS-3 simulation results verify that the proposed DSPM algo-
rithm outperforms the existing NoA method. [8] proposed a
traffic-aware parameter tuning scheme to dynamically adjust
the awake and absence periods in the NoA power-saving
mode and to optimize the client traffic window (CTWindow)
in the opportunistic power-saving (OPS) mode according to
traffic load.

In addition, with the growing complexity of mobile net-
work architectures, it may have difficulty to address complex
control problems in communication networks. The use of
machine learning algorithms into future mobile networks is
drawing tremendous research attention these days, because
it has ability to predict future scenarios, adapt to the net-
work changing environments, and discover the patterns that
a human can miss [9], [10]. Particularly, ML enables the
device to learn from its experience without intervention of
human. Reinforcement learning (RL) is a branch of the ML
algorithm, which enables the agent to deal with the dynamic
problem using the trial-and-error strategy. With this strategy,
the agent can try a possible solution, get the reward from its
environment, and transit to a new state. By trying all possible

solutions in all states repeatedly, the agent can learn from its
experience, and select the best optimal solution according to
the optimal decision-making policy. Hence, RL has shown a
great potential to solve non-convex and control problems.

With the key features of RL above, various works focusing
on the power saving problem in wireless communication
have been conducted. [11] proposed a ALOHA and RL-
based medium access control (MAC) protocol with Informed
Receiving for wireless sensor networks. This method en-
ables a transmitter to inform its receiver about its future
slot selection so that it can turn off its radio in other slots
to reduce energy consumption. [12] used RL for opponent
modeling, and proposed a cooperative communication pro-
tocol based on received signal strength indicator and node
energy consumption in a competitive context. [13] proposed
an RL-based MAC protocol for wireless sensor networks
and employed an RL frame to schedule the sleep and active
periods of a node to minimize energy consumption. The
authors of [14] considered that the sensor node is capable of
operating on three modes: 1) transmission, 2) listening, and
3) sleep. In this study, the authors proposed a reinforcement
learning (RL) algorithm to select an optimal action based on
the decision-making policy, where the actions correspond to
those three operation modes. In addition, the RL method is
employed to adjust the length of sleep and awake interval in
order to improve the energy efficiency while guaranteeing the
efficient packet transmission. In [15], P. Verma et al. applied
the RL method to handle the lifetime problem in the wireless
sensor network because the battery of the sensor node is
limited energy and impossible to be recharged. In this study,
the RL algorithm enables each node to select an optimal
activity by itself, where those activities consist of the sleep,
the awake, and the adjustable interval time of sleep/awake
to preserve the energy efficiency while ensuring the effective
packet transmission. The authors of [16] the authors demon-
strated that the fixed length of active/sleep period in IEEE
802.15.4 standard is not suitable with the topology changes in
the dynamic sensor network. Therefore, the authors presented
the RL-based method to find the optimal duty cycle for
the purpose of enhancing the energy efficiency of the IEEE
802.15.4 standard.

Since the existing NoA method provides the fixed length
of sleep/awake interval, which makes it not suitable for the
application i.e., the video streaming, our study proposed the
reinforcement learning-based power saving (RLPS) scheme
to adjust the length of awake interval according to the varying
frame size of the video streaming. In addition, although the
video frame is sent based on the scheduled time, it may arrive
late at the destination, which is caused by the network delay
jitter. The proposed RLPS method enables the receiver to
predict the start time of each awake interval in order to reduce
the effect of the network delay jitter. The benefits of predict-
ing the start time of the awake interval according to the delay
jitter can improve the performance gain over the traditional
notice of absence (NoA) power-saving method as follows.
The traditional NoA method schedules the packet transmis-
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FIGURE 1: Two power-saving mechanisms: (a) opportunistic
power-saving (OPS) mode and (b) NoA power-saving

mode.

sion time with considering the delay jitter by allowing the
group owner (GO) to send a beacon message to its client.
Using the NoA method, the start time of awake interval may
be faster than the actual arrival frame, which is caused by
the jitter delay. Therefore, the client device wastes the energy
consumption for waiting for the arrival video frame. In this
context, the prediction of the start time of awake interval
based on the delay jitter using our proposed RL method
can improve the performance gain over the NoA method.
Results show that the proposed RLPS method outperforms
the existing NoA power-saving mode in terms of the outage
probability, energy consumption, and transmission delay of
Wi-Fi Direct devices.

The rest of this paper is arranged as follows: Subsection
II-A explains the power-saving mechanisms developed by
Wi-Fi Direct. Subsection II-B describes the group of picture
(GoP) structure and inter-dependency among frames in a
GoP structure, and explains the related works. Subsection
III explains the operational procedure of the proposed RL
algorithm. Subsections III-A, III-B, and III-C present the
methods of computing the outage probability of each fame
class, transmission delay, and energy consumption, respec-
tively. Section IV describes and compares the performances
of the proposed RLPS and the existing NoA power-saving
methods. Section V concludes the paper.

II. SYSTEM MODEL AND PREVIOUS WORKS
A. POWER-SAVING MODES IN WI-FI DIRECT
Wi-Fi Direct technology was designed by Wi-Fi Alliance to
support the D2D communication without an AP [2]. Wi-Fi
Direct devices discover each other by performing a conven-
tional Wi-Fi scan to negotiate which device will be selected
as a group owner (GO). Then, the other devices act as clients,
and they are referred to as group members. After Wi-Fi
Direct devices discover each other, a power-saving mode is
implemented for data transmission.

