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The method proposed in this letter searches for an effective group struc-
ture of group convolutions in a convolutional neural network that can
improve the classification accuracy. The model’s group structure is ob-
tained using an effective differential neural architecture search. Our
code can be accessed at https://github.com/minercode625/grunas.git.

Introduction: Neural architecture search (NAS) is a methodology that
can automate the design process of convolutional neural networks
(CNNs), thus minimising human intervention [1]. The method can
discover model architectures that can achieve high accuracy on a given
dataset [2]. Compared with existing approaches, differential neural
architecture search (DNAS) achieves superior effectiveness owing
to a gradient-based optimisation that simultaneously optimises the
model architecture and corresponding parameters [3]. Particularly, most
DNAS-based methods concentrate on searching for effective operators
among other possible operators. However, critical issues still remain
unsolved, such as determining the group size in group convolution [4],
which is dependent on the decisions of experts. Although each task or
dataset can possess a different optimal size in each group convolution,
ignoring the efficacy of the optimal size limits the model learning accu-
racy. To the best of our knowledge, this is the first study that attempts to
identify the optimal group sizes for all group convolutions by DNAS. We
confirm that the model obtained from the proposed method outperforms
conventional models in terms of the accuracy, latency, and model size.

Proposed method: DNAS executes a search process using a gradient-
based optimiser by relaxing the categorical choice in a model structure
into a continuous structure. It simultaneously trains the model parame-
ters and evaluates the importance weights of all possible operators in the
model by using backpropagated gradients. The gradient-based optimiser
increases the weights of the effective operators, and towards the end of
the search process, the operators with the largest weights are selected to
form the model architecture.

The DNAS framework formulates the NAS problem as follows:

min
α∈A

min
wa

L(α, wα ), (1)

where L, A and wα denote the DNAS loss function, architecture space
and model parameters, respectively, under current model architecture α.
Let an ordered set H = {h1, h2, . . . , hn} be a group structure consisting
of the sizes of all group convolutions, where hk denotes the group size
in the kth group convolution. We modified (1) to search for an optimal
H as follows:

min
H∈H

min
wH

L(H, wH ), (2)

where wH denotes model parameters when the group structure is H and
H is a group structure space comprising all possible H . Particularly,
we reformulate the model loss function as follows to avoid excessively
increasing the number of parameters according to the searched group
structure:

L(H, wH ) = CE(H, wH ) · P(H )β, (3)

Fig. 1 Top-1 accuracy score of the proposed method and conventional mod-
els computed using the CIFAR-10 dataset, where the obtained group structure
is H = {4, 1, 1, 2, 2, 3, 2, 4, 4, 6}

where CE denotes the model cross-entropy loss, and the exponent coeffi-
cient β adjusts the magnitude of the latency term. P denotes the number
of parameters when the group structure is the H , which is given by

P(H ) =
∑

hi∈H

m(hi), (4)

where m(hi ) denotes the number of parameters when the group size is
hi. A set G = {g1, g2, . . .} is given such that each gk represents a can-
didate of group numbers and hi ∈ G. The proposed method optimises a
backbone model using the loss function based on the weighted sum of
all candidate group convolutions. Thus, (4) can be written as

P(H ) =
|H |∑

k=1

∑

g∈G

GS(θk,g)m(g), (5)

where θk,g represents the importance weight of the kth group convolution
when the size is g. In addition, the functions GS and m, respectively, rep-
resent a Gumbel Softmax function and number of required group con-
volution parameters, where the group size is g [2]. As (5) is a discrete
function, the discrete variable θ is transformed into a continuous ran-
dom variable using the Gumbel Softmax function. Finally, the proposed
method can be formally defined as a weighted sum as follows:

min
θ

min
wH

EH∼Pθ
{CE(H, wH ) · P(H )β}. (6)

After the search process and optimisation of all the group convolution
weights, the proposed method determines that the group convolution
with the highest weight is the optimal operator.

Experimental results: To demonstrate the effectiveness of proposed
method, we conducted experiments compared with four well-known
models, MobileNet V2 [5], MobileNet V3 [6], ShuffleNet V2 [7],
SqueezeNet [8], and MnasNet [1], searched using the NAS originat-
ing from MobileNet. We conducted the comparison experiments on the
CIFAR-10 image dataset [9], where all models were trained using 50,000
images and tested using 10,000 images. We set the network input reso-
lution and β to 36-by-36 and 0.8, respectively, and trained each model
from scratch for 100 epochs. G was set to {1, 2, 3, 4, 6} [7], and each θ

per group convolution was uniformly set to 0.20, initially reflecting |G|.
In addition, we used a backbone model composed of 10 ShuffleNet units
[4] which contain group convolutions inside, but note that the proposed
method can be generalised to use any backbone models that contains a
group convolution. Two hyper-parameters in the Gumbel Softmax func-
tion, namely initial temperature and annealing rate, were set to 5.0 and
e−0.645, respectively [2].

Figure 1 depicts the accuracies of the five conventional models
and that of our model obtained on the CIFAR-10 test dataset. As the
backbone model possesses 10 ShuffleNet units, the proposed method
searched for the optimal H = {h1, h2, . . . , h10}, hi ∈ G. Consequently,
it concluded that the model was most effective when the group structure
was H = {4, 1, 1, 2, 2, 3, 2, 4, 4, 6}. The proposed model achieved
the highest top-1 accuracy of 90.31%, whereas the SqueezeNet and
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Table 1. CIFAR-10 performances of the proposed method compared
with that of conventional models in terms of the latency, number (#)
of parameters, model size, and top-1 accuracy (Accuracy)

Model GPU latency # of parameters Model size Accuracy

MobileNet V2 20 ms 2.24 M 8.53 MB 77.31

MobileNet V3 23 ms 4.21 M 16.08 MB 77.94

ShuffleNet V2 19 ms 0.35 M 1.34 MB 70.59

SqueezeNet 7 ms 0.73 M 2.78 MB 26.27

MnasNet 14 ms 3.12 M 11.88 MB 58.59

Proposed 4 ms 0.16 M 0.64 MB 90.31

MnasNet achieved 26.27% and 58.59%, respectively, and the accuracies
of the other models were lower than 80% as well. The conventional
models demonstrated relatively poorer performances than their origi-
nally reported results because they were not pre-trained but trained from
scratch. In contrast, the proposed model achieved faster convergence in
the same situation than the other models. Table 1 lists the comparison
results in terms of the GPU latency, number of parameters, model size,
and top-1 accuracy. As the proposed loss function avoids excessively in-
creasing the total number of parameters, the proposed model can achieve
lower GPU latency as well as a smaller number of parameters and model
size than those produced by conventional models. For example, it
was five times faster than MobileNet V2 in terms of the GPU latency
and 25.1 times smaller than MobileNet V3 in terms of the model size.
Specifically, the number of group convolution parameters is proportional
to the number of input/output channels and inversely proportional to the
group size. The model group size proposed at the bottom of the model
({h8, h9, h10} = {4, 4, 6}), wherein the number of input/output channels
that was considerably increased previously, was reduced by (6).

Conclusion and future work: We proposed a novel NAS method that
searches for an effective group structure in group convolutions. The
model developed by the proposed method was demonstrated to be ef-
fective in that it outperformed conventional models. In a future study,
we plan to apply the proposed method to large deep learning models and
investigate subsequent changes in those models.
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