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ABSTRACT In this study, we propose a method to balance between user fairness and energy efficiency
of users in the context of simultaneous wireless information and power transfer (SWIPT)-based device-to-
device (D2D) networks. For this purpose, we build an optimization model which determines the subchannel
allocation, transmit power level, and power splitting ratio of D2D users, with the purpose of maximizing
the objective function which presents the trade-off level between the harvested energy and the average
logarithmic data rate of users. To solve this problem, we employ deep reinforcement learning (DRL) which
combines deep neural network (DNN) with reinforcement learning (RL). Despite the use of DRL, the
dimension of the action space in our work is still very high because it should include subchannel allocation
indicator, power splitting ratio, and transmit power of all D2D users. We therefore apply an interior point
method to the output of the DNN in DRL to avoid the excess convergent time of DRL. Through the
simulations, we compare the performance of our proposed algorithm to that of the conventional iterative
algorithms; exhaustive search (ES) and gradient search (GS). Results show that the objective function value
remains stable regardless of the change in the maximum transmission power. In addition, it is verified that
varying the power splitting ratio has little effect on the system performance, which justifies using a constant
power splitting ratio in SWIPT-based D2D networks. Furthermore, it is verified that the proposed DRL
achieves near-global-optimal solution compared with conventional algorithms, with lower computational
complexity.

INDEX TERMS Energy efficiency, packet scheduling, D2D network, joint optimization, deep reinforcement
learning.

I. INTRODUCTION
Because the data rate of future generation networks is
expected to be 100 to 1000 times faster than that of the
current generation networks, the use of high frequency bands
becomes inevitable [1]. Therefore, path-loss and cell cover-
age are expected to be increased and reduced, respectively,
resulting in the deterioration of the quality of service.
Thus, D2D communication, which can communicate directly
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between proximity users without going through a base sta-
tion, is gaining popularity as a solution for dealing with big
data while maintaining high spectral efficiency and energy
efficiency. However, because most D2D user devices are
powered by batteries and the capacity of a battery is lim-
ited and insufficient to satisfy the high energy demands
in wireless networks, increasing the energy efficiency of
D2D user devices in D2D communication is a challenging
task [2], [3]. In this context, SWIPT is considered a solution
to the power shortage problem of D2D communications, as it
can extend the lifetime of wireless nodes by transmitting
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data while harvesting energy from radio-frequency signals [4]
[5]. However, the emphasis on energy efficiency across the
network may cause degradation of fairness among individual
D2D devices. Therefore, improving energy efficiency while
guaranteeing user fairness is an important issue from the
perspective of D2D users.

Many studies have been conducted on improving energy
efficiency to solve the energy shortage in a D2D network.
The authors of [6] investigated efficient energy manage-
ment using Q-learning while considering the trade-off in
energy efficiency and delay. In [7], the author considered
the energy-efficient resource allocation problem to reduce
dependence on the battery with the EH time slot alloca-
tion, resource block, and power allocation. The author of [8]
applied the schedulingmethod to select D2D links that satisfy
both the signal-to-interference-plus-noise (SINR) ratio and
the transmit power constraints.

In addition, there are some researches of SWIPT-enabled
D2D networks to solve the problem of limited energy of
D2D devices. In [9], the authors considered power alloca-
tion in SWIPT-based D2D networks to improve the energy
efficiency. The author of [10] focused on wireless powered
communication network to improve the bandwidth utilization
and reduce energy loss in SWIPT-based D2D networks.

On the other hand, as mobile network architecture has
become more diverse and complex, various machine learning
algorithms have been used to control and adapt proper net-
work parameters. Deep learning, which uses multiple layers
to progressively extract high-level features from raw input,
has been successfully applied to complex mobile network
environments because it can extract highly correlated features
without being explicitly programmed. Reinforcement learn-
ing enables environmental automatic exploration and self-
decision, and it has received considerable attention because of
its ability to solve dynamic resource allocation problems [11].
Deep reinforcement learning (DRL) is a recently developed
technology that combines deep learning and reinforcement
learning. While reinforcement learning is only applicable
to data with low-dimensional features due to its exponen-
tially increasing computational complexity, DRL can train
the agent to learn actions using deep learning to approxi-
mate high-dimensional raw data [12], [13]. Because DRL
does not require prior knowledge of the environment to
obtain optimal performance, it possesses characteristics of
autonomous exploration and optimal decision-making func-
tionalities, which justifies embedding deep learning into
wireless networks.