There are two power-saving mechanisms in Wi-Fi Direct,
i.e., OPS and NoA modes, as shown in Figure 1. In the
OPS mode, the GO periodically sends a beacon message to
schedule the transmission time. The beacon message includes
the start time of CTWindow, the length and number of
CTWindows in a beacon interval, and the power management
(PM) bit indicator. The PM bit is used to notify that the
client has data to transmit to the GO. The PM bit is set
as 0 when the client has data to transmit and as 1 at the
end of transmission. The GO and the clients simultaneously
wake up to transmit data during CTWindows. When data are
completely transmitted during CTWindows, the client can
switch to the sleep mode at the end point of the CTWindow.
If the GO does not transmit whole data, the client extends the
CTWindow to receive the remaining data. In the NoA power-
saving mode, communication is initiated when the GO send
a beacon message to a client. The beacon message includes
scheduled information, such as the start time of doze mode,
and the number and length of sleep/awake intervals in a bea-
con interval. Therefore, the GO and client can simultaneously
wake up to exchange data during an awake interval and enter
the doze mode to reduce energy consumption. Figure 1 (b)
shows that the first and second beacon intervals consist of two
and three doze intervals, respectively. Therefore, it should
be noted that the NoA power-saving mode provides the
flexibility of dynamically adjusting the length of sleep/awake
intervals according to traffic load.

B. INTER-DEPENDENCY OF MULTI-LAYERED GROUP
OF PICTURE (GOP) STRUCTURE AND RELATED WORKS
A video codec with multi-layered GoP structure such as an
MPEG-2 video supports various frame sizes. Usually, video
frames in multi-layered GoP structure are categorized into
three types: Intra(I), Predictive(P), and Bi-directional(B).
Video frames are encoded in a sequence referred to as a GoP
to reduce their spatial and temporal redundancies [17], [18].
The GoP structure is generally described as MxNy, where x
is the number of frames in the P-P or I-P interval and y is
the aggregate number of frames in the GoP. Fig. 2 shows the
M3N9 GoP structure, which is encoded as IBB-PBB-PBB.
In the GoP structure, an I-frame is encoded without referring
to any other frames. A P-frame is encoded with referring
to the previous P-frame and I-frame. B-frame is encoded
with reference to previous I-frame and next P-frame or the
previous P-frame and next P-frame. Therefore, frame loss can
occur in the following three manners: 1) The loss of I-frame
results in loss of all frames in the GoP. 2) If a P-frame is lost,
the following P-frame and B-frame are lost. 3) If a B-frame
is lost, there is no more frame loss in the GoP. This inter-
dependency among frames decides the frame priority with
the order of I-, P-, and B-frames.

The inter-dependency among I-, P-, and B-frames has
been utilized to increase transmission efficiency of power-
saving mode in wireless networks. In [19], [20], the authors
suggested the method to adjust the awake interval according
to the frame priority. In these studies, we set the number
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of awake intervals in a beacon interval equal to the number
of video frames in the GoP structure to satisfy the one-to-
one mapping relation between an awake interval and a video
frame. In this circumstance, the trade-off relation between
the length of an awake interval and the energy consumption
of a device can be explained; longer (shorter) awake interval
length decreases (increases) the transmission failure rate
while increasing the energy consumption of a device. Since
it is impossible to set the length of an awake interval to
be exactly fit into the size of each frame due to variable
frame sizes, [19] proposed the algorithm which uses the
video frame size distribution. In this work, In this work, the
length of awake interval is adjusted dynamically according
to the probability density function (pdf) of the size of I-, P-,
and B-frames, and the transmission failure rate is controlled

by the target value which is decided by the mean and the
standard deviation of the pdf functions. In addition, frame
transmission strategy based on the frame priority in [19]
provided the method to deal with remaining fraction of a
frame, so that any remaining fraction of an I-frame (P-frame)
that is not delivered during an awake interval is concatenated
with the immediately following B-frame and transmitted
along with that B-frame during the next awake interval. This
method can reduce the outage probability of the I-frame (P-
frame). However, the operational procedure of the algorithm
in [19] assumed that the probabilistic properties of I-, P-, or
B-frame are already known and fixed, which is not realistic
scenario. To tackle this issue, [20] proposed an Expecta-
tion Maximization (EM)-based power-saving method. In this
work, the EM algorithm has been employed to update the
scale and the shape parameters of the pdf of the video frame
size, and the weights of all the gamma mixture components
whenever a frame is transmitted. Based on this estimated pdf,
the awake interval for each frame is determined by using the
target probability.

Although the above two algorithms shows enhanced per-
formance compared to the NoA power-saving method, they
have not considered unique phenomena that may occur in
wireless network environments. That is, the above algorithms
assumed that each frame arrives at the end device consec-
utively with equal time intervals. However, even though a
video codec periodically sends a frame based on a scheduled
time, the frame may arrive either early or late at the desti-
nation, which results in the network delay jitter. Motivated
by this fact, in this study, we propose an RL-based dynamic
power-saving (RLPS) method to enhance the performance of
the NoA power-saving mode. The proposed algorithm uses
the RL algorithm to dynamically adjust the length of awake
intervals according to video traffic type and predicts the start
point of each awake interval to reduce the effect of network
delay jitter.

