
Design and implementation of dynamic I/O control scheme for large
scale distributed file systems

Sunggon Kim1
• Alex Sim2

• Kesheng Wu2 • Suren Byna2 • Yongseok Son3

Received: 13 September 2021 / Revised: 5 April 2022 / Accepted: 18 May 2022 / Published online: 30 July 2022
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
In this work, we have analyzed the input/output (I/O) activities of Cori, which is a high-performance computing system at

the National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory. Our analysis results

indicate that most users do not adjust storage configurations but rather use the default settings. In addition, owing to the

interference from many applications running simultaneously, the performance varies based on the system status. To

configure file systems autonomously in complex environments, we developed DCA-IO, a dynamic distributed file system

configuration adjustment algorithm that utilizes the system log information to adjust storage configurations automatically.

Our scheme aims to improve the application performance and avoid interference from other applications without user

intervention. Moreover, DCA-IO uses the existing system logs and does not require code modifications, an additional

library, or user intervention. To demonstrate the effectiveness of DCA-IO, we performed experiments using I/O kernels of

real applications in both an isolated small-sized Lustre environment and Cori. Our experimental results shows that our

scheme can improve the performance of HPC applications by up to 263% with the default Lustre configuration.

Keywords High-performance computing � Distributed dynamic resource management � Autonomous control �
Parallel and distributed file system � Cloud system

1 Introduction

High-performance computing (HPC) is being widely

adopted owing to the increasing demand for large-scale

computation and big data [22, 28, 36]. HPC applications

have many different characteristics compared to traditional

applications because they utilize a large amount of com-

putational power. Moreover, HPC applications often pro-

duce a significantly greater volume of data than traditional

applications do [6, 18, 29]. Therefore, many HPC appli-

cations perform checkpointing, which stores intermediate

data to protect them from unexpected power outages or

scheduling. Because applications wait for the completion

of I/O before performing further computations, the per-

formance of the application is strongly related to the I/O

performance. Thus, it is becoming increasingly important

to enhance the I/O performance to improve the overall

utilization of HPC systems.

Because the HPC environment storage architecture is

inherently different from traditional architecture, careful

considerations must be made to efficiently exploit the I/O

performance. For example, instead of local file systems,

such as EXT4 [25] and XFS [35], parallel and distributed

file systems, such as Lustre [30] and Ceph [38], are widely

used in many HPC environments to achieve high perfor-

mance, reliability, and scalability. Many systems provide

& Yongseok Son

sysganda@cau.ac.kr

Sunggon Kim

sunggonkim@seoultech.ac.kr

Alex Sim

asim@lbl.gov

Kesheng Wu

kwu@lbl.gov

Suren Byna

sbyna@lbl.gov

1 Seoul National University of Science and Technology, Seoul,

South Korea

2 Lawrence Berkeley National Laboratory, Berkeley, USA

3 Chung-Ang University, Seoul, South Korea

123

Cluster Computing (2022) 25:4423–4438
https://doi.org/10.1007/s10586-022-03640-0(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-4512-0121
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-022-03640-0&amp;domain=pdf
https://doi.org/10.1007/s10586-022-03640-0


various configuration options to allow users to specify the

number of nodes to place data (stripe count) and the size of

the data chunk to be placed in each node (stripe size) to

parallelly utilize multiple nodes of distributed file systems.

To fully exploit the I/O performance of parallel and dis-

tributed file systems, it is crucial to analyze the I/O

behavior of the application and adjust the configurations

accordingly.

In addition, the parallel and distributed file system is

shared by many applications, and its performance is

affected by interference from other applications. As many

users simultaneously access the file system, it is crucial to

provide stable performance when multiple applications

simultaneously perform I/O operations. Thus, many par-

allel and distributed file systems allow users to control

which storage node is to be utilized (starting offset). To

fully exploit the file system, it is important to consider the

storage nodes accessed by other applications and adjust the

configurations to avoid I/O contention on the nodes.

In previous studies, researchers have attempted to

improve the I/O performance of applications by under-

standing their I/O behaviors and adjusting the distributed

file system configurations. Yu et al. [40] characterized the

I/O patterns from the applications and proposed optimal

Lustre configurations depending on the characteristics

determined from the experiment results. You et al. [39]

proposed an auto-tuning framework that models the

application and runs the model in a separate system with

multiple configurations to determine the optimal configu-

ration. Lofstead et al. [19] measured the extent of inter-

ference caused by multiple simultaneous applications and

designed an adaptive algorithm that balances the I/O

workloads generated from HPC applications. Dorier

et al. [11] categorized strategies to avoid interference and

developed a framework that alleviates I/O interference by

dynamically selecting appropriate policies. Our study is in

line with these studies in finding the optimal configuration

and minimizing interference by adjusting the

configurations.

In this article, we first present the result of analyzing the

I/O activities in Cori, which is an HPC environment, at the

National Energy Research Scientific Computing Center

(NERSC) at Lawrence Berkeley National Laboratory.

Although many previous investigations [6, 15] have

reported that the use of the optimal configuration can sig-

nificantly improve the application performance, the result

of our analysis verifies that a vast majority of users use the

default configuration. In our previous work [16], we

focused on the analysis of file system configurations and

their effects on the application performance. This article

further investigates the performance variation when an

identical configuration is used. Based on the analysis, in a

distributed system, limited storage resource is shared by

multiple applications. Thus, it is important to consider the

effects of interference between applications, and careful

considerations are required to fully exploit the file system.

To improve the I/O performance of applications and

overall storage utilization, we developed DCA-IO, an

algorithm that dynamically configures the Lustre file sys-

tem. When a new application is submitted and no infor-

mation on I/O behavior on the submitted application is

available, DCA-IO uses statistical analyses of other

applications that previously ran on the HPC system to

minimize the modeling and training overhead. By analyz-

ing the history of applications in the same environment,

DCA-IO can adjust the configuration without knowing the

specific I/O behavior of the submitted application. After the

application is executed and the information is available,

DCA-IO utilizes the information from the previous exe-

cutions and optimizes the configurations using a set of

rules. Finally, DCA-IO continues to improve the dis-

tributed file system configurations dynamically as the

application recurs multiple times. In addition to the appli-

cation-specific configuration schemes from the state-of-art

scheme [27], DCA-IO adjusts the configuration to mini-

mize interference between multiple applications. This can

not only reduce interference but also improve the overall

I/O performance and efficiency in the large distributed

system where multiple applications with diverse I/O char-

acteristics are executed. Our experimental results with real

HPC applications demonstrate that the use of the proposed

algorithm can lead to improvements in the I/O performance

of the applications by up to 75% in an isolated environment

and 50% in Cori, and in the case of simultaneous execu-

tion, the performance can be improved by up to 263%

compared with the default configuration.

The remainder of this article is organized as follows:

Sect. 2 describes the background and motivation of the

study, and Sect. 3 discusses the analysis results. Section 4

presents the design and implementation of DCA-IO, and

Sect. 5 shows the experimental results. Section 6 discusses

related works, and Sect. 7 concludes the article.

Thank you for your valuable comment. We agree that

the application name can be inconclusive to determine the

I/O behavior of an application. However, inspecting the

input data or the code can induce a large overhead. Since

our goal is to design a lightweight I/O control scheme, we

used the application name. To accommodate the comment,

we added an explanation of why we used the application

name in the design section.

4424 Cluster Computing (2022) 25:4423–4438

123



2 Background

2.1 Lustre file system

Lustre file system [30] is a parallel and distributed file

system used in many HPC environments including Cori.

Figure 1 illustrates the overall architecture of Lustre file

system, which consists of two main servers.

