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Abstract: This paper proposes a millimeter-wave lens antenna using 3-dimensional (3D) printing
technology to reduce weight and provide stable gain performance. The antenna consists of a four-
layer cylindrical gradient-index (GRIN) lens fed by a wideband Yagi antenna. We designed a
fractal cell geometry to achieve the desired effective permittivity for a GRIN lens. Among different
candidates, the honeycomb structure is chosen to provide high mechanical strength with light weight,
low dielectric loss, and lens dispersion for a lens antenna. Therefore, the measured peak gain was
relatively flat at 16.86 ± 0.5 dBi within 25−31.5 GHz, corresponding to 1 dB gain bandwidth = 23%.
The proposed 3D-printed GRIN lens is cost-effective, with rapid and easy manufacturing.

Keywords: lens antenna; millimeter-wave antenna; Yagi–Uda antenna; three-dimensional printing;
fractal unit cell

1. Introduction

Fifth-generation (5G) wireless communication is a revolutionary technology providing
high-data-rate communications, low latency, and massive connectivity required for various
applications (e.g., mobile, autonomous vehicles, and Internet of Things) [1–5]. However,
several challenges must be addressed to realize 5G wireless networks, including access
bounds, bandwidth, performance, and latency limitations from earlier generation commu-
nication system. Therefore, the millimeter-wave (mm-wave) frequency spectrum (including
26, 28, and 39 GHz) has been explored to secure sufficient bandwidth and achieve higher
data rate. These frequency spectrums allow wide bandwidth and hence enable high data
rates to meet the increasing system capacity and superfast connectivity requirements [6–9].
Component performance in mm-wave frequency bands may be degraded due to high path
loss and implementation challenges compared to lower frequency bands. Therefore, it is
essential to develop cost-effective antennas with high gain, high radiation efficiency, and
wide bandwidth in the mm-wave frequency bands to achieve high data transmission rates
for 5G.

Lens antenna convergence and divergence properties convert the spherical wave
radiated from the feed antenna into the in-phase plane wave at the lens surface. Many recent
studies have investigated mm-wave antennas with lenses since the planar phase front of
the lens can produce a focused radiation beam with high gain and narrow beamwidth [10].
Recent studies on lens antennas can be classified into homogeneous and inhomogeneous
lens antenna. The former refers to the structure in which the media inside the lens are
unchanged. For manipulating the electromagnetic (EM) wave propagation, these lens
typically are designed with the convex or spherical interfaces. Due to this geometrical
feature, the homogeneous lens antenna has to suffer with the disadvantage of bulky and
non-planar structure. Instead of depending on the interfaces of lenses, the inhomogeneous
lens antenna has flat structure that is typically constructed from several concentric layers
of different materials with gradient refractive indexes to focus the EM energy toward
the desired focusing direction. Because of its gradient refractive index profile, this type
of lens is well-known as the gradient-index (GRIN) lens antenna. Compared to classic
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homogeneous lens antennas, GRIN lens antennas can be compact and lightweight while
maintaining high efficiency [11].

Recent studies on GRIN lens antennas have been separated based on the fabrication
technology of printed-circuit-board (PCB) and three-dimensional (3-D) printing. Although
PCB-based lens antennas have recently been well studied [12–15], the frequency increment
into the millimeter-wave spectrum for broadening the bandwidth has put considerable
pressure on the fabrication system for much higher accuracy. Therefore, complex manufac-
turing processes and high manufacturing costs are generally utilized in GRIN lens antenna
fabrication. 3D printing technology creates 3D objects by depositing materials in successive
layers and has been used to manufacture lens antennas due to the simple and cost-effective
manufacturing process. A 3D-printed discrete dielectric lens was designed for high gain
and beam scanning using a periodic and antireflection structure with the GRIN structure
comprising stratified hemispherical shells [16,17]. A comb mushroom shaped dielectric lens
achieved stable gain enhancement [18]. A circularly polarized lens antenna implemented by
a 3D-printed dielectric polarizer was presented [19]. The Luneburg lens antenna composed
of rod-type dielectric rings introduced multi-beam for MIMO applications in Ka-band [20].