III. PROPOSED REINFORCEMENT LEARNING-BASED
POWER-SAVING MODE
Let Ta[k, l] and Ts[k, l] denote the start and end points of
the awake interval allotted to the l-th frame of the k-th GoP,
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respectively. The length of this awake interval can be defined
as

L[k, l] = Ts[k, l]− Ta[k, l]. (1)

In real-time video traffic, a video frame may not arrive at the
scheduled time because of the variation in the delay time of
the network, network delay jitter. Hence, it is necessary to
adjust the start point of the awake interval to reduce network
delay jitter. The start point of the awake interval for receiving
the l-th frame of the (k + 1)-th GoP can be updated by

Ta[k+1, l] = Ta[k, l]+α(i−2)
∣∣∣Ta[k, l]− T̃a[k, l] + λJ [k, l]

∣∣∣ ,
(2)

where |·| is the absolute value, α (0 < α < 1) is the learning
rate, and T̃a[k, l] denotes the actual arrival time of the l-th
frame in the k-th GoP. J [k, l] represents network delay jitter,
which is measured from the start point of the awake interval
to the actual arrival time of l-th frame in k-th GoP. λ is the
delay factor, which is used to compensate for network delay
jitter. The term err =

∣∣∣Ta[k, l]− T̃a[k, l] + λJ [k, l]
∣∣∣ here is

the absolute error of the prediction. The Wi-Fi direct device
ought to adjust the start time of awake for the purpose of
finding the optimal solution, which minimizes the absolute
error of the prediction. The optimal start time of wake can
be obtained when the prediction error converges to zero.
Thus, the optimal start time of awake is given by T ∗a [k, l] =
T̃a[k, l]−λJ [k, l]. Therefore, the optimal start point of awake
T ∗a [k, l] decreases as the delay factor λ increases. Since
the actual arrival time of video frame varies according the
random delay jitter, we introduce the subtraction of λJ [k, l]
from T̃a[k, l] for the purpose of decreasing the start time of
awake to ensure that the Wi-Fi direct device can awake up
before the video frame arrives. Thus, the delay factor λ is
a positive real number (λ ≥ 0). When we set the value of
λ too small, the start time of awake may be later than the
arrival time of the video frame, which results in that the Wi-
Fi cannot receive a fraction of frame because it is still in
sleep mode. However, if we set the value of λ too large,
the device may wake up too early. Thus, the Wi-Fi direct
device may spend long time for waiting for receiving the
video frame. In addition, the large value of λ may result in
that the start time of awake is decreased until conflict with
the previous end time of awake. Therefore, we should choose
a proper value of λ, which guarantees the probability that the
device wakes up later than the arrival frame is too small. In
addition, i may be set as 1, 2, or 3 to decrease, maintain, or
increase the start point of the awake interval, respectively.
The end point of the awake interval must be adjusted to
reduce the outage probability of the frame and unnecessary
energy consumption. The end point of the awake interval can
be updated as given by

Ts[k+1, l] = Ts[k, l]+α(j−2)
∣∣∣Ts[k, l]− T̃s[k, l]− βL̃[k, l]∣∣∣ ,

(3)
where T̃s[k, l] and L̃[k, l] denote the actual served time of the
l-th frame in the k-th GoP and the length of the l-th frame in

k-th GoP, respectively, β is a scaling factor, which is used to
scale the end point of the awake interval. Our proposed RL-
based power saving method enables the Wi-Fi direct device
to update the end time of awake interval in order to find
the optimal T ∗s [k, l]. The optimal end time of awake can be
obtained when the absolute error converges to zero. Thus, the
optimal T ∗s [k, l] is given by

T ∗s [k, l] = T̃s[k, l] + βL̃[k, l]. (4)

Since the end time of awake for receiving the video frame
varies according to the length of video frame, the predicting
end time of awake may converges to the average served
time E[T̃s[k, l]] when we set the scaling factor β to zero.
Therefore, the outage probability that the video frame cannot
be wholly transmitted should be high. To avoid this issue,
we introduce the variation length of video frame weighted by
the scaling factor βL̃[k, l] to scale up the optimal end time
of awake interval. The outage probability is very close to
zero, which means the almost all video frames can be wholly
transmitted, when we increase the value of β. Therefore, in
practice, we should choose the scaling factor based on the
requirement of the system. In addition, j may be set as 1, 2,
or 3 to decrease, maintain, or increase the end point of the
awake interval, respectively.

Here, we employ the RL algorithm to select the optimal
values of i and j, which are denoted by i∗ and j∗, respec-
tively. In RL, the problem to solve is described as an Markov
Decision Process (MDP). The basic idea of MDP is that
the agent in the current state interacts with its environment
to take an action according to the policy. As a result, the
agent receives a reward and transitions to the next state.
From the definition in [22] and [23], an MDP is defined
as a tuple 〈S,A,R,P〉, where S and A are the finite set of
states and actions, respectively, R is the reward function, and
P is the transition probability of moving from the current
state Smn[k, l] ∈ S to the next state Sm′n′ [k + 1, l] ∈
S when using the policy Pπ

(
Sm′n′ [k + 1, l]|Smn[k, l]

)
.

P
(
Sm′n′ [k + 1, l]|Smn[k, l], Aij [k, l]

)
is the transition prob-

ability from current state Smn[k, l] to the next state
Sm′n′ [k + 1, l] given the action Aij [k, l] ∈ A, and
π
(
Aij [k, l]|Smn[k, l]

)
is a mapping from the current state

Smn[k, l] to the action Aij [k, l], called the policy. Therefore,
Pπ
(
Sm′n′ [k + 1, l]|Smn[k, l]

)
is defined as the transition

probability P
(
Sm′n′ [k + 1, l]|Smn[k, l], Aij [k, l]

)
weighted

by the policy π
(
Aij [k, l]|Smn[k, l]

)
. The goal of an MDP

aims to find an optimal policy π∗ to maximize the reward
function R. The detailed description of the MDP model in
our work is given as follows.
• Agent: An agent corresponds to a client, which interacts

with a GO to adjust the start and end points of the awake
interval, and the length of awake intervals.

