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Abstract: In recent years, the use of renewable energy has grown significantly in electricity generation.
However, the output of such facilities can be uncertain, affecting their reliability. The forecast of
renewable energy production is necessary to guarantee the system’s stability. Several authors have
already developed deep learning techniques and hybrid systems to make predictions as accurate
as possible. However, the accurate forecasting of renewable energy still is a challenging task. This
work proposes a new hybrid system for renewable energy forecasting that combines the traditional
linear model (Seasonal Autoregressive Integrated Moving Average—SARIMA) with a state-of-the-art
Machine Learning (ML) model, Transformer neural network, using exogenous data. The proposal,
named H-Transformer, is compared with other hybrid systems and single ML models, such as Long
Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and Recurrent Neural Networks (RNN),
using five data sets of wind speed and solar energy. The proposed H-Transformer attained the
best result compared to all single models in all datasets and evaluation metrics. Finally, the hybrid
H-Transformer obtained the best result in most cases when compared to other hybrid approaches,
showing that the proposal can be a useful tool in renewable energy forecasting.

Keywords: time series; hybrid systems; transformers; Machine Learning; renewable energy

1. Introduction

Environmental preservation has been a critical topic in discussing numerous areas
of knowledge, mainly due to global warming. According to the World Meteorological
Organization [1] at the State of Global Climate of 2020, the 2011–2020 decade had one
of the highest average global temperatures. The year 2020 had one of the three highest
temperatures of the decade. The reports also observed increases in the temperature of the
oceans, sea level, concentration of greenhouse gas, melting of the polar ice caps; in addition
to catastrophes such as extreme heat, wildfires, floods, and the record-breaking Atlantic
hurricanes season. Climatic causes impact socio-economic development, generate mass
migrations and destroy ecosystems, creating threats to safety and health. The concentration
of greenhouse gases continued to increase, despite the economic slowdown due to the
pandemic lockdown.

The combustion of fossil fuels is a major and leading cause of air pollution glob-
ally [2]. Approximately two-thirds of carbon dioxide emissions come from the burning of
non-renewable fossil fuels for the generation and distribution of energy [3], which is the
primary means of energy production today. The adoption of renewable energies, especially
solar and wind, is rapidly growing and developing worldwide. As renewable energies
become more cost-competitive [4,5], new market designs and policy reforms are constantly
created to pursue this new power generation method [6]. For example, the European Union
has developed a plan in response to this problem: to cut greenhouse gas emissions by
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80% compared to the 1990 emission and to produce 100% of the energy needed through
renewable energy by 2050 [7].

The energy efficiency of solar photovoltaic (PV) depends on several factors, such
as latitude, season, climatic conditions and local pollution [8]. The wide variation in PV
efficiency regarding numerous variables makes it more challenging to estimate the quantity
of energy generation in a given time window. Thus, the development of an accurate
forecasting model can be a valuable tool for decision support in the use of PV [9–11].

Wind energy has drawn more awareness lately because of its benefits, such as low
environmental impact and low cost [12]. Thus, wind energy is an essential alternative to
fossil fuels. However, due to the wind’s volatile nature, one must be careful in choosing
where and how to operate such facilities. Wind speed forecasting can directly help system
management of wind energy systems management [13,14].

In general, in the solar and wind energy area, the forecast horizon [15] can be classified
into three categories: short-term, medium-term, and long-term [16]. This paper focuses
on the short-term forecast horizon that is useful in the electricity market and renewable
energy integrated power management systems, where the forecast can directly affect the
decision-making process, monitoring of electricity dispatch, and pricing [17].

Objectives

This study proposes a hybrid system that combines linear statistical and Deep Learning
models for renewable energy forecasting. In the context of time series forecasting, hybrid
systems combine the linear and nonlinear components in various ways, and have already
been implemented by multiple authors [18–22]. The proposal combines linear and nonlinear
models using the residual series, calculated from the difference between the time series
and its forecast. The proposed hybrid system joins the strengths of the traditional Seasonal
Autoregressive Integrated Moving Average (SARIMA) model [23] with the state-of-the-
art ML model, Transformer neural network [24]. So, the proposed system, named H-
Transformer, is composed of three phases: linear forecasting using the SARIMA model,
nonlinear forecasting of the residual series using the Transformer, and a combination of
the linear and nonlinear forecasts using a simple sum. The H-Transformer employs the
exogenous time series and Bayesian Optimization for ML model parameter selection in an
innovative manner, aiming to improve its accuracy. In addition, the proposed hybrid system
models the residual series with a brand-new approach, aiming to improve performance in
the nonlinear phase.