Many researchers have applied machine learning algo-
rithms to resource allocation problems in various network
systems. In [14], the authors proposed a multi-agent DRL
to optimize joint energy-efficient subchannel assignment and
power control in a massive access management problem. The
authors of [15] proposed a resource allocation mechanism
based on DRL that minimizes interference to vehicle-to-
infrastructure communications. In [16], the authors devel-
oped a DRL-based algorithm to maximize the weighted-sum

rate of a D2D network by formulating a joint channel selec-
tion and power control optimization problem. In [17], the
deep Q-network (DQN) algorithm was used to solve the
problems of caching deployment based D2D andmobile edge
computing caching system. The authors of [18] applied DRL
to solve the joint optimization of sub-carrier assignment and
power allocation in D2D networks. In [19], a machine learn-
ing was applied to deploy the energy resource appropriately.

In this paper, we study energy efficiency optimization for
individual D2D user pairs from a fairness perspective in a
SWIPT-based D2D network using DRL. For this purpose,
we build a model for joint optimization of energy efficiency
and proportional fair scheduling in the context of a SWIPT-
based D2D network. We propose DRL for the joint opti-
mization model to determine an attractive trade-off between
harvested energy and proportional fairness of D2D users. The
main contributions of this paper are summarized as follows.

1) We build a joint optimization model of energy harvest-
ing and proportional fair scheduling in D2D commu-
nication subject to the transmit power control of D2D
users and subchannel allocation, and design a DRL to
solve the joint optimization model.

2) Because the output space of the DNN in the proposed
DRL is composed of the transmit power and subchan-
nel allocation of D2D users, the computational time
for convergence grows exponentially as the numbers
of D2D users increases, quantization levels of transmit
power becomes high, and the number of system sub-
channel increases. To obtain faster convergence of the
proposed DRL algorithm, we apply the interior point
method to the outputs of the proposed DRL method,
which transforms the original objective function with
inequality constraints into an equivalent optimization
problem with equality constraints using the barrier
function.

3) We compare the results of the proposed DRL algo-
rithm with optimization-based iterative methods, such
as exhaustive search (ES) and gradient search (GS)with
the barrier function. The results reveal that the proposed
DRL algorithm achieves a nearly-global-optimal solu-
tion as compared to other iteration-based optimization
methods while reducing the time-complexity.

The remainder of this paper is organized as follows.
Section II describes our system model and states the opti-
mization model. In Section III, we explain the proposed
DRL model and interior point method. Section IV evaluates
the performance of the proposed algorithm with that of the
comparison algorithms. Finally, Section V presents the con-
clusions of this article.

II. SYSTEM MODEL AND PROBLEM FORMULATION
We consider a SWIPT-based D2D network consisting of
K ∈ {1, 2, . . . ,K } D2D pairs randomly deployed under a
single base station with the coverage of R. Each D2D receiver
(D2D-Rx) is equipped with an energy harvesting sensor that
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FIGURE 1. System model.

can divide the received power into two, such as information
decoding and energy harvesting, as illustrated in Fig.1. There
are N subchannels for scheduling D2D users, and ptk and ρ

t
k

are the transmission power of the k th D2D transmitter (D2D-
Tx) at time t and the power splitting ratio of the D2D pair
k ∈ K at time t , respectively. The channel between D2D-
Tx k and D2D-Rx k at time t is denoted by htk,k , and the

channel gain is given by
∣∣∣htk,k ∣∣∣2, which is an independent

and identically distributed Rician random variable with mean
µk,k . The interference between jth D2D-Tx and k th D2D-Rx
at time t is given by

I tj,k = ρ
t
k

K∑
j=1,j 6=k

ptj
∣∣∣htj,k ∣∣∣2 . (1)

Therefore, the SINR received at the k th D2D-Rx from k th

D2D-Tx at time t is expressed by

Γ t
k,k =

ρtkp
t
k

∣∣∣htk,k ∣∣∣2
σ 2 + ρtkσ

2
A + I

t
j,k

, (2)

where the noise is σ 2
+ρtkσ

2
A+I

t
j,k , σ

2
A and σ 2 are the antenna

noise and base-band noise at the wireless-power receiver,
respectively. Then, the received data rate of the k th D2D-Rx
at time t is given by

Rtk =
N∑
n=1

stn,k log2
(
1+ Γ t

k,k
)
, (3)

where stn,k is an indicator of the subchannel allocation at time
t . If k th D2D-Rx is allocated to subchannel n at time t , stn,k =
1, otherwise stn,k = 0.