• State Space: The agent employs RL to obtain the values
of i and j. Therefore, the finite state space is defined
as the possible values of pair i and j, which is given as
S = {S11[k, l], S12[k, l], . . . , S33[k, l]}. It is noted that
the integer i (or j) = 1, 2, or 3 mean the start (or the
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end) point of awake should be decreased, maintained,
or increased, respectively. For instance, if the agent
transitions to the state S12[k, l] (i∗ = 1 and j∗ = 2),
it means that the client decreases and maintains the start
and end of points of the awake interval for receiving the
l-th frame in the k-th GoP, respectively.

• Actions Space: The agent takes an action to observe
a next state before making the decision. By try-
ing all actions to observe all next states, the agent
knows which action is the best for selection. There-
fore, the number of possible actions should be equal
to the number of feasible states. It is given by
A = {A11[k, l], A12[k, l], . . . , A33[k, l]}. For example,
if A12[k, l] is selected, the agent transitions from the
current state, Si∗j∗ [k, l], to the next state S12[k + 1, l].
Hence, i∗ and j∗ for the k+1-th GoP are set as 1 and 2,
respectively.

• Reward: According to the ε-greedy policy, the action
with the maximum reward is selected with the highest
probability. The proposed reward function, Rij [k, l], is
defined as

Rij [k.l] =−
∣∣∣Fa[k, l] + α(i− 2)

∣∣Fa[k, l]∣∣∣∣∣
−
∣∣∣Fs[k, l] + α(j − 2)

∣∣Fs[k, l]∣∣∣∣∣ , (5)

where Fa[k, l] = Ta[k, l] − T̃a[k, l] + λJ [k, l] and
Fs[k, l] = Ts[k, l] − T̃s[k, l] − βL̃[k, l]. Ta[k, l] and
T̃a[k, l] is the estimated and actual arrival time of the
l-th frame in the k-th GoP, respectively. The informa-
tion including the estimated and actual arrival time,
and the network delay jitter J [k, l] is used to predict
arrival time of the l-frame in the next k + 1-th GoP.
Since the actual arrive time of the next video frame
is caused by the network delay jitter, we use λJ [k, l]
to compensate this variety. λ here represent the delay
factor. Therefore, Fa[k, l] measures the difference be-
tween the estimate arrival time Ta[k, l] and the actual
arrival time T̃a[k, l] compensated by λJ [k, l]. Ts[k, l]
and T̃s[k, l] represent the estimated and actual served
time of the l-th frame in the k-th GoP. The served time
vary according to the distribution of the video frame.
Similar to the compensation of the arrival time, we use
βL̃[k, l] to compensate the variety of the served time,
where L̃[k, l] is the length of video frame and is the
scaling factor, which is use to scale length of awake
interval. The length of awake interval gets longer when
the scaling factor gets higher. Therefore, Fs[k, l] mea-
sures the difference between the estimated and actual
served time compensated by βL̃[k, l]. For instance, if
Fa[k, l] = φ, ∀(φ > 0) ∩ (α > 0), and Fs[k, l] =
θ,∀(θ < 0) ∩ (β > 0), maxij Rij [k, l] = R13[k, l].
Thus, the agent will select the action A13 with the
highest probability ε/v + 1 − ε. If A13[k, l] is selected,
the agent transitions from the current state, Si∗j∗ [k, l],
to the next state S13[k + 1, l]. Thus, the Wi-Fi direct
device will reduce the arrival time and increase the

served time to receive the l-th frame in the next k+1-th
GoP. The method to reduce the arrival time and increase
the served time is given in (2) and (3), where i and
j are set to 1 and 3, respectively. In sum up, the Wi-
Fi direct device in the current state has to select an
optimal action from the action spaces, which maximizes
the reward. In our design, the maximum reward is equal
to zero (maxij Rij [k, l] = R∗ij [k, l] = 0), and it can
be achieved when F ∗a [k, l] = 0 and F ∗s [k, l] = 0. That
means the agent tries to minimize the error between the
estimated and actual arrival time compensated by the
variety of the network delay jitter, and simultaneously
minimizes the error between the estimated and actual
served time compensated by the various service time.

In our study, we calculate the Q-value function as the func-
tion of the current reward and the maximum Q-value function
of the previous. In the practical network, when the Wi-Fi
direct device transmits the video frame in real-time, it can
store the previous information including the start/end time of
awake, the length of awake interval, state, action, reward, and
Q-value function. Then, the Q-value function can be updated
according to that previous information. From [21] and [23],
the one-step Q-value of the current action is defined as

Qij [k, l] = Rij [k, l] + γ max
Aij [k−1,l]∈A

(
Qij [k − 1, l]

)
, (6)

where γ is the discount factor and maxAij[k−1,l]∈AQij [k −
1, l] is the maximum Q-value of the previous action. From
[23], the ε-greedy policy is used to select the greedy action,
Ai∗j∗ [k, l], with probability π(Aij [k, l]|Si∗j∗ [k, l]), which is
defined as

π(Aij [k, l]|Si∗j∗ [k, l]) ={
ε/v + 1− ε if Ai∗j∗ [k, l] = argmaxAij [k,l]∈AQij [k, l],

ε/v otherwise,
(7)

where v = 9 represents the total number of actions. The
proposed RLPS algorithm is summarized in Algorithm 1.

Algorithm 1 Q-learning for action i and state j selection in
order to compute Ta[k + 1, l] and Ts[k + 1, l], where are are
given in Eq. 2 and 3, respectively.

