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ABSTRACT Various issues or bugs are reported during the software development. It takes considerable
effort, time, and cost for the software developers to triage these issues manually. Many previous studies
have proposed various method to automate the triage process by predicting component using word-based
language models. However, these methods still suffer from unsatisfactory performance due to their structural
limitations and ignorance of the word context. In this paper, we propose a novel technique based on pretrained
languagemodels and it aims to predict a component of an issue report. Our approach fine-tunes the pretrained
language models to conduct multilabel classifications. The proposed approach outperforms the previous
state-of-the-art method by more than 30% with respect to the recall at k on all the datasets considered in our
experiment. This improvement suggests that fine-tuned pretrained language models can help us to predict
issue components effectively.

INDEX TERMS Component recommendation, machine learning, natural language processing, pretrained
language model, software engineering.

I. INTRODUCTION
Numerous software issues are reported daily during the test-
ing and maintenance phases. As the size and complexity
of software have recently increased, the number of issues
tends to increase, and the need to manage them promptly
has become urgent. Typical modern software development
processes rely on issue tracking systems, such as Jira1 or
Bugzilla,2 to manage the issues systematically.
Nevertheless, it is still challenging for the human triagers

to handle the issues everyday due to their complexity and
volume. An issue report contains various information, such
as title/summary, description, reporter, product, component,
priority, severity, and other details. Fig. 1 presents an example
of an issue report highlighting the title (e.g., ‘‘PDF search

The associate editor coordinating the review of this manuscript and

approving it for publication was Francisco J. Garcia-Penalvo .
1https://www.atlassian.com/software/jira
2https://www.bugzilla.org/

should default to unlimited white space’’), description (e.g.,
‘‘PDF often include additional spaces. . .’’), and component
(e.g., ‘‘PDF Viewer’’).

The component is essential information for the software
engineer or developer to determine the locality of the issue or
bug. It is not uncommon for a typical software project to have
many components, which can grow due to project evolution
over time [7]. The manual triager (manager) follows a triage
process to assign the issue reports, as illustrated in Fig. 2.
In case the triager fails to assign a component properly, the
triager should repeat the steps of the process. Therefore, the
triager is expected to have deep and extensive knowledge
of the projects, software modules, and code bases [7], [19].
However, such an expectation becomes challenging when the
scope and size of the project ever grows, which is common
for most software.

Moreover, this process is laborious and requires consid-
erable time, cost, and effort, reducing the software qual-
ity. In the Eclipse project, an example of a real industrial
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FIGURE 1. The example of an issue report from Mozilla Firefox project in
Bugzilla repository.

environment, approximately 25% of the issue reports were
reassigned due to incorrect triage, including component mis-
match [2]. Incorrect triage is time-consuming and costly
at nearly two person-hours per day in triaging issue
reports [1]. Thus, from a software engineering perspective,
the time-consuming and costly triage process should be
improved and requires automation with proper tool support.

Recently, Choetkiertikul et al. [7] proposed a long
short-term memory (LSTM)-based architecture [16], a deep
learning model for software component recommendation
called DeepSoft-C, which learns semantic features from the
textual description of issue reports for component recommen-
dation [7]. Cosine similarity [33] was applied for information
retrieval to extract sets of textual similarity features from the
description in the issue reports. By conducting semantic and
similarity features, a single set of features is generated and
input into a multilabel neural network to identify the compo-
nents relevant to the issue report. They also demonstrated the
importance of data quality by conducting experiments using
a regenerated dataset based on the number of issues for each
component.

These approaches suggest the possibility of predicting
components using the deep learning method with the title
and description data from the issue report. Unfortunately,
they still have some problems due to their structural limi-
tations. The word-based LSTM models do not use the full
sentence information of the issue report, so these methods
fail to exploit information useful for predicting components.
In addition, the problem of long-term dependencies in the
LSTM method can make the learning inefficient [3]. Issue
reports may contain long sequences of words and various
information. Thus, these two problems should be addressed
to enable better prediction performance.

As suggested in several pieces of literature [7], [41], com-
ponent information is considered very useful in the bug triage
process. However, few studies have assessed component

FIGURE 2. Triage process for issue reports.

prediction for issue reports compared to studies on developer
prediction. In addition, we argue that recent advances in deep
learning approaches have not been actively applied to the
component prediction problem. Previous work [7] using the
word-based LSTM method demonstrates the possibility that
deep learning–based approaches can effectively predict com-
ponents of an issue report, but the reported performance indi-
cates that further improvement is still needed. This study was
motivated by the scarcity of component prediction research
based on recent language models and the demand for more
accurate prediction performance.