Various configurations to realize the required lens permittivity distribution could be
efficiently produced using 3D printing technology [21]. Many reported lens antennas have
been manufactured using polyjet or SLA methods because they provide high-resolution
output with very detailed and fine features [22,23]. However, methods using photopoly-
mers increase manufacturing cost and require additional post-processing, such as manual
support removal. On the other hand, fused deposition modelling (FDM) using a thermo-
plastic filament provides a simpler and cheaper process than the SLA. A GRIN lens antenna
was fabricated using FDM with polylactic acid (PLA) as the 3D printing polymer [24] and
obtained a maximum gain of 24 dBi with low cost and easy fabrication.

This paper proposes a lightweight GRIN lens antenna with stable gain performance in
mm-wave frequency band using FDM 3D printing. The proposed high-gain lens antenna
incorporated a hollow fractal structure and was fabricated with an easy-to-handle and
cost-effective PLA filament. Though there are diverse fractal structures that are explored
and utilized in designing antenna and metamaterial [25–27], the honeycomb structure
is chosen for this design due to its unique features of being mechanically strong and
light at the same time. Owing to this valuable feature, we can achieve a relatively low
dielectric loss without reducing the mechanical strength of the total structure. Furthermore,
the honeycomb structure has a simple topological structure that can easily be realized
with low-cost 3D printers. We investigated how hollow honeycomb structure electrical
properties depended on honeycomb cell sizes to realize the relative permittivity required
for GRIN lens layers. The dielectric loss of 3D printing the polymer and overall lens antenna
weight significantly reduced using the hollow honeycomb geometry. A wideband Yagi
antenna was designed and combined with the honeycomb-shaped GRIN lens to examine
the proposed lens antenna performance. Antenna characteristics, including return loss and
radiation performance, were verified numerically and experimentally.

2. 3D-Printed Lens and Source Antenna Design
2.1. 3D-Printed Fractal GRIN Lens Design with Honeycomb Cells

Figure 1 shows an inhomogeneous cylindrical GRIN lens, which is a gradient refractive
index lens with different relative permittivity εr for each layer. For designing the GRIN lens
antenna, the diameter Dlens and focal distance Df need to be firstly chosen. The gradient-
index profiles for designing the GRIN lens antenna then can be achieved by controlling the
relative permittivity of each concentric layer following this equation [28]:

εn =

(
D1 − Dn +

√
ε1tlens

tlens

)2

(1)

where n = 1, 2, 3, . . . N is the number of concentric layers, εn is the permittivity of the con-
centric layer nth and Dn is the distance from the focusing point to the respective concentric
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layers. Because ε1 respects to the first concentric layer in the center, ε1 should have the high-
est value and is secondly chosen [24]. After that, the relative permittivity of other concentric
layers can be sequentially calculated. However, it is difficult to realize the continuous per-
mittivity variation for an ideal GRIN lens in practice due to technical constraints. Thus, a
GRIN lens is generally designed in forms of a finite number of concentric homogeneous
layers, as shown in Figure 1b, where the relative permittivity and radius for each layer
obey Equation (1). It is worth noting that the higher the number of concentric layers that
are used, the more similarity can be achieved between the theoretical continuous relative
permittivity curve and the designed discretized relative permittivity [24]. However, it
would increase the complexity of the design structure, and thus it requires higher accuracy
fabrication systems. Meanwhile, GRIN lens antenna performance is also affected by the
lens dimension. The lens antenna’s aperture efficiency can decrease as the diameter of the
lens increases. For those reasons, there is a trade-off between performance and ease of
manufacturing when selecting the number of layers in the lens.
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stability and durability. Polylactic acid filament (dielectric constant of ɛr = 2.2, dielectric 
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Figure 1. Proposed GRIN lens concept: (a) four-layer cylindrical GRIN lens, and (b) 3D-printed
GRIN lens with honeycomb unit cells.