• Metadata server (MDS) stores and provides the meta-

data of the file system such as the file names,

permission information, and directories. Each MDS

consists of one or more metadata targets (MDTs) which

are disks used to store actual data.

• Object storage server (OSS) stores file data on one or

more object storage targets (OSTs). The maximum

throughput and maximum capacity of OSS are calcu-

ated using the sum of maximum throughput and

maximum capacity of each OST, respectively.

When a client creates and writes a new file, the file can be

distributed over multiple OSSs with differently sized file

chunks, which can be configured using stripeCount and

stripeSize parameters. These configurations are only

affecting file layout of the specific directory and does not

affect other directory utilized by other applications. By

adjusting stripeCount, the client can improve the paral-

lelism because multiple OSSs can be used in parallel. By

adjusting stripeSize, the data from a particular process can

be stored in a contiguous space. The performance of

applications can be improved by several orders of magni-

tude with ideal stripeCount and stripeSize [39].

The files created by multiple clients are distributed over

OSSs. OSSs for storing data can be selected by configuring

startingOffset. By adjusting startingOffset, Lustre file sys-

tem writes the data consecutively from the starting OSS. In

the HPC environment, configuring startingOffset can mit-

igate the interference caused by multiple applications

because assigning different sets of OSSs can isolate the

performance of the applications.

By default, Lustre file system selects OSSs and allocates

data objects to OSSs using two algorithms [20].

• Round-robin allocator evenly distributes the data

among OSSs when they have similar amounts of free

space.

• Weighted allocator changes the OSS order by checking

the available capacities of OSSs.

The allocation methods are selected alternatively to bal-

ance the capacities of OSSs. This is done to load balance

multiple OSSs in the file system. However, these algo-

rithms do not necessarily deliver the best performance in

all cases because the applications have different configu-

rations and the algorithms are optimized for capacity

management. To improve the performance of the complex

HPC file system, it is important to analyze the system and

understand the characteristics of the applications.

2.2 Analyzing and optimizing I/O performance
in HPC environment

To analyze the application behavior, many previous studies

have proposed system wide tools for understanding appli-

cation behavior in the HPC environment [10, 31].

Regarding I/O, Darshan I/O characterization tool, devel-

oped by Argonne National Laboratory is widely used in

many HPC environments [9]. Darshan is widely used in

complex HPC systems as it is scalable to thousands of

cores. In addition, it is designed with full time deployment

in mind as it is light weight. Thus, Cori collects darshan

logs for all the applications by default which allows system

administrators to detect anomaly in I/O performance after

critical events such as software and hardware upgrade.

When the application is compiled, Darshan inserts codes

that intercept MPI_Init() to initialize Darshan data struc-

tures and MPI_Finalize() to terminate the Darshan process.

When the application runs, Darshan captures I/O related

function calls from the HPC applications on a per-file and

per-process basis in a light-weight manner. After the

application terminates, it aggregates the collected infor-

mation and writes it in a file format. Because Darshan has

negligible overhead and captures the complete record of

the I/O function calls, it has been used in many previous

studies to understand I/O behavior and create an applica-

tion-specific model [9, 32]. For example, Patel et al [29]

used darshan logs of large scale system and analyzed

access pattern in terms of file usage. While there are other

system resources such as network and memory usage, Cori

currently does not support them as default as they are

complex to monitor and induce large overhead. Thus, in

this paper, we focus on the I/O performance in the system.

Fig. 1 Architecture of Lustre file system

Cluster Computing (2022) 25:4423–4438 4425

123



3 Analysis

In this section, we explain the methodology used to collect

information from the existing Darshan logs of Cori and

present the analysis results.

3.1 Collecting Darshan logs

To determine the I/O activities of the HPC applications and

Lustre file system configuration used by the user, we have

analyzed Darshan logs from Cori over two months (Octo-

ber to November 2017). In Cori, Darshan is configured as

the default I/O characterization tool, and Darshan logs are

stored automatically after each application execution [34].

Because the logs are stored in a raw file format, logs must

undergo a few transformations, as illustrated in Fig. 2.

Darshan logs first must be transformed into a human-

readable text format using the Darshan-parser utility [33].

After the transformation, the text file contains information,

such as the program name, arguments, number of pro-

cesses, and I/O activities for each I/O module (POSIX,

MPIIO, and STDIO). Because this information is in a

particular file format, it can be difficult to find the overall

tendency of the applications.

To determine the overall I/O activities of the applica-

tions, we implemented a parser that extracts key informa-

tion from the parsed Darshan text files and builds an

integrated database. For the database engine, we selected

SQLite [14] because it is lightweight, easy to use, and

supports portability. By creating an integrated database,

users can perform queries on various pieces of key infor-

mation to determine the overall tendency of applications in

the context of the entire HPC environment rather than for

each application.

Table 1 lists the information extracted from Darshan log

and inserted into the integrated database. While other

information can be directly retrieved from the Darshan log,

StripeCount (number of OSTs used by the application),

IOTimeTotal (total I/O time), and IOThroughputTotal

(aggregated throughput of I/O modules) must be computed.

We used the following methods to compute that

information.

• Stripe Count When Darshan collects I/O information, it

checks whether the application uses Lustre file system

and is compiled with the Lustre module enabled [34]. If

the Lustre module is enabled, Darshan records LUS-

TRE_OST_ID, which is the OST_ID used in that

specific I/O function call. While extracting the infor-

mation, we track the number of OSTs involved in I/O

during the application run and record the information in

the integrated database.

• IO Time Total and IOT hroughput Total Because

Darshan collects the I/O duration based on the function

call, many previous studies have used different

approaches when calculating the total I/O time of an

application. Wang et al. [37] calculated the I/O time by

measuring the critical section because when an appli-

cation uses the MPIIO module, many concurrent I/O

processes can perform the I/O functions in parallel;

thus, aggregating the duration of all I/O functions can

be inaccurate. In this study, we use the approach used

by Luu et al. [24], which measures the I/O time per

process and uses the longest I/O time of all the

Fig. 2 Overview of the creation of an integrated database from

Darshan logs

Table 1 Information extracted from Darshan logs

Name Description

ProgName Name of the program

UserName Name of the user

RunTime Duration of the application

NumProcs Number of processes

StripeCount Number of OSTs used by the application

StripeSize Amount of data written to an OSS per request

NumFile Number of files used by the application

SeqIOPct Percentage of sequential read/write requests

IOLess1K Number of read/write requests less than 1 K

IO1Kto100K Number of read/write requests less than 100 K

IOReadRequest Number of read requests

IOWriteRequest Number of write requests

IOBytesTotal Total bytes read/written by the application

IOTimeTotal Total read/write time used by the application

IOThroughputTotal Total read/write throughput of the application

4426 Cluster Computing (2022) 25:4423–4438

123



processes. Using IOTimeTotal, we calculated

I/OThroughputTotal, which is IOBytesTotal divided

by IOTimeTotal.

3.2 Analysis of Darshan logs

With the integrated database described in the previous

section, we analyzed Lustre file system configuration used

by users in the HPC environment. Tables 2 and 3 present

the analysis results for stripe count and stripe size,

respectively. As presented in both tables, we discovered

that most users do not adjust Lustre file system configu-

ration but instead use the default configuration. Table 2

indicates that 99.317% of executions use the default stripe

count, which is 1 OST, while 256 OSTs are available in

Cori. Similar to stripe count, Table 3 indicates that

99.948% of executions use the default stripe size, which is

1,048,576 (1 Megabyte). This analysis reveals that even in

the HPC environment where users can exploit significantly

more OSTs than in traditional computing environments,

users do not adjust Lustre file system configuration. Thus,

dynamic configuration control is necessary to fully exploit

the I/O capabilities of the HPC environment.