Initialize Qij [0, l], Ta[1, l], and Ts[1, l]
for k = 1 : NI
1. Take action A, observe reward Rij [k, l]
2. Compute Qij [k, l], where is given in Eq. 6.
3. Choose a greed action Ai∗j∗ [k, l] from the action space

using policy, which is derived from Eq. 7
4. Obtain the i∗ and j∗ according to the selected greedy

action Ai∗j∗ [k, l]
5. Compute Ta[k + 1, l] and Ts[k + 1, l], where are given

in (2) and (3), respectively.
end for
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A. OUTAGE PROBABILITY
As discussion in the section II-B, the loss of I-frame results
in loss of all frames in the GoP, and the loss of P-frame
results in the loss of the following P-frame and B-frame.
But the loss of B-frame does not influence to other frames
in the GoP. To reduce the outage probability, the remaining
fraction of an I-frame (P-frame) is concatenated with the
following B-frame and transmitted along with that B-frame
during the next awake interval. In addition, the scaling factor
(β) given in (3) is used to adjust the length of awake interval.
The increment of the scaling factor results in increasing the
length of the awake interval, and thus reducing the outage
probability. Therefore, the performance evaluation of the
proposed method in terms of the outage probability and
the scaling factor (or the length of awake interval) is very
essential in that it can verify how much the outage probability
can be achieved for a given the scaling factor. Therefore,
This subsection describes the method of obtaining the outage
probabilities of I-frames, P-frames, and B-frames. To obtain
the outage probability of video frame, we first determine the
residual frame that cannot be completely transmitted in its
awake interval. Let FR[k, l] be the residual frame, which is
given by

FR[k, l] =
(
L̃[k, l]− L[k, l]

)
I
(
L̃[k, l] > L[k, l]

)
I
(
T̃a[k, l] < Ta[k, l]

)
+
(
T̃s[k, l]− Ts[k, l]

)
I
(
T̃s[k, l] > Ts[k, l]

)
I
(
T̃a[k, l] ≥ Ta[k, l]

)
,

(8)

where I (.) is the indicator function. L̃[k, l] is the length of
the l-th frame in the k-th GoP, which is calculated by

L̃[k, l] = T̃s[k, l]− T̃a[k, l] =
Z[k, l]

DR
, (9)

where Z[k, l] is the size of the l-th frame in the k-th GoP in
[bits], andDR is the data rate in [bps]. The outage probability
of an I-frame is the percentage of residual I-frames that can-
not be wholly transmitted in the following B-frame interval.
This outage probability is expressed as

PI =
1

NI

NI∑
k=1

I
(
FR[k, 1] > L[k, 2]

)
, (10)

where NI is the total number of I-frames. The loss probabil-
ity of the P-frame is defined as

PP = 1− P̃P , (11)

where P̃P is the probability that the P-frame is fully trans-
mitted. According to the inter-dependency between video
frames in the GoP structure and the priority-based frame
transmission strategy, a current P-frame is completely trans-
mitted when the previous I-frame and P-frame are success-
fully transmitted, and the length of the current P-frame is

shorter than the following B-frame interval. The successful
transmission probability of the P-frame is defined as

P̃P =
1

NP

NI∑
k=1

(n/m)−1∑
l=1

l∏
r=1

I
(
FR[k, 1] ≤ L[k, 2]

)
I
(
FR[k, rm+ 1] ≤ L[k, rm+ 2]

)
, (12)

where NP =
(
n
m − 1

)
NI is the total number of P-frames

and L[k, rm + 2] is the length of the awake interval allotted
to the combined residual P-frame and B-frame.

The outage probability of B-frames is defined as the ratio
of the number of lost B-frames to the total number of B-
frames, which is given by

PB =
NLoss
B

NB
=
NB −NSuc

B

NB
. (13)

NLoss
B denotes the number of lost B-frames,NSuc

B represents
the number of B-frames that are successfully transmitted, and
NB is the total number of B-frames. The successful trans-
mission of B-frames occurs in three cases. First, a B-frame
is successfully transmitted when the length of the combined
residual I-frame and B-frame is shorter than the length of the
awake interval allotted to these combined frames, which is
given by

NSuc
IRB =

NI∑
k=1

I
(
FR[k, 1] + L̃[k, 2] ≤ L[k, 2]

)
. (14)

Second, a B-frame is fully transmitted if the I-frame and
previous P-frame are successfully transmitted and the length
of the combined residual P-frame and B-frame is shorter than
that of the awake interval allotted to these frames. In this case,
the number of B-frames that are successfully transmitted is
given by

NSuc
PRB =

NI∑
k=1

(n/m)−1∑
`=1

∏̀
r=1

I
(
FR[k, 1] ≤ L[k, 2]

)
I
(
FR[k, rm+ 1] ≤ L[k, rm+ 2]

)
I
(
FR[k, `m+ 1] + L̃[k, `m+ 2] ≤ L[k, `m+ 2]

)
. (15)

Finally, a B-frame that is not combined with the residual
I-frame (or P-frame) is successfully transmitted when the
length of this B-frame is shorter than its awake interval and
the previous I-frame and P-frame are fully transmitted. Thus,
the number of B-frames that are successfully transmitted is
calculated as

NSuc
NB =

NI∑
k=1

I
(
FR[k, 1] ≤ L[k, 2]

)((n/m)−1∑
`=1

`m∑
l=3+(`−1)m

∏̀
r=1

I
(
FR[k, rm+ 1] ≤ L[k, rm+ 2]

)
I
(
L̃[k, l] ≤ L[k, l]

)
+

n∑
l=n−m+3

(n/m)−1∏
r=1

I
(
FR[k, rm+ 1] ≤ L[k, rm+ 1]

)
I
(
L̃[k, l] ≤ L[k, l]

))
. (16)
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Finally, the total number of B-frames that can be fully trans-
mitted is defined as

NSuc
B = NSuc

IRB +NSuc
PRB +NSuc

NB . (17)

Therefore, the outage probability of B-frames can be derived
using (13)-(17).