Considering these issues, we proposed the lens outer layer diameter be set as 6λ0, the
focal distance as 8.87λ0, and the total number of layers = 4. Table 1 shows the relative permit-
tivity and radius for the GRIN lens layers with the lens outer diameter = 6λ0 at 28 GHz. The
relative permittivity and radius for each layer are 1.88−1.22, and 16.1−32.1 mm, respectively.

Table 1. Proposed GRIN lens design parameters.

Parameters 1 2 3 4

Permittivity 1.88 1.67 1.44 1.22
Radius (mm) 16.1 22.7 27.8 32.1

We used a honeycomb structure for the unit cells in each layer to realize layers with
derived relative permittivity. The honeycomb structure is suitable for lens design, providing
efficient unit cell deployment for continuous permittivity variation and mechanical stability
and durability. Polylactic acid filament (dielectric constant of εr = 2.2, dielectric loss of tanδ
= 0.05) was used to 3D print the lens with the honeycomb structure. Effective permittivity
for the honeycomb unit cell size was investigated by two methods of filling ratio method
and transmission line method. Following the equation from the former technique, we can
calculate the effective permittivity of the honeycomb cell based on the ratio of unfilled and
filled portions in the cells [11], as shown in Equation (2). Meanwhile, the latter technique
examines the S-parameters of structures that contain the honeycomb cells and uses the
curve-fitting method to determine its effective permittivity [29]. Effective permittivity can
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be derived from the following simple equation using the filling ratio of the 3D printing
material [11].

εre = εr
V0 −Vi

V0
+

Vi
V0

(2)

where εr is the 3D-printed material permittivity, V0 is the overall volume of the 3D-printed
honeycomb cell filled with PLA, and Vi is the inner volume of 3D-printed honeycomb cell
filled with air. For the transmission line method, we examined the scattering parameters
within 24−32 GHz by electromagnetic (EM) simulation assuming that two different length
dielectrics consisting of the honeycomb unit cells are inserted into the waveguide. EM
simulations were performed using the ANSYS high-frequency structure simulator (HFSS).
Figure 2 shows effective permittivity for the honeycomb unit cell with respect to the
diagonal length (Lh). Honeycomb cell thickness (Th) was fixed to 1 mm to reduce the
filament dielectric loss and print easily. When the honeycomb cell diagonal length (Lh)
increased from 1.25 to 4 mm, the effective permittivity obtained using the filling ratio
method decreased from 1.81 to 1.23, whereas the effective permittivity obtained using the
transmission line method decreased from 1.85 to 1.2.
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Figure 2. Effective permittivity (left axis) and dielectric loss (right axis) of honeycomb cell versus
different size of honeycomb cells Lh.

The effective permittivity estimated from these two methods shows a slight difference
since the honeycomb cell geometry is used in the filling ratio method, and the large area
honeycomb-shaped dielectric is used in a specific frequency range for the transmission line
method. The fitted curve for the honeycomb cell size effective permittivity was estimated as

εr = 0.019L2
h − 0.3119Lh + 2.1767 (3)

using data from both methods, with the honeycomb cell size for each layer = 1.03, 1.85,
2.85, and 3.99 mm. The dielectric loss for each layer decreased from 0.045 to 0.025 when
the honeycomb cell size increased from 1.03 to 3.99 mm, as indicated with the green line
in Figure 2. It can be observed that the smaller the honeycomb cell size, the higher the
permittivity that can be achieved. However, when the honeycomb cell size decreases,
creating the unfilled area with higher accuracy is considerably challenging. In addition,
decreasing the unfilled area also means increasing the weight of the designed GRIN lens.
Due to this reason, different with other designs, the center concentric layer (n = 1) in
the proposed GRIN lens has a much wider area and does not follow the gradient rule.
Although there will be a slight trade-off with the radiation gain, the weight and fabrication
complexity can be considerably reduced.
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2.2. Source Antenna Design