This paper proposes a fine-tuned pretrained model-based
component prediction technique that predicts components
from the issue report data. In addition, through the fine-tuned
pretrained language model, we overcome the structural lim-
itations of the LSTM-based method. Thus, we evaluate the
pretrained language models by comparing the performance
with the baseline paper [7] to gain confidence in the pro-
posed fine-tuned pretrained language model. We extract the
datasets from the Eclipse Foundation, Eclipse Community,
and Bugzilla Firefox, a reliable open-source issue repository.
Each dataset consists of almost 20,000 issues and 137 compo-
nents. In addition, we implement a task-based dataset down-
sampling method to address the biased dataset problem.

Thus, the proposed fine-tuned pretrained language mod-
els outperform state-of-the-art methods [7]. Furthermore, the
task-based dataset downsampling method demonstrates the
importance of the dataset quality in the pretrained language
model-based method that Gururangan et al. [14] proposed.

The contributions of this paper are as follows:

• We propose a novel approach of component prediction
for issue reports using fine-tuned pretrained language
model to overcome the structural limitation of the word-
based model.

• We compare the proposed approach with the state-of-
the-art method for predicting component using their
data. The experimental results reveal that approximately
30% of improvement is achieved by the proposed
approach compared to the previous method.

• We propose a task-based downsampling method to
address the biased dataset problem. The experimental
results shows a significant increase in the recall at k
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FIGURE 3. Structure of the model used in the previous study [7].

TABLE 1. Dataset statistics for previous work [7].

and a steady decline in validation loss after applying the
proposed method.

• We build a new dataset gathered from various open-issue
repositories to validate the performance of the proposed
technique’s task-based module. Unlike other conven-
tional datasets targeting for bug fixer prediction only, the
dataset we build consists of the components, developers,
titles, and descriptions to predict the components and
bug fixers. The dataset is publicly available on GitHub.3

The rest of the paper is organized as follows. Section II
describes the related work, and Section III presents the
design and implementation of the proposed method. Next,
Section IV provides the experimental results and Section V
explains the threats to validity of our results. Finally,
Section VI explains the conclusions and future work.

II. RELATED WORK
Some researchers have proposed machine and deep
learning–based methods to predict components. This section
presents previous studies on component prediction and auto-
mated bug triage, which exploit the same information in

3https://github.com/daesungwang/Components-Prediction

the issue reports: the title and description. The difference
between component prediction and bug triage is predicting
the component or developer. In addition, we summarize the
concepts and recent trends in pretrained language models.

A. AUTOMATIC COMPONENT PREDICTION
Sureka et al. [35] attempted to predict components
using a machine learning method consisting of term
frequency-inverse document frequency (TF-IDF) [31] and
a component reassignment graph. The TF-IDF method can
obtain content-based textual features. While experimenting,
they found that the reassignment of the component causes a
decrease in accuracy. Thus, they also adopted a component
reassignment graph based on the changes in the issue report.
Therefore, they constructed a predictive model that combines
TF-IDF and a component reassignment graph to obtain the
top-k results for components. In addition, they gathered the
dataset from the Eclipse and Mozilla open-issue repositories
consisting of approximately 20,000 reports. As in this paper,
they also used the title and description information in training
the model.

Yan et al. [38] proposed a discriminative probability latent
semantic analysis (DPLSA) model [12] to predict compo-
nents that concentrate on the topic of the issue report. They
focused on which component highly corresponds to terms
concerning its function in the issue report. Therefore, they
constructed a semantic analysis model with issue reports as a
document and the component as a category, as Lu et al. [25]
proposed. The experiment achieved the top-k results from the
title and description dataset, consisting of 6,000 issue reports
for ten components. They achieved improved recall results
at k, indicating the top-k results of components. However,
their dataset consists of only ten components, fewer than the
dataset we used. Therefore, the model by Yan et al. [38]
demonstrates the possibility of predicting components using
semantic analysis with fewer components than other datasets.
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TABLE 2. Summary of the selected previous work.