The investigation also analyzes the employment of deep learning methods and other
Machine Learning architectures for nonlinear component modeling in the hybrid system
framework. The performance of the H-Transformer is evaluated using two solar irradiance
data sets and three wind speed time series. The proposed system is compared with
traditional statistical methods, state-of-the-art ML models, and hybrid systems that combine
the above-mentioned techniques. The performance is assessed by three metrics: the Root
Mean Squared Error (RMSE), the Mean Absolute Error (MAE) and the Coefficient of
Variation of the RMSE (CV(RMSE)).

The proposed H-Transformer presents the following advantages:

• Deals with the risk of inappropriate model selection by using the combination strategy;
• Provides an unprecedented combination of SARIMA with the Transformer neural

network;
• Proposes a new method for residual modeling using a mapping between time series

and error series;
• Increases the accuracy of residual nonlinear modeling using exogenous variables and

Bayesian optimization.

This work is organized as such: Section 2 contains a review of related works and how
this work contributes to them. Section 3 introduces and explains the proposed model and
its pipeline. Section 4 shows the experimentation process and a comparison between the
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results of other hybrid systems and single ML models with the H-Transformer. Finally,
Section 5 contains the conclusion of the work and future research plans.

2. Related Works

In 2012, Zhao and Magoulés [25] released a review paper on the significant prediction
and forecasting techniques for the energy consumption of buildings. The authors specifi-
cally contrasted physical models to machine learning and statistical models. According to
the authors, machine learning-based models provided the most accuracy and adaptability,
especially when compared to statistical models. Optimized applications is one of the areas
where further research is suggested.

In 2017, Wang and Srinivasan [26] investigated the application of artificial intelligence-
based models as well as comprehensive models for predicting and forecasting building
energy demand. The authors broke down how artificial intelligence as a whole was used to
anticipate the energy consumption of buildings. The majority of AI-based projects used
hourly data applied to an entire building’s capacity. The authors also looked into how
general methodologies were used to predict the energy consumption of buildings. It was
highlighted that similar assemblies had been widely used in domains other than building
energy, with the results demonstrating their superior performance when compared to
traditional prediction models.

In 2020, Ahmed et al. [27] review the state-of-the-art PV solar power forecasting, listing
the best accuracy found with different models, forecast horizons, feature selection, and
many other variables that can affect the performance of a forecasting model. Finally, they
suggest using hybrid artificial neural networks and optimization for future works.

In the context of time series forecasting, hybrid systems combine the strengths of both
statistical techniques and Machine Learning (ML) for modeling the linear and nonlinear
components of a time series. Many authors have successfully developed such hybrid
models, combining the linear and nonlinear components in various ways. Zhang [18]
assumes that a time series Zt is composed by a linear relationship between linear (Lt) and
nonlinear (Nt) temporal patterns (Equation (1)).

Zt = Lt + Nt. (1)

Zhang [18] proposes an architecture composed of three phases: (i) generation of the
time series forecasting (L̂t) using the statistical linear model ARIMA, (ii) forecast (N̂t) of the
residual series Et, calculated by Equation (2), using a Multilayer Perceptron neural network
(MLP), and finally, (iii) combination of (i) and (ii) outputs using a simple sum (Equation (3))
resulting in Ẑt.

Et = Zt − L̂t. (2)

Ẑt = L̂t + N̂t. (3)

Several publications [19–22] evaluated and compared multiple forecasting models
for short-term PV energy generation and wind speed, including hybrid models and many
variations of neural network techniques, highlighting their merits and drawbacks. How-
ever, residual series modeling is challenging because it presents heteroscedastic behavior,
random fluctuations, and nonlinearity.