In addition, we also analyzed the number of unique

applications among the 1,284,643 runs by querying the

database for distinct application names. The results indi-

cate that only 1163 unique applications were executed

during a two-month period. Because 1,284,643 executions

occurred during that period, it can be inferred that this

small number of applications were executed multiple

times. Thus, using the information from previous execu-

tions, the performance of each additional execution can

improve the performance because a high possibility that the

application will run in the near future.

3.3 Analysis of I/O interference on multiple
applications

3.3.1 Cori

To analyze the I/O behaviors of the HPC environment

when multiple applications are running, we analyzed the

data from CORI. As a target application, we analyzed the

IOR [7] benchmark, which is a widely used HPC I/O

benchmark. In the system, the benchmark runs every day at

the same time to monitor any problems and analyze the file

system.

Figure 3a shows the performance of the IOR benchmark

when multiple applications run simultaneously. The y-axis

represents the write throughput, whereas the x-axis repre-

sents the average write throughput of OSSs when the

application runs. To control the effect of different config-

urations, the figure only depicts the executions with an

identical username, IOBytesTotal, SeqIOPct, and others.

This suggests that the application remains identical and

only the file system status changes. As shown in the figure,

the write throughput is different because the status of the

file system is different in each execution. The reason is that

other applications also perform I/O operations on the file

system.

To further analyze the effects of other applications,

Fig. 3b and c present the heatmap of OSSs when the I/O

performance of IOR is high and low, respectively. Each

horizontal line denotes an OSS. If the line is yellow, the

OSS is heavily utilized. As indicated in the figures, the

OSS activity is dominated by the I/O operations from the

IOR. However, when the performance is relatively low

(Fig. 3c), some OSSs are used before the IOR is running.

This is interference from a prior application, which results

in the degradation of the overall application performance.

Table 2 Result of analyzing stripe count

Stripe count Number of executions Percentage

1 1,275,869 99.317

2 39 0.003

3–4 62 0.005

5–8 269 0.021

9–16 6,850 0.533

17–32 443 0.034

33–64 374 0.029

64–128 450 0.035

129–256 287 0.022

Total 1,284,643 100

Table 3 Result of analyzing stripe size

Stripe size (byte) Number of executions Percentage

1,048,576 1,283,980 99.948

4,194,304 1 0.000

8,388,608 480 0.037

16,777,216 162 0.013

33,554,432 6 0.000

50,331,648 4 0.000

67,108,864 9 0.001

100,663,296 1 0.000

Total 1,284,643 100

Cluster Computing (2022) 25:4423–4438 4427

123



3.3.2 Local environment

To analyze the effect of interference in a more controlled

environment, we conducted another evaluation in a local

environment. The environment had four OSSs, and each

was equipped with two Samsung 850 pro solid-state drives

(SSDs). For the application, we used the FIO [3] bench-

mark, which is a widely used I/O benchmark for a local

environment.

Figure 4 shows the performance of the FIO benchmark

when two instances of FIO run simultaneously. The fig-

ure presents the performance results of different executions

to demonstrate performance variations. Both FIO instances

are configured with stripe count of 2, utilizing two OSSs.

As depicted in the figure, the performance of the applica-

tion varies significantly in different runs. In an optimal

situation, each instance takes a different pair of OSSs, and

no overlapping occurs. For example, the first instance of

FIO utilizes OSSs 1 and 2, whereas the second instance of

FIO utilizes OSSs 3 and 4. However, when two instances

share one or two OSSs, the performance is lower than 50%

of that achieved in the optimal situation because interfer-

ence occurs when multiple applications issue I/O opera-

tions to the same OSSs. Thus, the analysis results indicate

that the performance degradation is severe when multiple

applications are executed simultaneously without consid-

ering interference.

To identify the effects of interference when it is

unavoidable, we conducted another analysis with the FIO

benchmark, as presented in Fig. 5. In this case, the FIO

instance is configured with a stripe count of 4, and another

FIO instance is configured with stripe count of 1, 2, and 4.

Thus, all four OSSs are used continuously by the first FIO

instance, and the second FIO instance uses one, two, and

four OSSs. As shown in the figure, the performance is

higher when interference occurs at all four OSSs, and the

performance is lower when the number of overlapped OSSs

is lower. Because FIO is an I/O intensive application, it is

better to distribute the I/O requests across multiple OSSs

rather than force a few OSSs to handle an overwhelming

number of requests. However, the performance of the

application is significantly lower than that of an isolated

execution. This suggests that interference from multiple

applications can affect the overall I/O performance in a

shared parallel and distributed file system. Thus, it is cru-

cial to dynamically control the configuration of the file

system to reduce I/O interference.

4 Design and implementation

In this section, we present the DCA-IO algorithm to control

the Lustre file system configuration dynamically. DCA-IO

is divided into two parts: the application-specific configu-

ration and interference optimization. As highlighted in the

analysis section, it is important to optimize the configura-

tion in terms of both application-specific behavior and

interference to achieve optimal performance. The opti-

mization of the application-specific behavior is achieved by

the initial and recurring executions. In the initial execution,

there is no prior knowledge of the incoming application,

and the system must make a blind estimate without

Fig. 3 Performance of the IOR application in Cori

Fig. 4 Performance of two FIO instances with a stripe count of 2

4428 Cluster Computing (2022) 25:4423–4438

123



knowing the I/O behavior of the application. In the recur-

ring execution, entries in the integrated database match the

application name. Thus, we can employ the Darshan log

from previous executions to optimize the configuration.

While application name can be inconclusive to determine

the I/O characteristics of the application, we use the I/O

characteristics of previous execution with the identical

name as inspecting input data or the code can induce a

large overhead.1 The optimization of the interference is

comprised of single and multiple executions. The single

execution deals with a situation in which an application is

the only application that performs I/O operations in a

system, whereas multiple executions indicate that more

applications are already running and that interference may

occur.

4.1 Application-specific configuration
adjustment

4.1.1 Initial execution

In the case of the initial execution, there is no information

about the application because no Darshan log is available

for the incoming application. Thus, it is impossible to make

an adjustment based on application behavior. Instead,

DCA-IO utilizes the number of processes because the user

already specifies the number of processes by requesting

resources. With the number of processes, DCA-IO uses

existing Darshan logs of other applications in the same

HPC environment. Although it is not guaranteed that the

existing Darshan logs are related to the incoming applica-

tion, DCA-IO makes a statistical guess based on the

existing Darshan logs because they share the same hard-

ware that is related to application performance [6].

Procedure 1 presents a simplified algorithm for handling

a new application. When the application arrives, DCA-IO

first records the number of processes provided by the user

(line 3). Then, it uses the integrated database to select

entries that have the same number of processes as the

incoming application (line 6). Next, it extracts a unique

stripe count from the entries and calculates the average I/O

throughput per unique stripe count (lines 7–11). Finally, we

set the stripe count of the application as the stripe count of

the highest average I/O throughput(lines 14–17). DCA-IO

repeats an identical algorithm to adjust the stripe size (lines

18–21).

For example, when a process is requested by the new

incoming application, DCA-IO can refer to the entries that

used one process from the integrated database. Figure 6

presents the average I/O throughput per unique stripe count

from the integrated database. As illustrated in the figure,

Fig. 5 Performance of two FIO instances with varying stripe count

Fig. 6 Average I/O throughput per stripe count when the number of

processes is 1
1 Note that application executions with identical names can have

different I/O behavior as the behavior can be impacted by input data,

algorithms, and more. However, DCA-IO assumes that executions

will have similar I/O behavior.