To remain a light weight and compact structure while still satisfying the conditions
of high gain, high directivity, and wideband, the Yagi antenna was chosen as the source
antenna for verifying the performance of the proposed 3D-printed GRIN lens. Yagi antennas
are suitable to integrate with a honeycomb-shaped GRIN lens because they provide wide
bandwidth and end-fire radiation with compact size [30]. Figure 3 shows the top and
bottom geometry of the Yagi antenna. The antenna was designed on a Duroid RT5880
substrate (εr = 2.2, tanδ = 0.0009) with a thickness of 0.51 mm. Nine directors with length
Ld = 2.5 mm and width Wd = 0.6 mm were used to achieve high gain. Different L1 and
L2 were used on the top and bottom of the Yagi antenna for impedance matching. Due to
its polarization characteristic, the E-plane and H-plane of the designed Yagi antenna are
the YZ and XZ planes, respectively. The simulated half-power beamwidth (HPBW) was
45.6◦ and 54.5◦ in the E-plane and H-plane, respectively, at 28 GHz, as shown in Figure 4a.
The simulated peak gain of Yagi antenna was 6.8−11.4 dBi for 24−32 GHz. The simulated
fractional impedance bandwidth of the Yagi antenna was found to be 35.7%. The Yagi
antenna was designed with sufficient bandwidth and gain to validate the proposed fractal
GRIN lens in the mm-wave frequency band.
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L1 = 5, L3 = 2.5, L2 = 2.5, Wd = 0.6, Ld = 2.5, D = 1.2.
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Figure 4. Simulated Yagi antenna parameters: (a) radiation pattern at 28 GHz, and (b) return loss
(left axis) and gain (right axis).

2.3. Source Antenna Integrated with Fractal GRIN Lens Using Honeycomb Cells

Figure 5 demonstrates the proposed honeycomb-shaped GRIN lens fed by the Yagi
antenna. The lens was designed by placing four honeycomb cells of different size in a
circular cylinder made of PLA. The four layers comprised the hollow honeycomb cells
with Lh1 = 1.03 mm, Lh2 = 1.85 mm, Lh3 = 2.85 mm, Lh4 = 3.99 mm to realize the de-
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sired relative permittivity of the lens. Each layer was connected by a 0.5 mm thick ring
(Figure 5b, dashed line) inserted on the top and bottom of the layers.
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Figure 5. (a) Source antenna integrated with GRIN lens; (b) fractal GRIN lens with honeycomb cells
top and side view.

The source antenna was aligned with the center of the lens in the x–y plane and Df from
the lens in the z plane. Focal length Df between source antenna and lens was investigated
by simulation to achieve optimal gain and minimal sidelobe levels (SLL) while retaining
wide bandwidth. Figure 6a,b show that the antenna gain and the sidelobe level depend
on the lens thickness T1 and the lens focal length Df after loading the honeycomb-shaped
GRIN lens. As T1 increased from 5 to 20 mm, the antenna gain enhanced from 13.1 to
19.1 dBi. The sidelobe level of the antenna decreased from −9.7 to −14.5 and from −8.6 to
−13.5 dB for the E-plane and H-plane, respectively.
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A thicker lens will improve the lens focusing ability, increasing gain and reducing
sidelobe level. However, the antenna efficiency degrades due to the dielectric loss from
PLA. Thus, the lens thickness was set to 12 mm. Figure 6a shows the antenna gain and
sidelobe level with respect to the focal length when the lens thickness was 12 mm. The
antenna gain increased from 9.98 to 17.7 dBi as the focal length increased from 10 to 70 mm,
and the optimal sidelobe level occurred at −14.7 dB and −13.3 dB for the E-plane and
H-plane, respectively, for the lens focal length = 60 mm. The lens antenna gain and sidelobe
level are significantly affected by the phase distribution at the lens surface, and the phase
distribution depends on the focal length. Therefore, although the structure was initially
calculated with the focal length Df of 8.87λ0, we set the focal length between the source
antenna and the lens to 60 mm for optimizing both the higher antenna gain and lower
sidelobe level.