The current paper aims to contribute by evaluating the hybridization of SARIMA with
the Transformer neural network using exogenous variables to model a renewable energy
data series.

3. H-Transformer

The proposed hybrid system is composed of three modules: the linear module (ML);
the nonlinear module (MN); and the combination module. The linear module ML employs
the SARIMA model to generate the time series forecasting. The residual series Et is
generated from the difference between Zt and L̂t.
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The statistical analysis [28] of the datasets using the ACF indicated that every time
series used in the experiments present seasonal behavior [28]. So, the SARIMA was selected
because this linear model is the most suitable when the seasonal component is observed in
the data [28].

The nonlinear module MN employs a Transformer neural network [24] for residual
series modeling. The Transformer is composed of multiple encoder and decoder stacks.
The encoder stack has two sublayers: a multi-head attention block and a fully connected
feed-forward network. The decoder stacks contain the same sublayers as the encoder,
plus another multi-head attention block over the output of the encoder stack. Between all
sublayers, layer normalization is also implemented to facilitate the residual connections.

The Transformer receives as input data the residual series Etrain, the time series Ztrain,
and exogenous data related to the time series under analysis. In this phase, the Transformer
is trained, receiving as input time lags of the Ztrain and exotrain to forecast the future values
of the Etrain. This mapping is performed to overcome the challenging task of residual mod-
eling once this phase can degenerate the linear forecast as reported in the literature [23,29].
So, using this new mapping, the nonlinear model can learn the relationship of the Ztrain
and Etrain, and consequently, the bias of the linear model. So, this work supposes that the
Transformer is able to correct the forecast, mainly where the linear model is less accurate.
The Transformer model parameters and the number of time lags are optimized using
BHO (Bayesian Hyperparameter Optimization) [30]. The final output is obtained from
the combination step that joins the linear prediction of the time series and the nonlinear
prediction of the residual series to generate more accurate forecasting. Table 1 shows each
variable of the proposed hybrid system, its source, and its respective description.

Table 1. List of variables of the proposed hybrid system.

Variables Source Description

exotrain Dataset Training n-lagged exogenous data such as weather data.

Ztrain Dataset Training n-lagged target.

L̂train ML Forecast of the linear component generated by ML from Ztrain

N̂train Equation (4) Nonlinear component generated by Equation (4)

exotest Dataset Testing n-lagged exogenous data.

Ztest Dataset Testing the n-lagged target.

L̂test+1 ML
Forecast of the linear component of Ztest+1 generated by ML
using Ztest

N̂test+1 MN
Prediction of the nonlinear component of Ztest+1 generated by MN
using Ztest and exotest

Ẑtest+1 Equation (5) Forecast of Ztest+1 after the sum of the linear and
nonlinear components

The proposed hybrid system is separated into training and testing steps. Each step is
further described in the following sections.

3.1. Training Step

Figure 1 shows the training step of the H-Transformer. In this step, the following
modules are trained:

1. The linear module ML is estimated using the training set Ztrain. The objective is to
find the SARIMA model’s parameters that generate the best linear forecast L̂train for
the training set. Their outputs are the linear forecast L̂train and the trained SARIMA;

2. The nonlinear module MN is trained using Ztrain and exotrain as inputs to predict the
residual series Etrain (Equation (4)). The output of the nonlinear module is the forecast
N̂train and the trained Transformer.
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Figure 1. H-Transformer training step.

In the first step of the system, the linear model ML is trained based on the n-lagged
target Ztrain to predict the target one step ahead. The trained ML then outputs the linear
component of the Ztrain, L̂train, which is used by Equation (4) to produce the residual
series Etrain.

Etrain = Ztrain − L̂train. (4)

The second step of the system trains a Transformer model MN using the n-lagged
exogenous data exotrain and Ztrain to be able to predict the residual series Etrain. The output
of this step is the forecast of the nonlinear component N̂train.

In the Transformer training step, a BHO [30] searches for the best parameters of the
model and the best number of lags to be considered. The BHO finds the best model by
minimizing the validation loss function. A summary of how the optimization works and
how it was used in this work is further described in Section 4.2.