Choetkiertikul et al. [7] proposed the word-based
LSTM [16] deep learning method to predict components.
As illustrated in Fig. 3, they implemented the LSTM for
semantic feature extraction to predict components using
word2vec [8] in the word embedding layer from the title and
description information in the issue report. The experiment
using the LSTM-basedmethod found that an issue report may
be assigned to more than one component, requiring multi-
ple labels. Thus, they adopted a multilabeling classification
method to classify the component in a multilabeling situation,
as Nam et al. [27] proposed.

Furthermore, Choetkiertikul et al. [7] found that an imbal-
ance of the issue report dataset causes a decrease in accuracy.
Thus, they deleted the issue reports with a small number of
issues to address the data imbalance problem. As a result, they
improved the accuracy using deep learning and deletion. The
improvement indicates that adjusting the imbalanced dataset
is an integral part of the automatic component prediction
field. As presented in Table 1, they collected datasets from
11 open-issue repositories, consisting of 142,083 issues with
an average of 12,916 issues each. They used this dataset to
evaluate the performance of their word-based LSTM model
by the recall at k, which is the top-k results of the components.

Choetkiertikul et al. [7] revealed the importance of dataset
quality and component prediction possibilities using a deep
learning method with the dataset deletion and word-based
LSTM methods. Thus, to gain confidence in the perfor-
mance of the proposed fine-tuned pretrained language model,
we also adopted the dataset from Choetkiertikul et al. [7] to
evaluate the proposed model.

Kangwanwisit et al. [20] conducted various word-based
experiments to find proper feature extraction and classi-
fication techniques for the component prediction. For the
feature extraction task, various techniques such as bag of
word (BoW) [42], N-gram [5] IDF, and TF-IDF were con-
sidered. The experimental results showing the performance
of the classification task when using Support Vector Machine
(SVM) [9], Gradient Boosting (GB) [15], and Random Forest
(RF) [4] were also reported. Their analysis indicated that
TF-IDF and RF were the best in extracting the textual fea-
tures and classifying the issues, respectively. They collected
approximately 68,000 reports with title and description infor-
mation for the experiments.

As described above and in Table 2, some approaches
have predicted components using machine learning or deep

learning methods. Each study has proposed a different word-
based method, but the studies use the same information from
the issue report dataset: the title and description. In addi-
tion, various approaches toward automatic bug triage [21],
[26], [39] using deep learning methods have been actively
conducted recently. Thus, we also reviewed automatic bug
triage research and found that it uses the title and description
information from the issue report repository to predict a
developer (assignee). Thus, the bug triage research method
can be adopted in the field of component prediction due
to the similarity of information and method. As a result,
we describe the bug triage research below to investigate this
for component prediction.

B. AUTOMATED BUG TRIAGE
Lee et al. [21] proposed the convolutional neural net-
work (CNN)-based [32] deep learning model to predict the
assignee (developer) using the title and description informa-
tion extracted from industrial issue reports. They collected
14,583 issues consisting of 225 assignees.

In a bug triage field, the number of the assignees becomes
a class, which is the component in component prediction.
Thus, it is difficult to compare the prediction performance
between the proposed and Lee et al. [21] method. However,
the similarity of the information that the data feature extracts
from the title and description can prove that deep learning
methods, such as the CNN, and pretrained language models
can adopt component prediction.

Mani et al. [26] collected a dataset from Google
Chromium, Mozilla Core, and Mozilla Firefox, which are
reliable open-issue repositories. They aimed to predict the
assignee (developer) using the recurrent neural network
(RNN) [16]. However, they found that some developers
who contribute less than others decrease the performance
of the RNN-based model. Thus, they deleted the issue
reports according to the number of contributions of the
developer. As a result, they obtained a significant result
in top-k accuracy, which refers to the top-k developers,
from the contribution-based and RNN-based deep learning
methods. In addition, they suggested the importance of the
dataset quality by conducting contribution dataset regenera-
tion. Thus, these results are evidence of the proposed second
task method, which downsamples the dataset by deleting the
components with few issues.
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TABLE 3. Dataset summary for the tasks 1 to 3.

Zaidi et al. [39] adopted the bidirectional encoder repre-
sentations from transformers (BERT) [11] model, which is
a pretrained language model to predict the developer using
the title and description information extracted from the work
by Mani et al. [26] and data collected from Mozilla4 and
NetBeans5. They also adopted the contribution-based down-
sampling method that Mani et al. [7] used to address dataset
problems. Through the experiments, they achieved better top-
k accuracy results than Lee et al. [21] andMani et al. [7] Thus,
this finding indicates that the proposed fine-tuned pretrained
language model can predict components correctly because
the component prediction dataset has fewer classes, which
were developers in Zaidi et al. [39] study.

