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Abstract—Large-scale distributed-antenna system (L-DAS)
with very large number of distributed antennas, possibly up to a
few hundred antennas, is considered. A few major issues of the
L-DAS, such as high latency, energy consumption, computational
complexity, and large feedback (signaling) overhead, are identified.
The potential capability of the L-DAS is illuminated in terms of an
energy efficiency (EE) throughout the paper. We firstly and gener-
ally model the power consumption of an L-DAS, and formulate an
EE maximization problem. To tackle two crucial issues, namely
the huge computational complexity and large amount of feed-
back (signaling) information, we propose a channel-gain-based
antenna selection (AS) method and an interference-based user
clustering (UC) method. The original problem is then split into
multiple subproblems by a cluster, and each cluster’s precoding
and power control are managed in parallel for high EE. Simu-
lation results reveal that i) using all antennas for zero-forcing
multiuser multiple-input multiple-output (MU-MIMO) is energy
inefficient if there is nonnegligible overhead power consumption
on MU-MIMO processing, and ii) increasing the number of
antennas does not necessarily result in a high EE. Furthermore,
the results validate and underpin the EE merit of the proposed
L-DAS complied with the AS, UC, precoding, and power control
by comparing with non-clustering L-DAS and colocated antenna
systems.

Index Terms—Energy efficiency, distributed antenna system,
large-scale networks, large MIMO, clustering.

I. INTRODUCTION

L ARGE-SCALE (or massive) multiple-input mul-
tiple-output (L-MIMO) techniques have been rigorously

studied to tremendously improve spectral efficiency (SE,
b/s/Hz) of wireless communications. The L-MIMO employs
very large number of colocated antennas, which can effectively
mitigate small-scale (local) distortion such as noise at the
receiver and fast fading (see [1]–[4] and the references therein).
On the other hand, a distributed-antenna system (DAS) is also
one of the promising technologies to effectively improve SE
of wireless communications. The DAS is implemented with
multiple distributed antennas (DAs) through base stations (BSs)
located in different cells, i.e., coordinated multipoint (CoMP)
transmission (see [5] and references therein), or through dis-
tributed radio remote heads typically located in the same cell.
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Thus, the DAS can mitigate large-scale fading (path loss) using
the many antennas distributed geographically. The SE of DAS
has been mainly studied (see. e.g., [6]–[10]). In [6], the authors
show proportional relationship between SE and the number of
DAs. A suboptimal power control method and a simple antenna
selection (AS) method are proposed to improve the SE [7].
It is shown that a single DA usage is preferable to full DA
usage in multicell scenario [8], while the opposite results are
observed in a single, isolated cell [9] and also in a multiuser
(MU) scenario [10].
DAS’s channels are typically modeled as the composite

channels including uncorrelated large- and small-scale fading
channels, which are a crucial part of motivation of a DAS
technique and differentiate the DAS from L-MIMO tech-
niques. Note that all colocated antennas suffer almost identical
large-scale fading and highly correlated small scale fading.
With the common goal, i.e., high SE, it is natural step to con-
sider very large-scale DAS (L-DAS) to obtain the synergy for
further SE improvement}. Nevertheless, the L-DAS has rarely
been studied due to the ambiguity of cost of very large-size
networks. To observe the tradeoff between the cost and benefit,
and to quantify the efficacy of L-DAS, we consider an energy
efficiency (EE, b/J) that is the total number of reliably decoded
bits normalized by the consumed energy. The EE is a widely
used metric in wireless communications recently to find a
Pareto optimality between throughout and energy consumption
(see e.g., [11], [12]). The SE-EE tradeoff has been analyzed for
a single user (SU) in DAS systems [13], and EE optimal power
control has been proposed for DAS to support an SU [14]. In
[15], the authors show convergence of total transmit power and
per-user sum rate when the number of DAs and users approach
to infinity like an L-DAS, and provide an asymptotical EE
that is a ratio between per-user sum rate and total transmit
power. However, total transmit power does not imply total
power/energy consumption in practice due to the overhead
power consumption at the transmitter. Though the overhead to
process additional DAs has been recently addressed in [16],
the EE behavior of L-DAS is still unclear and difficult to be
conjectured from the existing studies, especially for an MU
scenario. Note that the power consumption of L-DAS prohibi-
tively increases as the network size increases.
In this paper, the EE of L-DAS is studied in MU scenario.