Cluster Computing (2022) 25:4423–4438 4429

123



the unique stripe counts according to the integrated data-

base are 1, 8, 16, 32, 64, and 128. Because the average I/O

performance is highest for stripe count of 128, the stripe

count will be set to 128. Thus, when no information on the

incoming application exists, DCA-IO can make an edu-

cated adjustment based on Darshan logs from other appli-

cations that share identical hardware.

4.1.2 Recurring execution

In the case of the recurring execution, Darshan logs with

identical application names exist, and the I/O behaviors of

the application can be utilized for the configuration

adjustment. DCA-IO optimizes the configuration when the

I/O behavior is available in two phases: the rule-based and

heuristic phases.

Procedure 1 shows a simplified algorithm for handling

recurring execution. In the rule-based phase, DCA-IO

optimizes the configuration using the existing rules from

many previous studies [23, 27]. If the I/O behavior of the

application is file-per-process, where each file is used by a

single process, the number of processes that can access a

single file is one (lines 3-4). Thus, we first start with stripe

count as 1 because using multiple stripe counts can

increase the contention between multiple processes and the

communication overhead. In the case of a single shared

file, where multiple processes can access shared files, we

set stripe count as the number of processes participating in

I/O because multiple processes can use a high stripe count

(lines 5-6).

In both cases, DCA-IO sets the stripe size as 1M,

which is the smallest possible size and the default con-

figuration in Lustre file system for two reasons. First,

Darshan does not record the sizes of the application

requests but the size intervals to which the requests

belong. Darshan classifies requests according to the range

of the request size and records the number of requests

that belong to each interval (e.g., 1K to 100K). Without

knowing the specific request sizes of the application,

using a large stripe size can create misaligned stripes in

a file, which can degrade performance signifi-

cantly [17, 21]. Second, Lustre suffers less from a small

stripe size than a large stripe size. According to previous

studies [21, 26], Lustre already aggregates small striped

requests until they match the stripe alignment that

decreases the overhead of using a small stripe size. Thus,

rather than starting from a large stripe size, DCA-IO sets

the stripe size as the minimum and gradually increases

the size during the heuristic phase.

In the heuristic phase, DCA-IO increases the stripe

count linearly until the performance decreases or the

stripe count reaches the maximum available number of

OSTs in the system (lines 11–16). The reasoning for this

algorithm differs for different access patterns. In the case

of file-per-process, the I/O performance of each file is

bound to the maximum performance of an OST because

the stripe count is set to 1 during the rule-base phase.

However, if the application generates a large amount of

I/O rapidly, the maximum performance of a single OST

can be insufficient to handle the I/O requests for a file.

Thus, DCA-IO tests a larger stripe count to determine

whether a limited stripe count bounds the application

performance. In the case of shared-file, multiple pro-

cesses can access the same file concurrently. Thus,

increasing the stripe count beyond the number of pro-

cesses can mitigate the bottleneck.

In the case of stripe size, our proposed algorithm

increases the stripe size only if the stripe count is the

same as the previous run (lines 18-22). This isolates the

effect of the stripe size from the varying stripe counts.

DCA-IO then increases the stripe size until the perfor-

mance decreases because the large stripe size can be

beneficial to applications that issue large-sized requests.

Thus, by increasing both the stripe count and stripe size,

DCA-IO covers most of the configuration spaces and

dynamically improves the application performance.

4430 Cluster Computing (2022) 25:4423–4438

123



4.2 Interference adjustment

When the existing Lustre file system allocates an OSS to an

application, the Lustre file system randomly chooses the

OSS as a starting OSS to handle the application requests. If

the application needs more than one OSS, Lustre file sys-

tem randomly chooses the starting OSS and then chooses

the following OSSs. For example, if there are four OSSs in

the system and the application needs three OSSes, Lustre

first randomly selects an OSS out of four OSSes as a

starting OSS. If the randomly chosen starting OSS is the

second OSS, the following OSSs are the third and fourth

servers.

If a certain OSS is used intensively compared with other

OSSs, it can create both temporal and spatial imbalance

among OSSs [29]. When I/O requests from multiple

applications can be converged to a few OSSs, the perfor-

mance of applications decreases due to the increased I/O

time, resulting in a temporal imbalance. When a single

OSS can run out of capacity and cannot to handle any new

write requests, the overall I/O parallelism of the system

decreases, resulting in spatial imbalance.

To solve the temporal and spatial imbalance, our pro-

posed scheme first searches for the OSSs that are free

(temporal imbalance). If all OSSs are being utilized by

applications, our proposed scheme searches the OSSs with

the lowest capacity (spatial imbalance). Procedure 3 shows

a simplified algorithm for our proposed scheme. When an

application arrives, DCA-IO first determines the stripe

count and size using algorithms from Procedure 1 or

Procedure 2 (lines 1–2). Then, with the optimal stripe

count and size, DCA-IO considers the interference and

chooses one of three allocation strategies: non-overlapping,

partially overlapping, or capacity-based allocations.

In the non-overlapping allocation, DCA-IO first

attempts to examine whether a set of free OSSs (r) can be

assigned to the application (line 7). DCA-IO iterates the list

of OSSs to obtain a consecutive set of OSSs large enough

to accommodate the requested number of OSSs. If a set of

free OSSs meets the conditions, we retrieve the OSS range

and calculate the end offset by adding the stripe count of

the application and the starting offset of the free OSSs

(lines 8-9). Then, DCA-IO marks free flags of selected

OSSs as not free (line 10). Finally, the proposed

scheme sets the stripe count, size, and starting offset for the

application (line 11). Thus, the proposed scheme can

choose a set of OSSs that are not used by any application,

and the I/O request from the application is not interfered by

other applications. If no such range is found, DCA-IO

proceeds to the second phase, which is partial overlapping.

If DCA-IO cannot find a set of OSSs that are free, it

attempts to find a set of partially free OSSs and distributes

the I/O requests to OSSs. To this end, DCA-IO iterates the

list of OSSs and identifies a set of OSSs that has the largest

number of free OSSs (lines 14-15). This strategy minimizes

interference from other applications by reducing the num-

ber of shared OSSs. With the found set of partially free

OSSs, similar to the case of non-overlapping allocation,

DCA-IO updates the free flag of the selected OSSs (line

18) and sets the stripe count, size, and starting offset (line

19).

If no free OSSs are available because all OSSs in the

system is used by other applications, DCA-IO performs

capacity-based allocation which is an allocation policy to

balance the capacity of the OSSs. To balance out the

capacities among the OSSs, it checks the remaining

capacities of the OSSs and chooses the OSS with the

lowest capacity (lines 22-23). Similar to other phases,

DCA-IO sets the stripe count, size, and starting offset (line

26). In summary, DCA-IO first attempts to identify a set of

completely isolated free OSSs (non-overlapping alloca-

tion). If the set does not exist, it attempts to identify a set of

OSSs with the highest number of free OSSs (partial over-

lapping allocation). Finally, if all the OSSes are used by

other applications, it attempts to use the OSSs with the

lowest capacity, balancing out the capacity among OSSs

for future applications (capacity-based allocation). Thus,

DCA-IO can dynamically adjust the configuration based on

the isolated application performance and reduce the per-

formance interference caused by other applications.