B. TRANSMISSION DELAY
The metric “transmission delay" is very essential to evaluate
how long we ought to wait for transmitting the remaining
fraction of the I-frame (P-frame) during the next awake inter-
val. On the other hand, in the case that the video frame arrives
before the scheduled time, the Wi-Fi direct device has to wait
until the scheduled time to initiate the frame transmission.
This transmission delay is caused by the network delay jitter.
Thus, the performance metric of transmission delay is very
crucial to verify the performance gain of our proposed algo-
rithm over traditional NoA method. The network delay jitter
in the case that a video frame arrives before the scheduled
time is given by

DJ =
1

N

NI∑
k=1

n∑
`=1

(
Ta[k, `]−T̃a[k, `]

)
I
(
Ta[k, `] > T̃a[k, `]

)
.

(18)
Let T be the length of the inter-awake interval. The transmis-
sion delay that is caused by the residual I-frame and P-frame
is defined as

Dwait =
1

NI +NP

NI∑
k=1

((
T − L[k, 1]

)
I
(
R[k, 1] > 0

)
+

n/m−1∑
r=1

(
T − L[k, rm+ 1]

)
I
(
R[k, rm+ 1] > 0

))
.

(19)

Hence, the average total transmission delay of a frame is
given by

DT = DJ +Dwait. (20)

C. ENERGY CONSUMPTION
This metric is very significant because we can calculate how
much the device consumes the energy for receiving one video
stream in real-time. Most importantly, we can verify that our
proposed algorithm can reduce much energy consumption
of the device compared to the traditional NoA power-saving
method. In addition, the method used to measure the energy
consummation of the proposed RL power saving method is
given in the section III-C. The average energy consumption
is defined as the sum of the energy consumed during the
awake and sleep intervals plus an additional energy, which
is consumed to switch from the sleep to the awake mode.

The power saving method enables the Wi-Fi direct device
to power off the circuitry to save the energy consumption.
Thus, the energy consumption varies according to the length
of sleep/awake interval. The metric “energy consumption"
is very significant because we can calculate how much the

device consumes the energy for receiving one video stream in
real-time. Most importantly, we can verify that our proposed
algorithm can reduce much energy consumption of the device
compared to the traditional NoA power-saving method. The
method to obtain the energy consumption is described as
follows. The average energy consumption is defined as the
sum of the energy consumed during the awake and sleep
intervals, and the additional energy used to switch from the
sleep to the awake mode. The average energy consumption
during an awake interval is defined as

Eawake =
Pawake
N

NI∑
k=1

n∑
l=1

L[k, l], (21)

where N = NI +NP +NB is the total number of frames of
an MPEG-2 video. The average energy consumption during
a sleep interval is determined as

Esleep =
Psleep
N

NI∑
k=1

n∑
l=1

(
T − L[k, l]

)
. (22)

The average energy consumption of frame transmission is
defined as

Eaverage = Eawake + Esleep + Eswitch, (23)

where Eswitch is the total energy required to switch frames
from the sleep mode to the awake mode.

IV. PERFORMANCE EVALUATION
For performance evaluation, we decoded the movie titled
‘Jurassic World (2015)’ using the Elecard StreamEye Studio
software, which is a video quality test software for the analy-
sis of stream structures and the inspection of code parameters
[24]. The GoP structure for this video is encoded as M3N30.
The standard of this video is MPEG-2, which requires a
frame rate of 24fps to support a resolution of 1920×1080
[25]. It is noted that the frame rate of 24fps is equivalent to
an inter-frame interval of 41.7ms when Wi-Fi Direct devices
use the 802.11ac standard, which achieves a high PHY data
rate of 58.5 Mbps using a channel bandwidth of 160 MHz
along with a BPSK modulation scheme and a code rate of
1/2 [26]. The power consumption during the awake and sleep
intervals is set to 432mW and 0.3mW, respectively [27]. The
energy required to switch from the sleep to the awake mode
is 0.6mJ [28]. In addition, choosing too small value of α
may result in that the algorithm may converge very slow.
In addition, choosing too large value of α may cause the
algorithm to overshoot the optimal solution and diverge. So,
we choose an appropriate learning rate, which causes the
start/end time of awake interval to guarantee the convergence
with a better convergent speed, according to the observation
of the simulation results. To evaluate the performance of the
proposed method, we set the value of α to 0.2. we set the
value of discount factor to 0.1 because the immediate rewards
are very important to be used to predict the start time and
length of awake interval of the future. In addition, we aim
to scale down the previous Q-value to avoid the problem of

8 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3201866

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Dara Ron et al.: Preparation of Papers for IEEE ACCESS

TABLE 1: Simulation parameters

Parameters Values Parameters Values
NI 1619 NP 46951
NB 97140 Frame rate 24fps
T 41.7ms DR 58.5 Mbps
γ 0.1 ε 0.2
α 0.2 λ 0.5
UDP-jitter 3.8 ~ 4.4 ms Psleep 0.3mW
Pawake 432mW Eswitch 0.6mJ

divergence to negative infinity. All parameters used in the
simulation runs were summarized in Table 1.