The previously aggregated received data rate of the k th

D2D-Rx during time window T is given by

ARtck =

{∑tc−1
t=1 Rtk , tc < T∑tc−1
t=tc−T R

t
k , tc ≥ T

, (4)

where tc is the current time slot. The average of the previously
received data rate of the k th D2D-Rx during time window T
becomes

R
tc
k =

{
1
tc

∑tc−1
t=1 Rtk , tc < T

1
T

∑tc−1
t=tc−T R

t
k , tc ≥ T

. (5)

Then, the sum of the previous logarithmic data rate of the
receivers during time window T is given by

RtcPF =
K∑
k=1

log2 AR
tc
k

=

{∑K
k=1 log2

∑tc−1
t=0 Rtk , tc < T∑K

k=1 log2
∑tc−1

t=tc−T Rtk , tc ≥ T
. (6)

We use the sum of logarithmic form to ensure the fairness
of the user’s data rate because the marginal gain is larger
in a low-rate region than that in a high-rate region in the
logarithmic function.

We define the total energy dissipation which describes
the energy usage including the consumed energy for data
communication and harvested energy from ambient energy
sources as defined in [20] and [21]. Therefore, the total energy
dissipation in EH-based wireless networks (EHWNs) during
time window T is given by

EDtc =

{∑tc−1
t=1

∑K
k=1

[
Pc + ptk

]
− E, tc < T∑tc−1

t=tc−T
∑K

k=1
[
Pc + ptk

]
− E, tc ≥ T

, (7)

where Pc is the power circuit consumption, and E is the
total harvested energy from all D2D-Rxs during time window
T , which is given by

E =
K∑
k=1

tc−1∑
t=tc−T

K∑
i=1

(1− ρtk )ηp
t
i

∣∣hti,k ∣∣2 (8)

where η denotes the conversion rate of energy harvesting.
From the definitions of RtcPF and EDtc , we define propor-

tional fair scheduling with energy efficiency in SWIPT D2D
pairs as

PS tc =
RtcPF
EDtc

. (9)

In this work, we aim to determine a transmit power Ep,
power splitting ratio Eρ, and subchannel allocation indicator
Es that maximize the proportional fair energy efficiency at
the current time. Therefore, the optimization problem can be
formulated as

max
Ep,s, Eρ

PS tc (Ep, s, Eρ)

s.t. C1 : 0 ≤ ptk ≤ pmax,

for 1 ≤ k ≤ K , and tc − T ≤ t ≤ tc − 1

C2 : stn,k ∈ {0, 1}, for 1 ≤ n ≤ N

C3 : R
tc
k ≥ Rmin

C4 : 0 ≤ ρtk ≤ 1. (10)
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Here, constraint C1 denotes the boundary conditions for the
transmit power, which states that the transmit power cannot
be less than 0 and limited by the maximum transmit power
pmax. The constraint C2 is a binary criterion for subchannel
allocation, and C3 denotes the minimum received rate for
each D2D pair to guarantee the quality of services (QoS). The
constraint C4 is a boundary of the power splitting ratio.

III. PROPOSED DEEP REINFORCEMENT LEARNING WITH
INTERIOR POINT METHOD
A. PROPOSED DEEP REINFORCEMENT LEARNING
A Markov decision process (MDP) is a mathematical frame-
work to describe an environment in reinforcement learn-
ing. The MDP is defined as a tuple 〈S,A,R,P〉, where
S denotes a finite set of states, A represents a finite set
of actions, R indicates the reward function, and P is the
transition probability from current state S [tc] ∈ S at
time tc to the next state S [tc + 1] ∈ S at time tc +
1. Pπ (S [tc + 1] | S [tc] ,A [tc]) is the transition probability
from current state S [tc] to the next state S [tc + 1] given
the action A [tc] ∈ A, and π (A [tc] | S [tc]) is a mapping
from the current state S [tc]to the action A [tc], called the
policy. Therefore, Pπ (S [tc + 1] | S [tc]) is defined as the
transition probability Pπ (S [tc + 1] | S [tc] ,A [tc]) weighted
by the policy π (A [tc] | S [tc]). The goal of theMDP is to find
the policy π∗ that maximizes the reward function R.