Cluster Computing (2022) 25:4423–4438 4431

123



5 Evaluation

5.1 Single application

5.1.1 Local environment

For the evaluation, we used a six node Lustre setup having

Intel i7-4790 (3.6 GHz) having four physical cores, eight

cores with hyper-threading, and 8 GB of memory. We used

one node for the client server, one node for the MDS, and

four nodes for the OSSs. We used a Samsung 850 pro SSD

for storage. Each node had two SSDs, one for the operating

system and another for Lustre file system. We used two

Intel 2P X520 10G network adapters per node. Because

two 10 G network adapters can support a bandwidth of up

to 2.5 GB, the I/O performance from the client was bot-

tlenecked by the storage devices and not the network. We

compared the performance of the Lustre default parame-

ters, TAPP-IO (state of art storage allocation scheme)

[27]), and DCA-IO. Table 4 shows the comparison

between TAPP-IO and DCA-IO. As shown in the table,

similar to DCA-IO, TAPP-IO is a rule-based scheme that

determines stripe count and stripe size based on file access

type (file-per-process and shared file). In contrast, DCA-IO

supports dynamic adjustment that finds stripe count and

stripe size through a heuristic phase. In addition, it also

considers interference between multiple applications and

capacity-aware data placement. We report the experimental

results were averaged over five runs for default, TAPP-IO,

and DCA-IO.

For the microbenchmark, we ran the FIO benchmark

[3] performing sequential and random writes. The FIO

benchmark creates a separate file for each process and uses

the POSIX I/O module. We configured the FIO benchmark

to issue 8 GB write operations using one to eight threads

with a 1 MB request size and buffered I/O.

In the case of sequential writes, as indicated in Fig. 7,

DCA-IO improves the performance by up to 75% com-

pared with both the default Lustre configuration and TAPP-

IO. The performances achieved by the default Lustre

configuration and TAPP-IO is comparable because TAPP-

IO uses the default configuration in the case of the file-per-

process. The performance improvement is greater when the

number of processes is smaller because both the default

Lustre configuration and TAPP-IO set the stripe count to 1

(i.e., 1 OSS). Because FIO issues a large number of I/O

requests, the I/O performance is bottlenecked by the

maximum I/O performance of the single OSS. Thus, by

increasing the stripe count, DCA-IO can improve the per-

formance beyond the maximum performance of a single

OSS. In the case of a large number of processes, all four

OSSs were used even with a stripe count of 1 because each

process creates a file allocated to different OSSs. Thus, the

performance of FIO reaches the maximum performance of

all OSSs using both the default Lustre configuration and

TAPP-IO.

In the case of random writes, as indicated in Fig. 8,

DCA-IO improves the performance by 56% compared with

both the default Lustre configuration and TAPP-IO. Similar

to sequential writes, the performance improvement is more

evident at a lower number of processes and the reason is

the same. However, because the performance for random

writes is inherently inferior to that for sequential writes, the

performance improvement is smaller in the former than in

the latter case.

For the macrobenchmark, we used Parallel I/O Kernel

(PIOK) [8] developed by NERSC. PIOK is a collection of

I/O kernels from three HPC applications: VPIC, GCRM,

and VORPAL. Thus, VPCI-IO, GCRM-IO, and VORPAL-

IO do not perform computation tasks but only issue I/O

operations for synthetic data structures. PIOK is imple-

mented to utilize both the HDF5 file format [12] and the

H5Part data interface [2]. We configured each benchmark

to use collective I/Os where each process calls collective

I/O functions to aggregate multiple I/O requests into col-

lective I/O requests.

In the case of VPIC-IO, as shown in Fig. 9, DCA-IO

improves the performance by up to 70% and 45%,

respectively, compared with the default Lustre configura-

tion and TAPP-IO. Similar to the result from the FIO

benchmark, the performance gain from a smaller number of

processes results from the increased number of stripe

counts. Because TAPP-IO uses the number of processes as

the stripe count, the performance at a low number of pro-

cesses is related to the limited number of OSSs. For a high

number of processes, the performance of DCA-IO is higher

than that of TAPP-IO owing to the stripe alignment.

Because DCA-IO gradually increases the stripe size from

1M, it can find the optimal stripe size without causing

stripe misalignment. Note that in the case of the second run

in the one, two, and four processes, the performance of

DCA-IO decreases from the first run. Because DCA-IO

uses rule-based configuration adjustment, the adjusted

configurations cannot be optimal, compared to the adjusted

Table 4 Comparison between TAPP-IO and DCA-IO

TAPP-IO [27] DCA-IO

File-based U U

Rule-based U U

Dynamic U

Interference U

Capacity-aware U

4432 Cluster Computing (2022) 25:4423–4438

123



configurations from the initial execution. However, the

performance becomes comparable to or exceeds that of the

first run due to the second heuristic phase of DCA-IO.

In the cases of GCRM-IO and VORPAL-IO, as shown

in Figs. 10 and 11, DCA-IO improves performance by up

to 58% and 52% compared with the default Lustre con-

figuration, and by up to 48% and 51% compared with

TAPP-IO, respectively. Similar to VPIC-IO, the perfor-

mance of DCA-IO is significantly better than that of TAPP-

IO due to the effect of the stripe count. In addition, owing

to the stripe misalignment, the performance of TAPP-IO is

lower than that of DCA-IO.

5.1.2 Cori

To verify the effectiveness of DCA-IO in a complex and

large environment, we conducted the experiment in Cori.

For the evaluation, we used 1, 4, 16, and 64 computation

nodes from Cori. Each compute node was equipped with

two 16-core Intel Haswell CPUs (2.3 GHz) and 128 GB of

memory. For storage, the Lustre file system of Cori had 6

MDSs and 256 OSTs. Both the compute and Lustre nodes

were connected with Infiniband. For a benchmark, we only

used VPIC-IO from PIOK [8] because the other two

workloads exhibited similar I/O behaviors. To evaluate our

Fig. 7 FIO sequential write performance

Fig. 8 FIO random write performance

Fig. 9 VPIC-IO performance

Fig. 10 GCRM-IO performance

Cluster Computing (2022) 25:4423–4438 4433

123



scheme with diverse application behavior, we used both

independent and collective I/O modes. The experimental

results are the average values of five runs. In addition, the

average I/O traffic at the time of the experiment was less

than 5 percent of the maximum bandwidth of Cori system.

In the case of VPIC-IO in Cori, as shown in Figs. 12 and

13, DCA-IO improves performance by up to 37% and 50%

in independent I/O and collective I/O, respectively, com-

pared with TAPP-IO. Compared to the results from a small

Lustre setup, the performance improvement on Cori is less

for two main reasons. First, because the experiments in

Cori already have a high number of processes, TAPP-IO,

which sets the stripe count to the number of processes,

already utilizes a sufficient number of OSSs. Second,

because many users share the same HPC environment,

there can be many interferences from the I/O activities of

other users. Owing to the other users, our application

cannot utilize the full bandwidth of the network. Because

the benefits from DCA-IO are more evident when the I/O

performance of applications is better than the maximum

performance of the used OSSs, the potential performance

improvement can be overshadowed by various resource

contentions in a complex HPC environment. However,

DCA-IO can improve the performance of different I/O

behaviors such as independent and collective I/O modes.

Thus, we have verified that DCA-IO could be beneficial in

small isolated environments as well as in large production

scale environments.