A. PERFORMANCE EVALUATION OF THE PROPOSED
RLPS METHOD
We consider that two Wi-Fi Direct devices are initiated when
a GO sends a beacon message to a client to schedule the
transmission time. Even though there is a scheduled time
for the client to transmit a frame, the actual frame arrival
time may shift forward with a UDP-jitter varying from 3.8
to 4.4 ms [29]. Hence, the client uses the proposed RLPS
method with a delay factor (λ) of 0.5 to predict the arrival
time of the frame to reduce network delay jitter. In the first
beacon interval, the lengths of awake and sleep intervals
are set as equal, and the client wakes up according to the
scheduled time. In the next beacon interval, the GO and client
simultaneously use the proposed RLPS method to predict the
start and end points, and the length of awake intervals to
transmit and receive a frame, respectively.

Fig. 4 shows the performance of the proposed RL power
saving method in term of the average delay, outage probabil-
ity, and energy consumption of a frame under two different
movies. The result verify that the average delay and outage
probability decrease as the energy consumption increases.
The increasing energy consumption is caused by scaling up
the length of awake interval, which results in reducing the
outage probability because most of the video frames can be
wholly transmitted during the current awake interval. Fur-
thermore, scaling up the awake interval length also decreases
the average delay because the number of the residual frames
that have to wait to be transmitted during the next awake
interval is decreased. Fig. 4 shows the average delay and
outage probability of a frame for the movies titled ‘Amazing
Mary Gifted’ and ‘Jurassic World’, assuming the same sim-
ulation parameters. Since ‘Jurassic World’ has more active
scenes than ‘Amazing Mary Gifted’, the average frame size
of ‘Jurassic World’ is larger than that of ‘Amazing Mary
Gifted’, as shown in Table 2. As a result, Fig. 4 shows that
the average delay and outage probability of ‘Amazing Mary
Gifted’ is lower than that of ‘Jurassic World’.

TABLE 2: The average frame size [bytes]

Movies I-frame P-frame B-frame
A. M. Gifted 98638 20061 6636.7
J. World (2015) 128250 33772 11353
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FIGURE 4: The dashed and solid lines represent the movie
titled ‘Jurassic World’ and ‘Amazing Mary Gifted’, respec-
tively.

Figure 5a shows the comparison between the outage prob-
abilities of I-, P-, and B-frames as a function of scaling factor
(β). Since the loss of an I-frame results in the loss of all
frames in the GoP, the outage probability of I-frames is lower
than that of P-frames and B-frames. The loss of B-frames is
caused by the loss of P-frames; hence, the outage probability
of B-frames is higher than that of P-frames. The proposed
RLPS method uses a coefficient to scale the length of awake
intervals, which increases with the value of the coefficient.
Hence, the outage probability of frame transmission de-
creases as the scaling factor increases, as shown in Figure 5a.
Figure 5b shows the average transmission delay as a function
of the scaling factor. As the scaling factor increases, the
transmission delay of a frame decreases because the length
of awake intervals increases. Figure 5c shows the average
energy consumption as a function of the scaling factor. The
energy consumption increases as the scaling factor increases
because the energy consumption during awake intervals is
considerably higher than that during sleep intervals.

B. PERFORMANCE EVALUATION OF THE EXISTING
NOA POWER-SAVING MODE
In the existing NoA power-saving mode, a GO sends a
beacon message to a client. The message includes the start
point of awake intervals, and the number and length of
awake/sleep intervals. The length of awake intervals in each
beacon interval are set to be equal. The client periodically
wakes up based on the scheduled time, which is received
from the GO. Network delay jitter is measured from the start
point of awake intervals to the actual frame arrival time. The
delay of I-frame (P-frame) transmission is measured from the
end point of the I-frame (P-frame) interval to the start point
of the following B-frame interval if the I-frame (P-frame)
cannot be fully transmitted during the I-frame (P-frame)
interval. The delay is zero if the I-frame is fully transmitted.
The energies consumed during awake and sleep intervals
are set to 432mW and 0.3mW, respectively. An energy of
0.6 mJ is required to switch from the sleep mode to the
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FIGURE 5: RLPS method: (a) the outage probabilities of I-frames, P-frames, and B-frames, (b) the average transmission delay
of a frame, and (c) the average energy consumption of frame transmission vs. scaling factor β.

awake mode. The outage probability is computed using the
algorithm described in subsection III-A, where the lengths of
awake intervals, L[k, l], are set to be equal.

Figure 6a shows the comparison of the outage probabilities
of I-frames, P-frames, and B-frames under various length of
the awake interval. The outage probabilities of I-frames, P-
frames and B-frames decrease as the length of awake inter-
vals increases. The increase in the length of awake intervals
decreases the probability that the residual of I-frames and
P-frames will occur. This reduces the transmission delay
of a frame, as shown in Figure 6b. Figure 6c verifies that
the increment of the length of awake interval results in
linearly increasing the average energy consumption of frame
transmission.

C. THE COMPARABLE RESULTS OF THE PROPOSED
RLPS AND THE EXISTING NOA POWER-SAVING
METHODS
Figure 7 shows the average transmission delay and the out-
age probability, respectively, as a function of the average
energy consumption. The dashed and solid lines represent
the performances of the proposed RL and the NoA methods,
respectively. The curves in this figure are highlighted in
difference colors to clearly distinguish between the metrics
“average delay of a frame" and “average outage probability
of a video frame". The blue line indicates the metric “average
delay of a frame", whereas the red line shows the average
outage probability. The results show that the performance of
the proposed RLPS method is better than that of the existing
NoA power-saving method.

Fig. 8 shows the comparable results between the proposed
RL and NoA power-saving methods in terms of the average
delay of a frame and the frame rate. In this simulation, we
assume that the frame rate of the video varies from 16 to 32
frames per second. Here, it is noted that when the number
of frame transmissions per second increases, the length of an
inter-frame interval decrease, which results in reducing the
time delay for transmitting the residual I-frame and P-frame.
Therefore, the average delay of a frame decreases as the num-
ber of frame transmissions per second increases, as shown in

Fig. 8 below. Most importantly, the simulation result verifies
that the performance of the proposed RL method is better
than that of the existing NoA method.