3.2. Testing Step

The testing step of the system, shown in Figure 2, uses all three modules:

Figure 2. H-Transformer testing step.

1. The trained linear module ML forecasts the next hour target Ztest+1 using the n-
lagged data Ztest. It outputs the linear component L̂test+1;

2. The trained nonlinear module MN uses the n-lagged exogenous data exotest and Ztest

to predict the nonlinear component of the target N̂test+1;
3. The combination module sums L̂test+1 and N̂test+1 to produce Ẑtest+1 (Equation (5)).

The resulting forecast can then be compared with the real value Ztest+1 using loss
functions such as RMSE and MAE.

Ẑtest+1 = L̂test+1 + N̂test+1. (5)

4. Experimental Setup and Results

Sections 4.1, 4.2 and 4.3 present the data set description, the experimental protocol
and the simulation results, respectively.
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4.1. Data

This work uses five renewable energy time series (two sets of solar energy and three
sets of wind speed) to assess the performance of the proposed hybrid system in the fore-
casting task.

The first dataset of solar energy (named Solar1) is composed of data obtained from
a solar panel installed in the Northeast region of Brazil over a total period of one year—
between the beginning of July 2018 and the end of July 2019 [31]. The dataset is composed
of two files: (i) Weather data from the exact location of the solar panels, taken every minute,
totaling 570,281 observations and 35 features; (ii) Data with the solar panel information,
such as energy generated, taken every 15 min, totaling 38,016 observations and 18 features.
These data contain null observations between 6 pm and 6 am each day and from mid-April
2019 to mid-June 2019.

The Second Dataset (Solar2) is composed of data obtained from a solar panel in-
stalled in India over a total period of 34 days, with observations of multiple panels every
10 min [32]. This dataset is also composed of two files, and the information of each file is as
follows: (i) Weather data from the exact location of the solar panels and only three features;
(ii) Data with the generated energy of multiple solar panels and one feature per solar panel.

The following Datasets (Wind1, Wind2 and Wind3) are composed of data obtained
hourly from a wind turbine in three different regions of Northeast of the Brazil (Recife,
Natal, and Fortaleza) over a total period of 1 month. Each dataset is composed of a single
file containing the weather data from the exact location of the wind turbines, as well as the
wind speed (target).

Preprocessing

Both datasets (Solar1 and Solar2) were resampled at 1-hour intervals, merged with
their respective weather datasets, and finally cleaned of all null observations. For Solar1,
all extra features of the solar panel data were removed, except for the power generation
feature, which was used as a target for the regression of the nonlinear Models. In the case
of Solar2, the mean of all solar panels’ generated energy was used for the target of the
regression nonlinear, and all other features were removed. The wind speed datasets were
already in the correct schema up to this point.

A shi f t operation is computed to transform each observation to contain the informa-
tion of its previous n timesteps, or number of lags. The choice of possible options for n was
defined by the highest observations on each dataset’s autocorrelation function (ACF).

The resulting datasets (described in Table 2) were divided into Training, Validation,
and Test sets. The three sets were normalized using the min-max method described by
Equation (6). Y′i is the normalized version of the Yi data, where min(Y) is the minimum
occurrence and max(Y) is the maximum occurrence in the Training data. The values of the
transformed data are in the range [0, 1] based on the training set. The normalization is done
on each exogenous variable and target time series.

Y′i =
Yi −min(Y)

max(Y)−min(Y)
, (6)

where Y is the list containing all values of an exogenous variable or time series under
analysis.

Table 2. Description of the resulting datasets after the preprocessing steps.

Solar1 Solar2 Wind1 Wind2 Wind3

Observations 4020 273 744 720 744
Features 39 3 4 4 4

Frequency 1 h 1 h 1 h 1 h 1 h
Lags 3, 6, 12, 24 3, 6, 12 1–12 1–12 1–12
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4.2. Experimental Protocol

The proposed hybrid system, named H-Transformer, was compared with two litera-
ture approaches in this work: single and hybrid. The single approaches selected were the
traditional statistical linear model, SARIMA, and four state-of-the-art Machine Learning
models: RNN [33], LSTM [34], GRU [35], and Transformer[24]. The codes for all experi-
mentation and tests are available on GitHub (https://github.com/nyancy/h-transformer
(accessed on 23 October 2022)).