5.2 Multiple applications

To evaluate DCA-IO when multiple applications are run-

ning simultaneously, we performed an evaluation using the

aforementioned FIO [3], VPIC-IO, GCRM-IO, and VOR-

PAL-IO benchmarks from PIOK [8]. We configured each

application to run with four processes because four pro-

cesses exhibit the best performance. To evaluate our

scheme in various performance interference scenarios, we

disabled DCA-IO for FIO and manually set the stripe count

of FIO to 1, 2, and 4 and we enabled DCA-IO for VPIC-IO,

GCRM-IO, and VORPAL-IO. Thus, we created scenarios

where an I/O-intensive application (FIO) with various

stripe counts runs in the system, and another application

(VPIC-IO, GCRM-IO, or VORPAL-IO) is submitted to the

system. We compared the performance of the PIOK

benchmark using the default Lustre configuration, DCA-IO

without interference optimization, and DCA-IO with

interference optimization (i.e., fully optimized DCA-IO).

All experimental results are the average values of five runs.

Figure 14a presents the performance of the VPIC-IO

benchmark from the PIOK when the VPIC-IO and FIO

benchmarks run simultaneously. As shown in the figure, the

DCA-IOwith interference optimization performs similarly to

DCA-IO without interference optimization and improves

performance by up to 263% compared with the default con-

figuration. The performance is similar in both versions of

DCA-IO because the benefit of using all four OSSs is greater

Fig. 11 VORPAL-IO performance

Fig. 12 VPIC-IO performance in Cori using independent-I/O

Fig. 13 VPIC-IO performance in Cori using collective-I/O

4434 Cluster Computing (2022) 25:4423–4438

123



than using a small number ofOSSs and avoiding interference.

Thus, both versions of DCA-IO set the stripe count of VPIC-

IO as 4, utilizing all OSSs in the system. In both versions of

DCA-IO, the performance of VPIC-IO is best when the stripe

count of FIO is 1. This suggests that the performance is best

when the fewest OSSs are shared between two applications.

In contrast, when a default configuration is used, both FIOand

VPIC-IOuse a singleOSS, and the applicationperformance is

bounded by the maximum performance of a single OSS.

Figure 14b and c presents the performance of GCRM-IO

and VORPAL-IO when FIO is running. In the case of GCRM-

IO, DCA-IO with interference optimization improves perfor-

mance by up to 241% and 31%, compared with the default

Lustre configuration and DCA-IO without interference opti-

mization, respectively. For VORPAL-IO, DCA-IO with inter-

ference optimization improves performance by up to 252% and

53% compared with the default Lustre configuration and DCA-

IOwithout interference optimization, respectively. In contrast to

VPIC-IO, for both GCRM-IO andVORPAL-IO, DCA-IOwith

interference optimization performs better thanDCA-IOwithout

interference optimization. This is because DCA-IO without

interference optimization uses all fourOSSs for bothGCRM-IO

and VORPAL-IO, while DCA-IO with interference optimiza-

tion uses stripe count of 2. Because the performance gain from

increasing the stripe count in both applications is smaller than

that of VPIC-IO, it is more beneficial to reduce the number of

stripe count and utilize the OSSes that are not used by another

application (FIO). However, when the stripe count of FIO is 4

and interference is unavoidable, the performance of both ver-

sions of DCA-IO remains identical. Thus, the evaluation results

indicate that when multiple applications run simultaneously in

the system, DCA-IO with interference optimization can

improve their performance by reducing the interference from

other applications by choosing free OSSs.

6 Related work

In this section, we present previous studies and compare

them to DCA-IO to show how DCA-IO differs from the

previous studies. There have been many approaches to

improving the I/O performance of applications in dis-

tributed computing systems with complex storage archi-

tecture. Previous works [4, 39, 40] proposed testing-based

adjustment schemes that attempt to find the optimal con-

figuration through performance modeling. In addition,

other works [5, 13] proposed history-based adjustment

schemes that find the optimal configuration based on the

history of applications. Another work [27] proposed a rule-

based adjustment scheme that adjusts the configuration

based on the rules such as the number of files. Finally,

several works [11, 19] alleviated performance interference

between applications by improving communication.

6.1 Testing-based adjustment

Several studies have been conducted on the improvement

of application performance by modeling the I/O behaviors

of applications. Yu et al. [40] classified applications into a

few categories based on their I/O behaviors. Then, they

found the optimal configuration setting for each distinct I/O

behavior by performing extensive testing. Finally, they

used the optimal configuration from the testing for each I/O

behavior category. You et al. [39] proposed a mathemat-

ical model based on the queuing theory. Then, they per-

formed experiments for each model in a separate

environment to find the optimal configuration. H5E-

volve [4] utilized a genetic algorithm to search for the best

configuration. It simplifies multiple configurations into a

simplified and computable space. Then, it uses the genetic

algorithm to find the best configuration from the configu-

ration space. Our study is similar to these studies in terms

of investigating the I/O behaviors of applications and

optimizing the performance based on I/O behaviors.

However, DCA-IO does not require testing on various

configurations prior to the application run.

6.2 History-based adjustment

Several studies have been conducted on improving the I/O

performance of applications by utilizing the previous his-

tory of applications. Gainaru et al. [13] stored the I/O

Fig. 14 VPIC-IO, GCRM-IO, and VORPAL-IO performance when running simultaneously with FIO

Cluster Computing (2022) 25:4423–4438 4435

123



behaviors and used the history of each application during

scheduling to minimize the interference between applica-

tions. Behzad et al. [5] extracted I/O patterns from appli-

cations and found optimal configurations for each pattern.

Then, they stored the optimal configuration for each pattern

in a database. Our study is similar to these investigations in

terms of optimizing the configurations based on the pre-

vious executions. However, DCA-IO can improve perfor-

mance when no information on the I/O behavior is

available, by using the existing system logs in the same

HPC environment.

6.3 Rule-based adjustment

Studies have been conducted on the selection of configu-

rations based on a set of rules. TAPP-IO [27] is the most

closely related to our algorithm in that the Lustre file

system settings are optimized. Researchers [27] proposed a

set of rules based on the number of files and processes.

They evaluated their rule-based algorithm in a large HPC

environment and verified that a rule-based configuration

adjustment scheme could improve performance in many

complex HPC environments. Our study is similar to this

research in terms of optimizing the configurations based on

the set of rules. However, DCA-IO dynamically improves

performance based on the previous runs because the opti-

mal rules may vary according to the I/O behavior of the

application.

6.4 Alleviating performance interference

Several studies have been conducted on the mitigation of

I/O performance interference in the HPC environment.

Lofstead et al. [19] analyzed an HPC system and presented

the negative effects of simultaneous application execution

on shared resources in the system. Then, to alleviate the I/O

contention on a shared file system, they proposed an

algorithm that enables applications to implement the I/O

request with minimum interference through communica-

tion between applications. Dorier et al. [11] analyzed the

performance interference in the I/O stack layer and

designed a framework consisting of strategies for allevi-

ating the influence of I/O interference. The framework uses

MPI routines for communication between applications

running in parallel. Our study is similar to these investi-

gations in terms of the characterization of multiple cases of

I/O performance interference and the alleviation of inter-

ference. However, DCA-IO minimizes the performance

degradation by autonomously and dynamically adjusting

the file system configurations by using various system logs

in the HPC system.

7 Conclusion

In this paper, we proposed a dynamic distributed file sys-

tem configuration adjustment scheme called DCA-IO to

improve the I/O performance of applications and mitigate

I/O performance interference in the HPC environment. To

this end, we first analyzed the I/O behaviors of applications

executed in Cori. The analysis results indicate that only a

limited number of programs were executed extensively and

that most of the executions used the default Lustre file

system configuration. To improve the I/O performance of

the applications by adjusting the Lustre file system con-

figuration, DCA-IO uses existing system logs from the

HPC environment and gradually improves performance

using the rules and history of the program executions.