Through the details above, we found important informa-
tion for automatic component prediction. First, the dataset
of every related work should have or share the method to
address the data imbalance in an issue report dataset. Due to
its generation method, data imbalance is a characteristic of
the issue report dataset. Many issues come from users, which
can bias the model toward common functions, such as the
user interface (UI), general, and debug, which occur easily
and more often than other components.

Second, component prediction and bug triage have simi-
larities due to their methods and information. Previous stud-
ies do not consider the source code or stack trace because
they cannot view all of the information in the issue report.
If the stack trace or source code becomes model input, the
language-based model trained by common sentence data can-
not understand the meaning of the input, reducing the model
performance.

The third critical point is the lack of issue report data. Most
related studies shared or constructed the dataset to predict the
components or developers, making it challenging to compare
the performance of each study’s proposed method. Thus,

4https://bugzilla.mozilla.org/
5https://netbeans.apache.org/

we suggest a task-based dataset downsampling method and
our dataset for issue report-based research to overcome these
problems.

C. PRETRAINED LANGUAGE MODEL
Before sentence-based pretrained language models were pro-
posed, word2vec [8], FastText [18], and Glove [28], which
are based on word-embedding methods, were primarily used.
These word-embedding-based methods initialize the embed-
ding layer to train the models and use the embedding algo-
rithm in word2vec to implement the already-trained embed-
ding layer. These methods have some problems because each
word is embedded into the same vector; thus, they cannot
understand the information of the entire sentence.

Furthermore, transformer-based [36] language models,
such as ELMo [29] and BERT [11], have been proposed
to overcome the limitations of the word-based model. Var-
ious embedding vectors exist in an issue report dataset, the
main source of automatic component prediction. Therefore,
we adopted the transformer-based pretrained language model
BERT to increase the accuracy of component prediction.

D. BERT AND IMPROVED MODELS
In 2018, Google proposed BERT [11], a pretrained language
model based on text data using Wikipedia for 2.5 billion
words and a book corpus of 800 million words using trans-
formers. Moreover, BERT uses large-scale data to require rel-
atively considerable computing resources and learning time
compared to existing models. However, it has better results
than existing models by fine-tuning pretrained models in
complex problems. Subsequently, several follow-up studies
have been conducted to improve the performance of BERT.

In this paper, we fine-tuned the BERT-based [11] model to
overcome the limits of word-based models. We compared the
accuracy of automatic component prediction with previous
studies by fine-tuning the robustly optimized BERT approach
(RoBERTa) [23] and the BERT based on it.
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FIGURE 4. Example of dataset pre-processing. Boxes show the original
data (above) and the Pre-processed data (below), respectively.

Facebook Artificial Intelligence proposed RoBERTa to
improve the performance of the existing BERT model. They
trained the BERT model by adding training data, adjusting
hyperparameters, and reselecting the training data to conduct
replication learning. Through deletion, next sentence predic-
tion improves the maximum sequence length, diversifies the
masking pattern, and improves performance compared with
BERT.

III. DESIGN AND IMPLEMENTATION
This section discusses the method and experiments of the
fine-tuned pretrained language model. Moreover, it presents
the task-based downsampling method to improve the perfor-
mance of the automatic component prediction model.

A. DATASET COLLECTION
Section I and II describe the necessity of adopting an appro-
priate issue report dataset. Thus, we attempted to deter-
mine an appropriate dataset from previous work. However,
we could not find a suitable dataset without Choetkier-
tikul et al. [7] data because most datasets based on the
bug triage method to determine the developer do not
include component information. Thus, we adoptedChoetkier-
tikul et al. [7] dataset to evaluate the performance of the
proposed fine-tuned pretrained language model. By adopting
their dataset, we can directly compare performance to demon-
strate the robustness and confidence of the proposed method.

We also generated a dataset from reliable open-issue repos-
itories, as presented in Table 3. These data came from
Bugzilla Firefox,6 Eclipse Foundation,7 and Eclipse Commu-

6https://bugzilla.mozilla.org

FIGURE 5. Validation loss graphs for the task-based experiments on
Bugzilla Firefox dataset.

nity.7 To create the proposed dataset, we selected resolved,
solved, and closed issues, meaning that the components were
already assigned. Thus, the dataset comprised around 60,000
issues consisting of 137 components.