Figure 6c,d shows the simulated radiation pattern, gain, and return loss when the
honeycomb-shaped GRIN lens was fed by the Yagi antenna. The half-power beamwidth
reduced from 42.6◦ to 10.8◦ and from 50.5◦ to 9.8◦ for the E-plane and H-plane, respectively,
with the peak gain of 16.9 dBi at 28 GHz. The fractional impedance bandwidth for the Yagi
antenna combined with the honeycomb-shaped GRIN lens was 36.8%. The antenna peak
gain was from 15.57 to 18.09 dBi within 24−32 GHz. Thus, the Yagi antenna integrated
with the proposed lens achieved high gain, narrow beamwidth, and wide bandwidth with
the optimized lens focal length and thickness.

3. Experimental Investigation and Discussion

Figure 7a shows the fabricated proposed honeycomb-shaped GRIN lens using 3D print-
ing technology, to demonstrate the proposed concept. A commercial desktop 3D printer
(Sindoh 3DWOX 2X) using fused filament fabrication was used to print the honeycomb-
shaped GRIN lens. The diameter of the 3D printer filament extrusion nozzle was 0.4 mm,
and the layer resolution was provided from 0.05 to 0.4 mm. For the prototype fabrication,
we set the layer resolution = 0.2 mm, the printing speed = 60 mm/s and the nozzle moving
speed = 100 mm/s. Due to the simple printing conditions for the PLA filament, the lenses
can be easily and rapidly manufactured at low cost. The Yagi antenna was fabricated by
conventional PCB processing with the RT5880 substrate. We combined the honeycomb-
shaped GRIN lens and Yagi antenna with a 3D-printed PLA supporting structure to ensure
alignment. Figure 7b shows the simulated and measured return loss for a Yagi antenna and
the Yagi antenna with honeycomb-shaped GRIN lens. The return loss for the fabricated
sample was measured using a Keysight N5227B. The simulated and measured fractional
impedance bandwidth for the Yagi antenna was 35.7% and 41.8%, respectively; by contrast,
the simulated and measured fractional impedance bandwidth for the Yagi antenna inte-
grated with the honeycomb-shaped GRIN lens was 36.7% and 40.7%, respectively. The
simulated and measured return loss shows good agreement, and the proposed lens antenna
provided sufficient operating bandwidth in mm-wave frequency band including 28 GHz.
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Figure 8a shows the setup to measure the radiation performance for the fabricated sam-
ple using a commercial ORBIT/FR far-field measurement system in a shielded millimeter-
wave anechoic chamber room. The standard gain horn antenna HO42S was used for the
frequency range from 24−26.5 GHz, and HO28S was used for the frequency range from
26.5−32 GHz [7]. Figure 8b,c compare the measured and simulated Yagi antenna radiation
pattern at 28 GHz. The measured peak gain was 9.03 dBi, and the measured HPBW was
41.6◦ and 51.38◦ in the E and H-plane, respectively.
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Figure 9 shows simulated and measured radiation patterns for the combined Yagi
antenna and the fractal GRIN lens using the honeycomb cells on the E and H-planes. The
measured peak gain for the proposed honeycomb-shaped GRIN lens antenna was 15.49,
16.86, and 17.66 dBi at 24, 28, and 32 GHz. The cross-polarization level was 26.5, 20.5, and
18.2 dB at 24, 28, and 32 GHz. The sidelobe level was −14.7 and −13.9 dB for the E and
H-plane at 28 GHz, respectively. Figure 10 shows that the measured peak gain increased
7.5–8.84 dB over 24−32 GHz. The measured peak gain was relatively flat at approximately
16.86 ± 0.5 dBi within 25−31.5 GHz, corresponding to 1-dB gain bandwidth of 23%. The
HPBW decreased to 9.87◦–11.68◦ and 8.07◦–10.79◦ in the E and H-plane for 24–32 GHz.
The proposed lens antenna achieved radiation efficiency of 85.6−92.5% for 24–32 GHz,
as indicated by the purple line in Figure 10. The hollow honeycomb structure reduced
the dielectric loss from the 3D printing material and the overall lens weight. Hence, the
proposed antenna exhibits stable gain with high efficiency in the mm-wave frequency band
24–32 GHz.
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Table 2 compares the proposed lens antenna and other GRIN lens antennas. High-gain
lens antennas with wide bandwidth in the mm-wave band using GRIN lenses have been
reported previously [12–15]. However, the antennas required complicated manufacturing
processes such as PCB and metal machining. GRIN lens antennas fabricated using 3D
printing technology have also been presented previously [23,24,28]. However, the lens
antennas used a high-end 3D printer due to the complicate lens unit structure required for
elaborate fabrication. In contrast, the proposed fractal GRIN lens antenna is constructed
from honeycomb cells produced by inexpensive FDM 3D printing using the PLA filament.
Therefore, the proposed honeycomb-shaped GRIN lens provides a simple and cost-effective
manufacturing process compared to the previous reported lenses. On the other hand,
compared with other reported GRIN lens antenna, the proposed structure provides a
widest 1-dB gain BW of 23%, the highest radiation efficiency of 92%, and a relatively wide
impedance BW while remaining a simple and light weight overall structure.