Furthermore, DCA-IO reduces the contention for shared

storage resources by dynamically adjusting the allocation

policy. Finally, we evaluated DCA-IO using the FIO and

PIOK benchmarks on small- and large-scale HPC envi-

ronments using the Lustre file system. Our evaluation

indicates that the use of DCA-IO for an independent

application can improve the performance by up to 75% and

50% in small- and large-scale HPC environments, respec-

tively. For the execution of simultaneous applications, the

evaluation indicates that DCA-IO can improve perfor-

mance by up to 263% and 53% compared with the default

Lustre configuration and DCA-IO without interference

optimization, respectively. For the future work, we plan to

improve the performance heuristic phase of DCA-IO by

introducing well-known optimization algorithms [1].

Author contributions SK contributed the paper through conceptual-

ization, methodology, software, and writing. AS, KW, and SB con-

tributed the paper through conceptualization, discussion, and

supervision. YS contributed the paper through conceptualization,

discussion, writing, and supervision.

Funding This work was supported by the National Research Foun-

dation of Korea (NRF) grant funded by the Korean government

(MSIT) (No. 2021R1C1C1010861). This work was supported in part

by the Korea Institute for Advancement of Technology (KIAT) grant

funded by Korea government (MOTIE) (P0012724, The Competency

Development Program for Industry Specialist). This work was sup-

ported by the Office of Advanced Scientific Computing Research,

Office of Science, of the U.S. Department of Energy under Contract

No. DE-AC02-05CH11231. This research used resources of the

National Energy Research Scientific Computing Center. This study

was financially supported by Seoul National University of Science

and Technology.

Data availability Raw data were generated at NERSC. Derived data

supporting the findings of this study are available from the corre-

sponding author on request.

4436 Cluster Computing (2022) 25:4423–4438

123



Declarations

Conflict of interest The authors have not disclosed any competing

interests.

Ethical approval Ethical approval was not required for this research.

Informed consent All the authors listed have approved the manu-

script for publication.

References

1. Abualigah, L., Yousri, D., Abd Elaziz, M., Ewees, A.A., Al-

Qaness, M.A., Gandomi, A.H.: Aquila optimizer: a novel meta-

heuristic optimization algorithm. Comput. Ind. Eng. 157, 107250
(2021)

2. Adelmann, A., Gsell, A., Oswald, B., Schietinger, T., Bethel, W.,

Shalf, J., Siegerist, C., Stockinger, K.: Progress on H5Part: a

portable high performance parallel data interface for electro-

magnetics simulations. In: 2007 IEEE Particle Accelerator Con-

ference (PAC), IEEE, pp. 3396–3398 (2007)

3. Axboe, J.: Fiobenchmark (1998). http://freecode.com/projects/fio

4. Behzad, B., Luu, H.V.T., Huchette, J., Byna, S., Aydt, R., Koziol,

Q., Snir, M., et al. : Taming parallel I/O complexity with auto-

tuning. In: Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis.

ACM, New York, p. 68 (2013)

5. Behzad, B., Byna, S., Snir, M., et al.: Pattern-driven parallel I/O

tuning. In: Proceedings of the 10th Parallel Data Storage Work-

shop. ACM, New York, pp. 43–48 (2015)

6. Behzad, B., Byna, S., Wild, S.M., Snir, M., et al.: Dynamic

model-driven parallel I/O performance tuning. In: 2015 IEEE

International Conference on Cluster Computing (CLUSTER),

pp. 184–193 (2015)

7. Benchmark, I.: https://asc.llnl.gov/sequoia/benchmarks/iorsum

maryv1.0.pdf. Accessed 5 Jan 2020

8. Byna, S., Howison, M.: Parallel I/O kernel (PIOK) suite (2015).

https://sdm.lbl.gov/exahdf5/software.html

9. Carns, P., Harms, K., Allcock, W., Bacon, C., Lang, S., Latham,

R., Ross, R.: Understanding and improving computational sci-

ence storage access through continuous characterization. ACM

Trans. Storage (TOS) 7, 8 (2011)

10. Chan, A., Gropp, W., Lusk, E.: An efficient format for nearly

constant-time access to arbitrary time intervals in large trace files.

Sci. Prog. 16, 155–165 (2008)

11. Dorier, M., Antoniu, G., Ross, R., Kimpe, D., Ibrahim, S.: Cal-

ciom: Mitigating I/O interference in HPC systems through cross-

application coordination. In: 2014 IEEE 28th International Par-

allel and Distributed Processing Symposium. IEEE, pp. 155–164

(2014)

12. Folk, M., Cheng, A., Yates, K.: HDF5: a file format and I/O

library for high performance computing applications. In: Pro-

ceedings of Supercomputing, pp. 5–33 (1999)

13. Gainaru, A., Aupy, G., Benoit, A., Cappello, F., Robert, Y., Snir,

M.: Scheduling the I/O of hpc applications under congestion. In:

2015 IEEE International Conference on Parallel and Distributed

Processing Symposium (IPDPS). IEEE, pp. 1013–1022 (2015)

14. Hipp, D.R.: Sqlite (2000). https://www.sqlite.org/index.html

15. Howison, M.: Tuning hdf5 for lustre file systems. In: Proceedings

of 2010 Workshop on Interfaces and Abstractions for Scientific

Data Storage (2010)

16. Kim, S., Sim, A., Wu, K., Byna, S., Wang, T., Son, Y., Eom, H.:

DCA-IO: a dynamic I/O control scheme for parallel and dis-

tributed file systems. In: CCGRID, pp. 351–360 (2019)

17. Liao, W.k., Ching, A., Coloma, K., Choudhary, A., Ward, L.: An

implementation and evaluation of client-side file caching for

MPI-IO. In: IEEE International Conference on Parallel and Dis-

tributed Processing Symposium, 2007 (IPDPS 2007), pp. 1–10.

IEEE (2007)

18. Lockwood, G.K., Snyder, S., Wang, T., Byna, S., Carns, P.,

Wright, N.J.: A year in the life of a parallel file system. In: SC’18:

InternationalConference for High Performance Computing, Net-

working,Storage and Analysis, pp. 931–943. Networking, Storage

and Analysis, IEEE (2018)

19. Lofstead, J., Zheng, F., Liu, Q., Klasky, S., Oldfield, R., Kor-

denbrock, T., Schwan, K., Wolf, M.: Managing variability in the

IO performance of petascale storage systems. In: SC’10: Pro-

ceedings of the 2010 ACM/IEEE International Conference for

High Performance Computing, Networking, Storage and Analy-

sis, pp. 1–12. IEEE (2010)

20. Lustre: a. Lustre* Software Release 2.x Operations Manual

21. Lustre, A.: b. Lustre Technical White Paper

22. Luu, H., Behzad, B., Aydt, R., Winslett, M.: A multi-level

approach for understanding I/O activity in HPC applications. In:

2013 IEEE International Conference on Cluster Computing

(CLUSTER), pp. 1–5. IEEE (2013)

23. Lustre Filesystem: For Computational Sciences, T.N.I., I/O and

Lustre usage. https://www.nics.tennessee.edu/computing-resour

ces/file-systems/io-lustre-tips

24. Luu, H., Winslett, M., Gropp, W., Ross, R., Carns, P., Harms, K.,

Prabhat, M., Byna, S., Yao, Y.: A multiplatform study of I/O

behavior on petascale supercomputers. In: Proceedings of the

24th International Symposium on High-Performance Parallel and

Distributed Computing, pp. 33–44. ACM, New York (2015)

25. Mathur, A., Cao, M., Bhattacharya, S., Dilger, A., Tomas, A.,

Vivier, L.: The new ext4 filesystem: current status and future

plans. In: Proceedings of the Linux symposium, pp. 21–33 (2007)

26. Minich, M., Di, W., Shipman, G.M., Canon, S.O.S.: Lustre

Center of excellence at ORNL (2008)

27. Neuwirth, S., Wang, F., Oral, S., Bruening, U.: Automatic and

transparent resource contention mitigation for improving large-

scale parallel file system performance. In: 2017 IEEE 23rd

International Conference on Parallel and Distributed Systems

(ICPADS), pp. 604–613. IEEE (2017)

28. Odajima, T., Kodama, Y., Tsuji, M., Matsuda, M., Maruyama, Y.,

Sato, M.: Preliminary performance evaluation of the Fujitsu

A64FX using hpc applications. In: 2020 IEEE International

Conference on Cluster Computing (CLUSTER), pp. 523–530.