B. DATASET PREPROCESSING
Fig. 1 indicates that issue reports include various informa-
tion (e.g., title, description, component, product, type, etc.).
However, in this paper, we only used the title and descrip-
tion information to predict components, similar to previous
work [7], [35], [38] Thus, we arranged the dataset to be
suitable for the proposed model, as illustrated in Fig. 4. The
issue report dataset consists of natural language that is not
standardized, and many people do not follow standards; thus,
directly using the dataset as input to a model is challenging
without preprocessing. In addition, the dataset consists of
various issue report repositories and Choetkiertikul et al. [7]
work. Therefore, a suitable preprocessing method must be
built for the proposed model.

Based on the issue report datasets, the preprocessing meth-
ods are as follows:

7https://bugs.eclipse.org/bugs
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TABLE 4. The number of issues in the projects for each task based method.

1) Delete the new line tags (e.g., \n and \p) from the JSON
data format,

2) Delete the URL in a sentence that does not need it for
component prediction,

3) Delete the stack trace,
4) Delete the hex code,
5) Separate the dataset into training and testing data,
6) Return a tokenized dataset suitable for the model.

The preprocessing data method in this paper is similar to
the method for the existing transformer-based model. Espe-
cially in an issue report dataset, there can be stack traces.
However, in component prediction, the stack trace is not
essential data because it consists of method calls or source
code. The BERT-based language model is pretrained using
Wikipedia and a data corpus consisting of common sentences
that do not have source code information. Thus, the source
code information threatens the BERT-based model.

Furthermore, we implemented the human triager method
using the title and description information to assign compo-
nents suitable for component prediction. Thus, we decided

to delete the stack trace, which is nonessential in component
prediction. Last, we shuffled the dataset to avoid focusing on
one class while separating data into 80% for training and 20%
for testing.

C. DEALING WITH DATA IMBALANCE
As listed in Table 4, most datasets are biased in specific com-
ponents. Through the experiment, Fig. 8 and Table 6 reveal
that bias issues can be obstacles to training the model. Thus,
we propose a task-based method to address data imbalance
problems.

In the second task, we deleted the components with fewer
than 50 issues, similar to Choetkiertikul et al. [7] method.
Choetkiertikul et al. [7] invalidated the number of compo-
nents that they deleted. Thus, we empirically deleted com-
ponents with fewer than 50 issues, demonstrating improve-
ments in the dataset. We deleted about 1% of the dataset.
To determine the confidence of the second task deletion
method, we compared the performance between deleting
50 and 100 issues (Fig. 5). We found that deleting 50 issues
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FIGURE 6. The structure of our learning model for automatic component prediction.

exhibited improvement compared with the original data, but
no difference was found between deleting 50 and 100 issues.
Therefore, we deleted 50 issues for the second task.

The validation loss had not yet stabilized in the first and
second tasks (Fig. 5). To stabilize it, we downsampled the
dataset with more issues than average. We obtained a better
result through the third task, as presented in Fig. 8, without
compromising the issue report dataset characteristics.

By comparing each task, we determined the proper dataset
normalization method suitable for automatic component pre-
diction when most datasets are imbalanced.

The data handling method presented in Table 4 addresses
the following tasks:

Task 1: Keeping the original dataset without removing any-
thing.

Task 2: Deleting the issue reports with the components
appearing in the dataset fewer than 50 times.

Task 3: Downsampling the issue reports by limiting the
number of issues per component to the average of
the total issues.

D. FINE-TUNED PRETRAINED LANGUAGE MODELS
The pretrained language models implemented in this paper
are BERT and RoBERTa, which are based on the trans-
former [36]. Thus, we must tokenize the data using a BERT-
based tokenizer, which is suitable for the proposed model that
is unlike the word-based methods. As illustrated in Fig. 6,
we can obtain tokenized testing and training data through
data preprocessing. The model trains using the training data
while conducting backpropagation to update the model. After
training the model, the model is reverified to classify the
recall at k, which indicates the top-k components.
The existing BERT-based models exhibit a decrease in

accuracy while conducting multilabel classification [22],
which is difficult to classify for many classes, such as
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FIGURE 7. The overview of fine-tuned hidden layers.

component prediction or bug triage. Thus, it is necessary
to fine-tune the models to conduct multilabel classification.
Due to its limitations, it is impossible to predict components
that consist of many classes, as presented in Table 3. Thus,
as depicted in Fig. 7, we fine-tuned themodel to classifymany
classes to predict components.