The hybrid approaches were developed based on [18], as well as the proposed H-
Transformer. This paper refers to these hybrid systems as SARIMA+RNN, SARIMA+LSTM,
and SARIMA+GRU.

The well-known Box and Jenkins methodology [36] was employed for selecting the
hyperparameters [p, d, q, P, D, Q, T] of the SARIMA model. This methodology is relevant
because it guarantees that the linear patterns present in the time series be properly modeled.

The BHO method was used to design the ML models of the single and hybrid ap-
proaches. The objective of the BHO is to find the best solution while avoiding local optima.
The Bayesian algorithm builds a probabilistic model that maps the hyperparameter val-
ues and the loss evaluated on validation data when optimizing hyperparameters. The
optimization iteratively evaluates and updates suitable configurations by balancing ex-
ploration (avoiding local minima) and exploitation (exploiting the optimum), using this
information to find the optimum of the function. Because it uses a probabilistic model,
Bayesian optimization has shown better results in the literature when compared to classic
hyperparameter optimization algorithms such as random search and grid search [37].

The BHO tested 50 different combinations of hyperparameters for each ML model.
Each combination ran for up to 300 epochs, stopping sooner if the validation error did not
improve after 15 epochs (Early Stopping). The method created 200 combinations for each
dataset and model, totaling 800 runs. The search only uses training and validation sets to
evaluate its performance.

The parameters and their values considered by the BHO for the RNN [33], LSTM [34],
GRU [35] and Transformer [24] models were:

• units , from 4 to 256;
• learning_rate, from 0.1 to 0.001;
• batch_size, from 8 to 256;
• dropout, from 0.1 to 0.4;
• lags, depends on the dataset.

The Transformer model has a few additional parameters that are listed below. The
hyperparameters considered on the original Transformer [24] constitute one of the possible
configurations.

• head_size, from 64 to 256;
• head_number, from 2 to 8;
• block_number, from 2 to 8;

The loss used for optimization and comparison was the MSE (Mean Squared Error),
computed by the Equation (7). The hybrid models used the SARIMA residual series as the
target for the loss calculation.

MSE =
1
n

n

∑
i=1

(Zt − Ẑt)
2, (7)

where Zt and Ẑt are the actual series and forecasting at the time t.
Two evaluation metrics were used for performance comparison: Root Mean Squared

Error (RMSE) and the Mean Absolute Error (MAE). The RMSE (Equation (8)) is an evalua-
tion metric similar to the MSE. The square root is computed to transform the error into the
same scale as the data. The MSE and RMSE are more sensitive to outliers when compared
to the other metrics [38].

https://github.com/nyancy/h-transformer
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RMSE =

√
1
n

n

∑
i=1

(Zt − Ẑt)2. (8)

The CV(RMSE) (Coefficient of Variation of the RMSE) (Equation (9)) calculates the
ratio of the standard deviation to the mean, dividing the obtained RMSE by the mean of the
time series Z (Z). It is used to indicate the amount of randomness between the data and the
forecasted values. According to [39], a forecast model shall have a maximum CV(RMSE) of
25%, where lower values imply that the model outputs better forecasts.

CV(RMSE) = 100×

√
1
n ∑n

i=1(Zt − Ẑt)2

Z
. (9)

The MAE, shown on Equation (10), is less sensitive to outliers when compared to the
MSE and RMSE, and also provides an error value on the same scale of the data.

MAE =
1
n

n

∑
i=1
|Zt − Ẑt|. (10)

The percentage difference, denoted here as Gain (Equation (11)), is used to compare
the performance of the H-Transformer regarding other methods used in the comparison:

Gain =
Metricliterature −Metricproposed

Metricliterature
· 100, (11)

where Metricproposed is the RMSE or MAE obtained by the proposed H-Transformer, and
Metricliterature is the obtained RMSE or MAE for the single and hybrid approach models
used for comparison. Positive percentage values indicate that the proposed H-Transformer
attained a higher performance metric regarding a respective literature method.