IEEE (2020)

29. Patel, T., Byna, S., Lockwood, G.K., Wright, N.J., Carns, P.,

Ross, R., Tiwari, D.: Uncovering access, reuse, and sharing

characteristics of {I/O-Intensive} files on {Large-Scale} pro-

duction {HPC} systems. In: 18th USENIX Conference on File

and Storage Technologies (FAST 20), pp. 91–101 (2020)

30. Schwan, P., et al.: Lustre: building a file system for 1000-node

clusters. In: Proceedings of the 2003 Linux Symposium,

pp. 380–386 (2003)

31. Shende, S.S., Malony, A.D.: The tau parallel performance sys-

tem. Int. J. High Perform. Comput. Appl. 20, 287–311 (2006)

32. Snyder, S., Carns, P., Latham, R., Mubarak, M., Ross, R., Car-

others, C., Behzad, B., Luu, H.V.T., Byna, S., et al.: Techniques

for modeling large-scale HPC I/O workloads. In: Proceedings of

the 6th International Workshop on Performance Modeling,

Benchmarking, and Simulation of High Performance Computing

Systems, p. 5. ACM, New York (2015)

33. Snyder, S., Carns, P., Harms, K., Latham, R., Ross, R.: Perfor-

mance evaluation of Darshan 3.0.0 on the Cray XC30. Technical

Report. Argonne National Laboratory (ANL), Argonne (2016)

34. Snyder, S., Carns, P., Harms, K., Ross, R., Lockwood, G.K.,

Wright, N.J.: Modular HPC I/O characterization with darshan. In:

Cluster Computing (2022) 25:4423–4438 4437

123

http://freecode.com/projects/fio
https://asc.llnl.gov/sequoia/benchmarks/iorsummaryv1.0.pdf
https://asc.llnl.gov/sequoia/benchmarks/iorsummaryv1.0.pdf
https://sdm.lbl.gov/exahdf5/software.html
https://www.sqlite.org/index.html
https://www.nics.tennessee.edu/computing-resources/file-systems/io-lustre-tips
https://www.nics.tennessee.edu/computing-resources/file-systems/io-lustre-tips


Workshop on Extreme-Scale Programming Tools (ESPT),

pp. 9–17. IEEE (2016)

35. Sweeney, A., Doucette, D., Hu, W., Anderson, C., Nishimoto, M.,

Peck, G.: Scalability in the XFS file system. In: USENIX Annual

Technical Conference (1996)

36. Tang, H., Byna, S., Tessier, F., Wang, T., Dong, B., Mu, J.,

Koziol, Q., Soumagne, J., Vishwanath, V., Liu, J., et al.: Toward

scalable and asynchronous object-centric data management for

HPC. In: 2018 18th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGRID), pp. 113–122.

IEEE (2018)

37. Wang, T., Snyder, S., Lockwood, G., Carns, P., Wright, N., Byna,

S.: Iominer: Large-scale analytics framework for gaining

knowledge from I/O logs. In: 2018 IEEE International Confer-

ence on Cluster Computing (CLUSTER), pp. 466–476. IEEE

(2018)

38. Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D., Maltzahn, C.:

Ceph: A scalable, high-performance distributed file system. In:

Proceedings of the 7th Symposium on Operating Systems Design

and Implementation, pp. 307–320. USENIX Association,

Berkeley (2006)

39. You, H., Liu, Q., Li, Z., Moore, S.: The design of an auto-tuning

I/O framework on cray xt5 system. In: Cray User Group meeting

(CUG 2011) (2011)

40. Yu, W., Vetter, J.S., Oral, H.S.: Performance characterization and

optimization of parallel I/O on the cray XT. In: IEEE Interna-

tional Symposium on Parallel and Distributed Processing, 2008

(IPDPS 2008), pp. 1–11. IEEE (2008)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Sunggon Kim is an assistant

professor in the department of

Computer Science at Seoul

National University of Science

and Technology (SeoulTech)

since 2022. He received his B.S.

degree in Computer Science

from University of Wisconsin-

Madison, Madison, USA, and

Ph.D. degree from Seoul

National University in 2015 and

2021, respectively. He was an

intern at Lawrence Berkeley

National Laboratory, California,

USA, in 2018, 2019 and 2020.

His research interests are file systems, cloud computing, distributed

systems, and operating systems.

Alex Sim is currently a Senior

Computing Engineer at Lawr-

ence Berkeley National Labo-

ratory. He authored and co-

authored over 300 technical

publications, and released a few

software packages under open

source license. His current

research and development

activities include data modeling,

data analysis methods, learning

models, distributed resource

management, and high perfor-

mance data systems. He is a

senior member of IEEE.

Kesheng Wu is a Senior Scien-

tist at Lawrence Berkeley

National Laboratory. He works

extensively on data manage-

ment, data analysis, and scien-

tific computing topics. He is the

developer of a number of widely

used algorithms including Fas-

tBit bitmap indexes for querying

large scientific datasets, Thick-

Restart Lanczos (TRLan) algo-

rithm for solving eigenvalue

problems, and IDEALEM for

statistical data reduction and

feature extraction.

Suren Byna received his Ph.D.

degree in 2006 in Computer

Science from Illinois Institute of

Technology, Chicago. He is a

Staff Scientist in the Scientific

Data Management (SDM)

Group in CRD at Lawrence

Berkeley National Laboratory

(LBNL). He works on optimiz-

ing parallel I/O and on devel-

oping systems for managing

scientific data. He is the PI of

the ECP funded ExaIO and

ExaHDF5 projects, and various

projects on managing scientific

data.

Yongseok Son received his B.S.

degree from Ajou University in

2010, and his M.S. and Ph.D.

degrees from Seoul National

University in 2012 and 2018,

respectively. He was a postdoc-

toral research associate at

University of Illinois at Urbana-

Champaign. Currently, he is an

assistant professor in Depart-

ment of Computer Science and

Engineering, Chung-Ang

University. His research inter-

ests are operating, distributed,

and database systems.

4438 Cluster Computing (2022) 25:4423–4438

123


	Design and implementation of dynamic I/O control scheme for large scale distributed file systems
	Abstract
	Introduction
	Background
	Lustre file system
	Analyzing and optimizing I/O performance in HPC environment

	Analysis
	Collecting Darshan logs
	Analysis of Darshan logs
	Analysis of I/O interference on multiple applications
	Cori
	Local environment


	Design and implementation
	Application-specific configuration adjustment
	Initial execution
	Recurring execution

	Interference adjustment

	Evaluation
	Single application
	Local environment
	Cori

	Multiple applications

	Related work
	Testing-based adjustment
	History-based adjustment
	Rule-based adjustment
	Alleviating performance interference

	Conclusion
	Author contributions
	Data availability
	References