In our study, we propose a DRL-based power control algo-
rithm where the agent of DRL is installed at the base station
(BS). The network design for the proposed DRL algorithm
is as follows. The agent in the BS manages the current
channel allocation stc , transmit power −→p tc of the D2D trans-
mitters, and power splitting ratio −→ρ tc of the D2D receivers.
We assume that all D2D pairs share all of the information
they need with the BS, including channel gain and data rate
of eachD2D pair.With the information received from all D2D
pairs, the agent in the BS calculates the reward and chooses
an action for the next transmit power level −→p tc , next power
splitting level−→ρ tc , and next channel allocation stc for all D2D
devices, based on ε-greedy policy π . After that, the agent
shares the action with all D2D pairs, and stores the state,
action, reward, and next state in the replay memory. Then,
the agent separates the overall data of the replay memory into
multiple mini-batch samples. Mini-batch samples are used as
the input data of DNN to train the DNN in a way to minimize
the loss function.

In training phase, the output of DNN becomes the initial
value of interior point method. Based on the (sub-)optimal
solution set

(
psubopt , ρsubopt , ssubopt

)
obtained from interior

point method, the next action is chosen using ε-greedy policy.
It is noted that, whenever the DNN is trained by the sam-
ples, the (sub-)optimal solution obtained from interior point
method goes back to DNN, and acts as the target value in the
loss function of DNN. This procedure is provided to acceler-
ate the convergence of DRL, and characterizes the proposed
algorithm in this paper. It is noticed that this procedure is

applied only for training phase, but not for testing phase;
that is, the output of DNN is directly delivered to the action
space without using interior point method for testing. Fig.2
illustrates the architecture of the proposed DRL algorithm.

DNN in the proposed DRL algorithm is trained using the
network training function in MATLAB Toolbox, ’trainscg’,
which updates weight and bias values based on the scaled
conjugate gradient method. The detailed definitions of the
state space, the action space, and the reward function in the
proposed DRL algorithm are as follows.
• State space: The state space of the proposed DRL is
define by

S [tc] =
{
Htc ,R

tc
}
, (11)

whereHtc =

(∣∣∣htcj,k ∣∣∣2 , ∣∣∣htc−1j,k

∣∣∣2 , . . . , ∣∣∣htc−Tj,k

∣∣∣2) is the set

of channel gain from previous time window T include
current time slot, and R

tc
=

(
R
tc
1 ,R

tc
2 , . . . ,R

tc
K

)
is the

set of average of the previously received data rate during
previous time window T .

• Action space: An agent corresponds to each D2D pair,
which interacts with others to adjust the transmission
power, power splitting ratio, and subchannel allocation
indicator. Therefore, the action of each D2D pair at
current time slot tc is defined as

A [tc] =
{
−→p tc ,−→ρ tc , stc

}
, (12)

where −→p tc , −→ρ tc , and stc are transmit power, power
splitting ratio, and channel allocation indicator for all
D2D pairs at current time slot tc, respectively. Note that
−→p tc ∈

{
0, pmax

L ,
2pmax
L , . . . , pmax

}
for (L + 1) quanti-

zation levels, −→ρ tc ∈

{
0, 1

M ,
2
M , . . . , 1

}
for (M + 1)

quantization levels, and stc ∈ {0, 1}.
• Reward: In our problem, we aim to maximize the objec-
tive function which maximize the proportional fair with
energy efficiency. Therefore, we define the reward for
the proposed DRL model at the current time slot tc as
follows:

R [tc] = PStc (Ep, s, Eρ) =
RPF (Ep, s, Eρ)
ED (Ep, s, Eρ)

, (13)

when constraint C3 is satisfied; otherwise, the reward is
negative.

In RL, Q-value identifies an optimal action-selection pol-
icy for any given finite Markov decision process, with given
infinite exploration time and a partly-random policy. In our
work, the Q-value is updated by

Qtc (S [tc] ,A [tc])

= (1− α)Qtc (S [tc] ,A [tc])

+α

[
R [tc]+ γ max

a∈Ak
Qtc+1 (S [tc+1] ,A)

]
, (14)

where (α > 0) and (0 ≤ γ ≤ 1) are the learning rate and the
discount factor, respectively.
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FIGURE 2. Proposed DRL model.

It is noted that we employ DRL rather than RL in our work,
because the agent must consider the large input (state) space
matrix at each time slot t , which includes the channel gain,
received data rate, transmit power level, subchannel alloca-
tion indicator, and power splitting ratio. In addition, it is also
noted that the output space of DNN (used for action space)
is also very large because it should include huge number of
actions which increases in proportional to the number of D2D
pairs K , the number of subchannel N , quantization levels of
transmit power L, and power splitting ratio M , and it may
result in high convergence time.