Fig. 9 show the comparison result of the proposed RL and
exiting NoA methods in terms of the average delay jitter and
delay factor λ. In our study, we assume that the actual frame
arrival time may shift forward with a UDP-jitter varying from
3.8 to 4.4 ms [29]. Since the existing NoA power-saving
method fixes the start time of awake, the average jitter delay
of this method is equal to 4.0993 ms. The delay factor λ here
is used to compensate for the random delay jitter. Thus, the
delay jitter varies according to the value of λ. Our proposed
method aims to reduce the start time of awake when we
increase the value of the delay factor to ensure that the device
can wakes-up before the video frame arrives the destination.
Thus, the delay jitter decreases as the delay factor increases.
According to the result illustrated in Fig 9, we can verify that
the delay jitter of the proposed method is less than that of the
existing NoA method.

Fig. 10 shows the comparison results between the pro-
posed RL, NoA, and EM methods in terms of the average
delay and energy consumption of a frame. The results verify
that the performance of the proposed algorithm is better than
that of EM method. The degraded performance of the EM
method may be caused by two main reasons. First, although
the EM method in [20] can predict the statistical distribution
of each video frame class (i.e., I-, P-, or B-frame class) and
adjust the length of awake interval accordingly, the length of
awake intervals scheduled for the video frame transmissions
in a same class are equal to each other. Second, the study
in [20] only focuses on the method to regulate the length of
awake interval without considering the network delay jitter.

V. CONCLUSION
In this paper, we proposed the RL-based power-saving algo-
rithm which adjusts the scheduling of awake intervals (the
start/end time and lengths of awake intervals) according to
the frame arrival time and the frame sizes. We designed the
RLPS algorithm considering the network delay jitter and
evaluated the performance of this proposed method using the
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FIGURE 6: NoA power-saving method: (a) the outage probabilities of I-frames, P-frames, and B-frames, (b) the average
transmission delay of a frame, and (c) the average energy consumption of frame transmission vs. the length of awake interval.
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FIGURE 7: Comparison of RLPS and NoA power-saving
methods: the dashed and solid lines represent the perfor-
mance of the RLPS and existing NoA methods, respectively,
in term of the average delay (blue line) and outage probability
(red line).

16 18 20 22 24 26 28 30 32

Frame rate [number of frames per second]

0

5

10

15

20

25

30

35

40

45

A
v
e
ra

g
e
 D

e
la

y
 o

f 
a
 f
ra

m
e
 [
m

s
]

RLPS

NoAPS

FIGURE 8: Comparison of RLPS and NoA power-saving
methods in term of the average delay and the frame rate.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Delay factor 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

A
v
e

ra
g

e
 D

e
la

y
 J

it
te

r 
[m

s
]

RLPS

NoAPS

FIGURE 9: Comparison of RLPS and NoA power-saving
methods in term of the average delay jitter and the delay
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video quality test software. Simulation results showed that
the proposed RLPS method outperforms the existing NoA
power-saving method in terms of the outage probability, av-
erage delay, and energy consumption of frame transmission.
According to the survey on Wi-Fi direct in [30], M. A. Khan
et al. reveal that the Wi-Fi Direct devices establish the com-
munication by discovering each other, setting up the security
and the IP configuration, and implementing the power-saving
protocol. Therefore, we build a plan to propose the machine
learning algorithm-base latency and energy minimization in
Wi-Fi direct with taking the device discovery, the security
setup, the IP configuration, and the power save protocol
implementation into consideration as the future work. In
addition, unmanned aerial vehicles (UAVs) have attracted the
research attention in the last decades because their mobility
makes them to be easy deployment over every location and
they can also establish line of sight (LOS) links with the
users. The challenge remaining for UAVs is battery-limited.
Therefore, M. A. Khan et al. employed the existing NoA
power-saving method to improve the energy efficiency of
UAVs and client association [6]. The performance degrada-
tion of the existing NoA method is caused by the fixed length
of awake interval that is scheduled for packet transmission or
reception. The results in our study verified that the length of
awake interval should be adjusted according to the variation
of the packet size to improve the performance of the existing
NoA method. Therefore, we build a plan to propose the RL
power-saving method-based energy efficiency maximization
in UAVs communication network as the future work. Device-
to-device (D2D) communication has been emerged to offer
many advantages for cellular networks, such as enhancing
energy efficiency, offloading the overloaded cellular traffic,
wide cellular coverage, reducing delay or latency, and higher
spectral efficiency [31]. However, the challenge remaining
for D2D communication is the co-channel interference due
to the coexistence of the direct D2D communications in
the same frequency band. In addition, to enhance the per-
formance of the networks, the D2D device should make a
decision to establish the direct communication or indirect
communication mode based on the channel condition. The
indirect communication mode refers to the technique that
uses the base station (BS) as a relay between D2D transmitter
and receiver. However, BS may have insufficient to provide
the wireless service for the D2D users in the disaster area,
because it has a difficulty to be deployed in that area. Unlike
BS, unmanned aerial vehicles (UAVs) is feasible and easy to
deploy in various scenarios to provide the wireless service for
users. Therefore, UAVs can act as a relay instead of the BS to
forward the message from the D2D transmitter to receiver.
Therefore, we will build a plane to study the application
of RL to the joint optimization problem of mode selection,
trajectory, and resource management for D2D communica-
tion underlaid multi-UAVs for the purpose of maximizing the
energy efficiency.
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