We fine-tuned the pretrained language models, BERT and
RoBERTa, for the classification task. Note that the number of
components (classes) that need to be classified varies depend-
ing on the project (e.g., Eclipse Platform: 19, Eclipse Founda-
tion: 41, Bugzilla Firefox: 51). Thus, the classifier layer needs
to be fine-tuned to handle different number of classes. Fur-
thermore, we collected the best parameters, such as weight
decay to 5e-6 and learning rate to 5e-6 through the exper-
iment, which are important metrics in BERT-based models
[34]. Those best parameters are described in Section III-F.

E. EXPERIMENT ENVIRONMENT
During the evaluation, we ran the previous study’s exper-
iments to compare the performance of the proposed fine-
tuned model. The task-based experiment was conducted in
the same environment: Intel(R) Xeon(R) Silver 4214R CPU
@ 2.40 GHz and two Nvidia GeForce RTX 3090 with 24 GB.

F. EVALUATION OPTIMIZATION
In this paper, we used the dataset from a previous study to
evaluate the performance of the proposed fine-tuned model.
We also employed this dataset to evaluate the performance of
the downsampling task-based method. We set the parameter
values for the weight decay to 5e-6, the learning rate to 5e-6,

and the batch size to 300. To avoid overfitting problems,
we conducted a set on various weight decay and learning
rate values (e.g., from 1e-6 to 5e-6). We found that the
training with the weight decay and learning rate at values
other than 5e-6 makes the model vulnerable to underfitting
or overfitting. We set the dropout value to 0.1.

We trained the proposed model for 1,500 steps during the
experiment and applied early stopping when the validation
loss stabilized. We obtained a steady decrease in validation
loss and an increase in validation accuracy throughout the
experiment. Thus, this result suggests that applying the down-
sampling method proposed in Task 3 can effectively handle
imbalanced issue report data. We adopted the AdamW [24]
algorithm for the optimization method and set the β1 to
0.9 and β2 to 0.999, respectively. In addition, we adopted a
deepspeed [30] scheduler to schedule the learning rate during
the training. Thus, we set the minimum learning rate to 0 and
the maximum learning rate to 5e-6 during the 150 steps.
We adopt the recall@k metric to evaluate the performance of
the proposed method.

IV. RESULTS
The baseline models [7], [20], [35], [38] consist of a
word-based method with its own vocabulary, which might
not consist of suitable information for predicting components
in new issues. Thus, the proposed fine-tuned pretrained
language models predict components using the sequence
information from the sentence, which can respond to the new
issues correctly. It is much more effective, time-consuming,
and cost-effective in themodern software field tomanage new
issues.

Furthermore, we constructed the model with the title,
description, and component data that the triager uses to triage
the component in the real world. Thus, the proposed method
is more effective in any triage system that manually triages
the components.

We evaluated the proposed component prediction method
and addressed the following research questions:

• RQ 1) Are the proposed fine-tuned pretrained language
models more effective than the method from the previ-
ous work in automatic component prediction?

• RQ 2) Is the proposed method significantly better than
the baseline method to predict the top-k components?

• RQ 3)Are the proposed task-based methods appropriate
in an imbalanced issue report dataset?

A. RESEARCH QUESTION 1
Table 5 presents the validation recall score of the pre-
trained BERT-based component prediction model, pretrained
RoBERTa-based prediction model, and DeepSoft-C method.
The RoBERTa and BERT-basedmodels achieved better recall
scores than DeepSoft-C for all datasets. The RoBERTa-based
model had better recall for the top five components than
BERT for every dataset except the Hbase and Fedora
CloudSync datasets.
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TABLE 5. Evaluation result of R@k (recall at k) compared with the baseline paper [7].

TABLE 6. Evaluation result of R@k for the task based methods.

The Infrastructure data comprise 10,166 issue reports with
51 components. It turns out that the dataset is highly imbal-
anced. Note that the BERT-based model shows only 1%
higher accuracy than DeepSoft-C. In contrast, RoBERTa
achieves 11% higher accuracy than DeepSoft-C. Similarly,
the Fedora CloudSync dataset is imbalanced, too, and it has
only 1,617 issues and 22 components. We suspect that the
data imbalance contributed to the overfitting and rendered the
accuracy difference of RoBERTa andDeepSoft-C to only 3%.