To reduce the convergence time of the proposed DRL algo-
rithm, we employ the interior point method in our work. The
interior point method in the proposed DRL algorithm obtains
(local-)optimal solutions for the problem of maximizing our
objective function (9) using the output of DNN as input
parameters. As explained earlier, the solution of the interior
point method goes back to the DNN as the target value of the
loss function of DNN. The details of the interior point method
in this work is described in the following subsection.

B. INTERIOR POINT METHOD
The interior point method is an optimization method that
can determine the local or global optimum of nonlinear
objective functions and constraints. The original optimization
problem with nonlinear constraints can be transformed into
equality constraints using interior point method by adding an
inequality with a slack variable. In this work, we build the
optimization model using the reward function, which is given
by

max
Ep,s, Eρ

PS tc (Ep, s, Eρ) = min
Ep,s, Eρ

[
−PS tc (Ep, s, Eρ)

]
s.t. si ≤ 0, i = 1, 2, 3

C1′ : pk − pmax − s1 = 0

C2′ : sn,k − smax − s2 = 0

C3′ : ρk − ρmax − s3 = 0

C4′ : R
tc
k ≥ Rmin, (15)

where si is a slack variable. The barrier function replaces
the inequality constraints by adding a penalizing term in the
objective function. With the barrier function, the inequality
constrained optimization problem becomes an equality con-
strained problem, and the objective function can be optimized
more easily, which is given by,

min
Ep,s, Eρ

[
−PS tc (Ep, s, Eρ)+9(Ep, s, Eρ)

]
(16)

under the constraints C1′ − C4′. The log barrier function is
given by

9(Ep, s, Eρ) = −µ
3∑
i=1

log si,

s1 =
K∑
k=1

(log (pmax − pk )+ log pk)

s2 =
K∑
k=1

N∑
n=1

(log ( smax − sk ) + log sk )

s3 =
K∑
k=1

(log (ρmax − ρk)+ log ρk) (17)

where µ is a parameter of the log barrier function, and si
represents the barriers for the inequality constraints of the
original problem C1, C2, and C3, respectively. The solu-
tion is only searched in a feasible interior space. Then the
Newton-Raphsonmethod is employed to solve the KKT solu-

VOLUME 10, 2022 64499



E.-J. Han et al.: Balancing Fairness and Energy Efficiency in SWIPT-Based D2D Networks: DRL Based Approach

TABLE 1. Simulation environments.

tion for the problem with equality constraints, given by

∇(−PS tc (Ep, s, Eρ)+
3∑
j=1

λj∇cj − zi) = 0, (18)

for the stationarity condition, where cj denotes the equality
constraints, and λj represents an unknown variable for the
Lagrange multiplier method. The search directions d sk , d

λ
k ,

and d zk are obtained using the Newton-Raphson method in the
interior point method, which is given by∇2

ss
(
−PS tc + cTk λk − zk

)
∇ck −I

∇cTk 0 0
Zk 0 Sk

d skdλk
d zk


= −

∇f +∇ck − zkck
SkZke− µe

 (19)

where zi = µ/si, e = (1, . . . , 1)T , S = diag(s), and Z =
diag(z). The iterative search for the interior point method is
performed until it converges with tolerance while satisfying
the KKT conditions.

IV. PERFORMANCE EVALUATION
For simulation setup, we assume 3 subchannels, and 6 D2D
pairs to verify the effect of channel scheduling. The energy
conversion efficiency ηk is set to 0.5 [22]. The base-band
noise power spectrum and additional white Gaussian noise
power spectrum are set to σ 2

= −70 dBm, and σ 2
A =

−100 dBm, respectively [23]. The channel gain between
nodes i and j is defined as

∣∣hi,j∣∣2 = gi,j/dmi,j, where d
m
i,j is the

physical distance between two nodes. The averages of direct
link and interference link following the normal distribution
are 10 m and 20 m, respectively. The path-loss exponent m is
equal to 3.6 [24]. gi,j is the Rician small scale fading gain with
a 5 dB K -factor. The constant energy consumption of the cir-
cuit is Pc = 20 dBm. The detailed simulation environments
are summarized in Table 1. In addition, we assume the D2D
communication with no delay and pairing failure to focus on
the balancing performance between energy efficiency and fair
scheduling in SWIPT-based D2D communications.