4.3. Experimental Results

Table 3 shows the results with both RMSE and MAE metrics for single and hybrid
approaches on the testing set for all datasets. The error on solar datasets corresponds to
power generation in KWh, while the wind datasets’ loss represents the wind speed in m/s.
Since the metrics are different, Table 3 provides a comparison between models in the same
dataset, not between datasets. Overall, the hybrid approaches achieved better results than
respective single models. The proposed H-Transformer attained the best RMSE metrics
in 3 out of 5 time series. In MAE terms, the proposal reached the best values in 4 out of
5 time series.

Table 4 shows the attained CV(RMSE) metric for all approaches on the testing set of
all datasets using the results from Table 3. CV(RMSE) permits a comparison of the model’s
performance between datasets, where lower values mean that the model outputs a better
forecast. The H-Transformer achieved better performance on Wind datasets, and had a
CV(RMSE) less than 25% in 4 out of 5 series.

Overall, the hybrid approaches attained better results than their single counterparts.
The proposed hybrid system, the H-Transformer, outperformed all single models when
analyzing the RMSE and achieved the best MAE in all datasets compared to other hy-
brid systems.

Figure 3 shows that in most of the time series, the H-Transformer attained a remarkable
gain from other models. For instance, in all datasets, the proposed hybrid system improved
the SARIMA accuracy, reaching an accuracy superior to the single Transformer model.
This result corroborates the hypotheses that support the proposition of the H-Transformer.
Similarly, Figure 4 shows the superior result in terms of MAE of the proposed hybrid
system. For instance, the H-Transfomer attained a percentage gain greater than 30% in
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four out of five data sets compared to the SARIMA model. Even in the cases where other
models outperformed the H-Transformer, the percentage difference is considerably low.

Figure 3. The percentage difference (Equation (11)) between H-Transformer and literature methods
in terms of RMSE.

Figure 4. The percentage difference (Equation (11)) between H-Transformer and literature methods
in terms of MAE.

Table 3. RMSE and MAE performance metrics of the H-Transformer, single and hybrid approaches
for renewable time series. The best value for each time series is highlighted in bold. The error in Solar
dataset predictions are in KWh, and in m/s for Wind datasets.

Model Info Solar1 Solar2 Wind1 Wind2 Wind3

Approach Model RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Single

SARIMA [23] 975 756 1674 1451 0.810 0.659 1.115 0.930 0.795 0.632
RNN [33] 807 548 1568 1258 0.710 0.543 0.907 0.699 0.697 0.529
LSTM [34] 817 570 1455 1201 0.714 0.550 0.960 0.738 0.701 0.528
GRU [35] 793 526 1531 1176 0.680 0.511 0.849 0.656 0.681 0.503

Transformer [24] 872 594 2438 1914 0.952 0.720 0.907 0.697 0.851 0.601

Hybrid

SARIMA + RNN 803 577 1252 939 0.637 0.482 0.847 0.653 0.673 0.539
SARIMA + LSTM 807 580 1460 1097 0.611 0.438 0.846 0.656 0.671 0.538
SARIMA + GRU 871 608 1300 971 0.645 0.466 0.849 0.660 0.671 0.537
H-Transformer 766 516 1307 934 0.623 0.422 0.838 0.645 0.665 0.533

Figure 5 shows the forecasting for the last 100 actual values (blue line) of the five
renewable energy time series used in the study. For all data sets, the comparison is
performed between the forecasts of the SARIMA model(red line) and the proposed H-
Transformer (green line).
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(a) Prediction comparison on Solar1. (b) Prediction comparison on Solar2.

(c) Prediction comparison on Wind1. (d) Prediction comparison on Wind2.

(e) Prediction comparison on Wind3.

Figure 5. Comparison between the actual renewable energy time series (100 last points—blue line)
and the forecasts of SARIMA (red line) and the H-Transformer (green line). Solar dataset predictions
are measured in KWh, and Wind dataset predictions are measured in m/s.

Table 4. CV(RMSE) performance metric of the H-Transformer, single and hybrid approaches for
renewable time series. The best value for each time series is highlighted in bold.