Issue reports may contain a homonym which cannot be
distinguished by a word-based model and this might lead to
decreased accuracy. In addition, component prediction typi-
cally requires large number of classes, and the learning ability
tends to decrease when the number of classes increases. Our
experimental results show that using the fine-tuned pretrained
language model proposed in this paper can yield good results
in such environments.

A similar trend was found for the top-10 component
prediction. The BERT and RoBERTa models outperformed
DeepSoft-C. However, the RoBERTa-based model outper-
formed the BERT-based model for the Hbase dataset, which
differs from the observation for the top five components.
Recall scores at 15 components also presented a trend similar
to the top five components, where the RoBERTa-based model
had better results than the BERT-based model for all datasets
except the Fedora CloudSync and Hbase datasets.

In an automatic component prediction evaluation, the recall
at five is a strict evaluation for the models. Thus, the higher
recall scores at five suggest that the proposed fine-tuning
method is suitable for component prediction using pre-
trained language models. In summary, the proposed pre-
trained RoBERTa-based fine-tuned model is a better than

the proposed pretrained BERT-based fine-tuned model and
baseline DeepSoft-C method for component prediction.

It is common to fine-tune the BERT-based language mod-
els to a specific task as shown in various previous approaches
such as [40] and [37]. Our experimental results reveal that
our fine-tuned pretrained language models also achieve better
performance through the fine-tuning methods described in
Section III and Fig.7. To the best of our knowledge, this is
the first work that uses a sentence-based model to predict
components for issue reports.

B. RESEARCH QUESTION 2
Throughout the experiments, the proposed methods showed
better recall at k compared to the baseline method as pre-
sented in Table 5. Specifically, to evaluate the performance
of the proposed method, we adopted 11 datasets, which came
from the baseline paper [7]. In addition to the comparison
of the experimental results, we performed statistical tests to
check the significance of the results by comparing the recalls
at the top 5, 10, and 15 components.

The Friedman test [13] was performed to check the overall
significance of the results with a 95% confidence interval.
The test had a p-value of less than 0.05, confirming the
significance of the results. Then, a Wilcoxon–Holm posthoc
test [17] was performed to identify the significantly better
model for top-k component prediction among the proposed
and baseline models. The pairwise testing had a p-value of
less than 0.05 for all pairs, confirming the significance of the
methods.

Furthermore, the Demšar diagram [10] in Fig. 9 was built
to rank the comparative methods for predicting the top 5,
10, and 15 components. The RoBERTa-based method was
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FIGURE 8. Validation loss for the tasks 1-3 on Bugzilla Firefox dataset3. Task 2 stopped at the step 1,000 due to its early stabilization.

the best method out of all three methods. The average ranks
for RoBERTa, BERT, and DeepSoft-C are 1.1818, 2, and 3,
respectively. The Demšar diagram confirms the significant
difference in the results of all three methods because there is
no connection between the methods in the Demšar diagram
for the top 5, 10, and 15. In the Demšar diagram, a connection
between the twomethods indicates an insignificant difference
in the results. In summary, the statistical tests suggest that the
RoBERTa-based method and the BERT-based methods are
significantly better than the BERT-based component predic-
tion method.

C. RESEARCH QUESTION 3
We evaluated the task-based method by comparing the dif-
ference in the validation loss graph described in Fig. 8.
We experimented with the Bugzilla Firefox dataset using the
fine-tuned BERT model.

Task 1 was evaluated with the original dataset, which did
not apply any methods. We found that the validation loss
does not decrease evenly. Thus, we adjusted the learning
rate, the standard method to address the problem. Despite
our efforts, the validation loss and accuracy do not evenly
decrease or increase. Therefore, the collected dataset also has
a data imbalance problem, like most previous studies.

FIGURE 9. Demšar diagram for the experimental results.

Choetkiertikul et al. [7] deleted components with insuffi-
cient issues on their standard to address the Task 1 problem.
Thus, we deleted the components that consisted of fewer
than 50 issues. As we described in Fig 5 and Section III,
Choetkiertikul et al. [7] did not explain the states of the com-
ponent deletion. Therefore, we deleted 50 issues, empirically
comparing the validation loss when deleting components with
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0 or fewer than 50 or 100 issues. In Task 2, we obtained good
results, demonstrating a more even decrease in the validation
loss than in Task 1. However, Fig. 8 reveals that the decrease
of validation loss still fluctuates beginning at 400 steps.
Therefore, Task 2 suggests that only deleting the components
is not always the proper method to address imbalanced data.