Table 2. Comparison of proposed fractal GRIN lens antenna and other millimeter-wave lens antenna.

[28] [24] [15] [23] This work

Source Antenna Horn antenna Patch antenna Patch antenna WG Yagi
Lens volume

(W × L × H) (mm) 6λ0 × 6λ0 × 0.925λ0 6.7λ0 × 6.7λ0 × 2.2λ0 5λ0 × 5λ0 × 1.1λ0 10λ0 × 10λ0 × 1.25λ0 6λ0 × 6λ0 × 1.12λ0

Frequency band
(GHz) 12–18 24–28 13.4–13.6 28–40 24–32

1dB gain BW (%) N/A <7.7 <4.7 <8% * 23
Impedance

bandwidth (%) N/A 15.4 1.48 42.4 41

SLL (dB) −14 * −11 −18.5 20 * −17
Radiation Efficiency

(%) N/A 84.5 67.3 N/A 92

Lens material PLA Plastic resin RO4350B

ABS1200,
ABS1000,
ABS650,
ABS440,
ABS300

PLA

Fabrication method FDM SLA PCB FDM FDM
Cost Low High Medium High Low

Weight Light Medium Medium Light Very Light

* The data are estimated from the figure.

4. Conclusions

This paper proposed a 3D-printed fractal GRIN lens antenna with stable gain for
mm-wave frequency band applications. The fractal GRIN lens was realized with different
sized hollow honeycomb cells printed by a cost-effective FDM 3D printer. The proposed
lens antenna exhibited relatively flat gain 16.86 ± 0.5 dBi due to the decreased dielectric
loss in the 3D printing material from the hollow honeycomb structure. In addition, owing
to the structure of the proposed GRIN lens with only four concentric layers and a relatively
wide center concentric layer, the weight of the proposed GRIN lens antenna is significantly
reduced, although there is a slight trade-off in the maximum radiation gain. The fabricated
prototype lens has the weight of only 23 g while maintaining high mechanical strength.
In addition, the proposed fractal GRIN lens antenna provides easy fabrication and low
cost using commercial 3D printing technology. The proposed concept was successfully
demonstrated and could be extended into a beam-reconfigurable lens antenna with high
gain, wide bandwidth, and lightweight by introducing flexible or smart material to achieve
a reconfigurable physical structure.
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