Model Info CV (RMSE)

Approach Model Solar1 Solar2 Wind1 Wind2 Wind3

Single

SARIMA [23] 27.36% 32.29% 27.61% 19.01% 20.82%
RNN [33] 22.65% 30.24% 24.20% 15.46% 18.26%
LSTM [34] 22.93% 28.06% 24.34% 16.37% 18.36%
GRU [35] 22.26% 29.53% 23.18% 14.48% 17.84%

Transformer [24] 24.47% 47.03% 32.45% 15.46% 22.29%

Hybrid

SARIMA + RNN 22.54% 24.15% 21.71% 14.44% 17.63%
SARIMA + LSTM 22.65% 28.16% 20.83% 14.42% 17.57%
SARIMA + GRU 24.44% 25.07% 21.99% 14.48% 17.57%
H-Transformer 21.50% 25.21% 21.24% 14.29% 17.42%
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It is possible to note that for all data sets, the H-Transfomer forecast is closer to the
actual series than the SARIMA outputs. The difference between SARIMA and the H-
Transformer is especially relevant in estimating the time series’ peaks and valleys, where
reaching an accurate estimate is more challenging and relevant [11,14].

5. Conclusions

Due to the wide variation of the solar photovoltaic and the volatile nature of the
wind speed, the necessity for developing accurate systems to forecast renewable energy
generation has been increasing. Numerous studies have considered different methods
and metrics to improve such approaches’ performance. However, issues regarding model
nature, parameter selection, weather, and environmental conditions affect the performance
in renewable time series forecasting.

This work proposed a hybrid system that combines the traditional linear SARIMA
model with a state-of-the-art Transformer model using the residual series. The proposal,
H-Transfomer, was developed for renewable energy forecast, aiming to deal with the
abovementioned issues. The well-known Bayesian optimization was employed to select
the best hyperparameters and the number of lags of the Transformer. In the nonlinear
modeling of the residual series, exogenous data were considered in an unprecedented
way to improve the accuracy of the Transformer model. The proposed hybrid system was
compared with single and hybrid approaches in the literature using five renewable energy
time series.

The results in terms of two well-known evaluation metrics were used to compare each
model on the test set: RMSE and MAE. The hybrid system, H-Transformer, obtained the
best overall result, showing that the proposal can be an interesting tool to attain accurate
forecasts in the renewable energy scenario.

This research, however, is subject to limitations:

• The optimization step requires multiple executions of deep neural networks, which
require high computational power. Powerful machines can execute the optimization
step much faster with many more combinations, possibly outputting better results;

• There are not many open multivariate renewable energy datasets available, which
limits the comparison and evaluation of the models;

• The proposed hybrid system employs a linear combination of statistical and ML
models. Some works show that nonlinear combinations can be more accurate than
linear ones [29] in the forecasting task;

• Selecting the perfect combination of models is challenging due to the no-free-lunch
theorem [40] in search and optimization problems. Multiple variables and parameters
influence the performance of each model differently, which makes the choice of models
and combinations a challenging task itself.

Alternative versions of the Transformer and attention-based models have been created
specifically for the time series forecasting field and produced promising results [41]. Hybrid
systems improved the performance of simple Transformers for renewable energy forecast,
so testing hybrid systems with those alternative Transformers is expected to output even
better results.

Improvements on hybrid systems are also an attractive approach for future works.
Izidio et al. [42] proposed a three-phase hybrid system for forecasting energy consumption
for smart meters. Their system outperformed previously tested models. A similar hybrid
system could be developed using Transformers for renewable energy forecast.

Future works may include a more comprehensive number of exogenous variables and
running a feature selection on each dataset. Finally, the optimization step can be improved
by increasing the number of hyperparameters and their ranges and using a more suitable
fitness function [43]. As concluded by Ahmed et al. [27], evolutionary algorithms have
performed well on the optimization task of renewable energy forecasting models.
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RMSE Root Mean Squared Error
MAE Mean Absolute Error
MLP Multilayer Perceptron
BHO Bayesian Hyperparameter Optimization
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