We proposed Task 3 to resolve the limitations of Task 2,
which is downsampling the dataset. Table 4 indicates that
most issue report data are easily biased due to their charac-
teristics. During the triage cycle, common issues are triaged
into common components (e.g., Bugzilla Firefox: General,
Eclipse Foundation: CI-Jenkins, Eclipse Platform: UI), which
frequently occurs during the software life cycle. Thus, only
deleting components with a few issues is insufficient to
address the biased data. These bias issues are considered
characteristic of the issue report repository.

Therefore, we downsampled the components to obtain
a higher-than-average number of issues for each reposi-
tory. Through Task 3, based on the downsampling method,
we obtained an even decrease in validation loss (Fig. 8). Fur-
thermore, Table 6 presents a 54% increase in the recall at 15 in
the Eclipse Foundation dataset, the most imbalanced data.
Thus, the proposed task-based method that downsampled the
dataset without compromising the characteristics of the issue
report repository is useful in component prediction.

V. THREATS TO VALIDITY
The lack of issue report datasets with component information
may threaten the robustness of this research. Our study uses
datasets imported from several open issue repositories, and
each dataset contains almost 20,000 issues per repository.
Compared to the datasets of the previous work [6] targeting
for the component prediction which contain an average of
12,916 issues per repository, the size of our datasets seems
comparable. In contrast, a recent study [26] targeting for the
developer prediction uses a dataset containing nearly 200,000
issue reports. Note that the component field can be omitted
when writing a issue report. Therefore, there are many issue
reports without the component information, which makes it
difficult for researchers to obtain enough datasets for the
component prediction.

Another potential threat is that we utilize only the title and
description information in an issue report when predicting
its component information, which is similarly done in the
previous work [7]. As mentioned in Section I and Fig. 1 each
issue report may contain various information other than the
tile and description. For example, the information such as
issue reporter and product name could be also utilized for the
prediction. Furthermore, the component information can be
used to predict the developer and vice versa. We are planning
to explore this in our next study.

We use a task-based method to address the dataset
imbalance problem in this study. During the experiments,
we observed improvements in the recall at k and a steady
decrease in validation loss. However, deleting the biased
component withmore than the average number of issues is not

a fundamental solution for an imbalanced dataset. Especially,
deleting issues might lose important information for training
the model even if we shuffle the dataset.

VI. CONCLUSION
In this paper, we proposed an approach to improve the per-
formance of automatic component prediction by using the
pretrained language models which are sentence-based deep
learning. We argued that the previous approaches relying
on word-based deep learning models did not provide suf-
ficient performance. Specifically, we fine-tuned the BERT
and RoBERTa to fit the issue report dataset consisting of
various classes. We believe that because the sentence-based
pretrained models use information from the whole sequence
of information, it also contributed to the performance of
the proposed approach, providing better experimental results
than those from the study by Choetkiertikul et al. [7]

We collected the issue reports from various open-source
issue repositories to evaluate the performance of the pro-
posed model. Using the task-based methods, we effectively
addressed the imbalance problem in the dataset. We obtained
a 45% improvement compared with the method from the pre-
vious work. The method for Task 3 exhibits a 54% improve-
ment in the recall at 15 in the Eclipse Foundation dataset in
Table 6. Furthermore, the task-based method also improves
the performance of the training model and obtains high accu-
racy on all datasets. This method improves the performance
of component prediction and demonstrates the importance of
dataset quality.

Finally, the experimental results for the proposed method
suggest that fine-tuned pretrained language models are effec-
tive for automatic component prediction. Our proposed
method showed decent accuracy even in a small dataset envi-
ronment, indicating that if sufficient datasets with compo-
nents are prepared in the future, we can expect better per-
formance in component prediction. Thus, we plan to employ
data augmentation methods in issue reports in future work.
Retraining a pretrained language model suitable for an issue
report dataset can improve automatic component predic-
tion. Especially in industrial environments, triaging issues
manually can be very inefficient due to frequent software
updates and expanded scope of the project and stakeholder.
Thus, we expect to apply our proposed approach to industrial
projects and evaluate its effectiveness.
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