To evaluate the performance of the proposed DRL algo-
rithm, we compare the proposed scheme with two algorithms
as follows [24].

FIGURE 3. Proportional fair with energy efficiency for different power
splitting ratio.

1) Exhaustive search (ES) algorithm: The kinds of opti-
mization method used to find the global optimal
solution, which enumerates and compares all possible
candidates for the optimization problem. In our work,
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FIGURE 4. System data rate and harvested energy.

FIGURE 5. Proportional fair with energy efficiency with changeable
power splitting ratio.

the control parameters (Ep, s, Eρ) are quantized, and all
possible combinations of the quantized control param-
eters are examined to determine the maximum value of
the objective function while satisfying the constraints.

TABLE 2. Computational complexity comparison.

FIGURE 6. Convergence of Proposed DRL when pmax = 11 dBm.

2) Gradient search (GS) algorithm: The method for deter-
mining the local optimum that searches for the solution
according to the direction of derivative.

Fig. 3. presents the convergence results of the propor-
tional fairness with energy efficiency for the ES, DNN, and
GS vs. pmax with K = 6 and N = 3 when the power
splitting ratio ρ is 0.2, 0.5, and 0.8, respectively. We per-
form the simulation under simple conditions with N =

3 because ES has extremely high computational complex-
ity of O((LM )NK ). ES can get the global optimal solution
with extremely high time complexity of O((LM )NK ), which
exponentially increases as N or K increase. Therefore, even
though the ES algorithm can find a global optimal solution,
it has been used for comparison purpose only, as shown
in [25], [26]. The results reveal that the objective function
value increases as pmax increases, which explains that the
degree of deterioration in the sum of the logarithmic data
is slightly smaller than or almost equal to the degree of
improvement in the energy efficiency as pmax increases. The
results indicate that the objective function value of GS is
significantly lower than that of ES. However, the difference
between the proposed DRL and ES is less than 5 % even if
pmax increases. It is noticed that the proposed DRL algorithm
achieves near-global optimal solutions while reducing the
time complexity compared to ES as shown in Table 2, where
H is the number of hidden layers and ε is set to 10−5.
Fig.4 shows system data rate and harvested energy when

power splitting ratio ρ is fixed as 0.2, 0.5, and 0.8. Although
the values of proportional fairness with energy efficiency
did not change significantly when the power splitting ratio
changes, the system data rate decreases and the harvested
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energy increases as the power splitting ratio increases. It also
shows that the system data rate and harvested energy converge
as pmax increases.

On the other hand, Fig.5 is obtained when the ρ can vary
every time slot according to the policy of DRL. This figure
indicates that the proportional fairness with energy efficiency
is slightly larger than but almost same to the result of using the
fixed splitting ratio. Overall, we can verify that the objective
function value increases as pmax increases.
Fig.6 shows the convergence of the proposed DRL algo-

rithm when pmax = 11 dBm, ρ = 0.5, N = 3, and K = 6.

V. CONCLUSION
In this paper, we suggested the optimization model to bal-
ance the system performance between fair scheduling and
energy efficiency in SWIPT-based D2D networks. To solve
this problem, we proposed the DRLmodel, which determines
the best transmit power, power splitting ratio, and subchan-
nel allocation indicator to maximize the objective function,
defined as the sum of the previous logarithmic data rate over
the total energy dissipation in the systemmodel. To reduce the
convergence time of the proposed model, we converted the
original optimization problemwith inequality constraints into
an equality constraint using a barrier function. And we used
the interior point method for the output space of the DNN
in the proposed DRL model. Simulation results said that the
system logarithmic data rate and harvested energy increase
at nearly the same rate as the maximum power increases,
whereas the objective function index remains almost fixed.
Furthermore, it was verified that varying the power splitting
ratio has little effect on the system performance, which jus-
tifies the use of a constant power splitting ratio in SWIPT-
based D2D networks. In addition, we can see that, throughout
the simulation runs, the performance of the proposed DRL
model outperforms GS and achieves the near-global-optimal
solution with lower time complexity, which shows the benefit
of using DRL.

Furthermore, we plan to apply another kinds of opti-
mization methods such as deep deterministic policy gradi-
ent (DDPG) method, twin delayed DDPG (TD3) method, and
soft actor critic (SAC)method, to joint optimization of energy
efficiency and scheduling in SWIPT-based D2D network.
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