We model an L-DAS transmitter and its power consump-
tion including the overhead. An EE maximization problem
is formulated under constraints on per-antenna transmit
power and per-user rate to select DAs, design MU precoding,
and control transmit power. To tackle the original, compu-
tationally intractable optimization problem, we propose a
channel-gain-based AS method and a interference-based user
clustering (UC) method, which enable us to split the original
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Fig. 1. Illustration of an L-DAS transmitter with a BBU and DAs. The BBU consists of one baseband, electric-RF (eRF), and optical-RF (oRF) modules.
Each DA consists of one-pair of remote oRF and eRF modules. The TPD term is the th summand in (5).

problem into multiple cluster-based subproblems. The multiple
subproblems can be solved in parallel, resulting in computa-
tional complexity and feedback (signaling) reduction. Each
subproblem is further divided into precoding design and power
control problems. EE-aware precoding is derived for each
cluster, and the per-cluster optimal and heuristic power control
algorithms are then proposed. To further improve EE, addi-
tional DA assignment and clustering threshold adaptation are
considered. Simulation with practical parameters is performed
to observe an average EE over clustering threshold, number
of users, and network size. The results of the paper will be a
useful reference for further study of energy efficient L-DAS.
The summary of main contributions and results of our work:
• We propose an L-DAS, which is a new, natural extension
of L-MIMO to DAS systems.

• We provide a practical power consumption model for the
L-DAS, which can be readily modified and applied to any
types of distributed systems (Section III).

• We formulate an EE maximization problem for a general
L-DAS setup (Section III), and solve it through a subop-
timal, decomposition strategy.

• We propose simple AS and UC methods to split the orig-
inal problem (Section IV), which enables a cluster-based
design, resulting in reduction of computational complexity
and signaling overhead.

• We generalize the results in [17] for the precoding
(Section V) and per-cluster optimal and heuristic power
control (Section VI) of L-DAS.

• We show informative simulation results, under the prac-
tical power consumption model (Section VII).
— Using all DAs for MU-MIMO could be an energy-inef-
ficient strategy if there is nonnegligible overhead power
consumption for MU-MIMO precoding.

— Increasing the number of DAs does not necessarily re-
sult in a high EE. In other words, there exists EE optimal
network size.

— The L-DAS complied with the AS, UC, precoding, and
power control improves EE compared to non-clustering
L-DAS and colocated antenna systems.

II. L-DAS SYSTEM AND ITS ISSUES

We consider an L-DAS with one central unit, called a base-
band unit (BBU) or a signal processing center, DAs, and

user equipments (UEs) (refer to Fig. 2(a) in Subsection IV-C).
L-DAS has a very large number of DAs compared to the number
of UEs, i.e., . For simple demonstration, a grid an-
tenna layout is depicted in Fig. 2(a), yet any type of antenna
layouts, such as circular and random layouts, can be applied
to our system model1. All DA ports are connected to the BBU
through a noise-free wired fronthaul for coordinated and coop-
erative communications. Since a passive optical network (PON)
can support data rate up to 2.4 Gbps with low power consump-
tion of around 1W per subscriber [22], PON can be one possible
implementation of the optical fronthaul in L-DAS.
Particularly, the BBU consists of a baseband module and

RF modules, each of which consists of an electric RF (eRF)
module and an optical RF (oRF) module as shown in Fig. 1. The
baseband module performs various digital signal processing,
such as digital up conversion, channel encoding, and modula-
tion (see more examples in Fig. 1), and distributes the digital
signals to eRF modules. Each eRF module converts the dig-
ital electric-signals to analogue electric-signals, which are sub-
sequently converted to optic-signals through an electric-to-optic
(E/O) converter at the oRF module. The oRF module is con-
nected to the remote oRF module at DA port through optical
fiber. Each DA port consists of the remote oRF and eRF mod-
ules. The remote oRF module converts optic-signals to elec-
tric-signals via an optic-to-electric (O/E) converter, and the eRF
module simply emits the electric-signals through a variable gain
amplifier (VGA), a driver, and a power amplifier (PA) followed
by RF antenna. The power consumption of each module is mod-
eled precisely in Section III.
Since an L-DAS is characterized with the very large number

of DAs, the following issues will need to be addressed.
• Processing delay (computational complexity): It occurs
from the centralized, huge computation at the BBU. A
cloud-processing at a cloudlet can support a BBU of
L-DAS to relieve the high processing delay [23]. Through
the proposed AS and UC methods in Section IV, parallel

1A generalized DAS employing multiple distributed transmitters with mul-
tiple colocated antennas, {e.g., CoMP [18], [19], or employing multiple DAs
[17], [20], [21] can be exploited as the L-DAS. Note that multiple transmitters
can be implemented by multiple DAs with identical power amplifiers, which
is a reasonable approach based on the results in [21], which reports that equal
power output capability (POC) of transmitters provides further EE merit com-
pared to the unequal POC.
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processing per cluster is possible, resulting in complexity
and processing delay reduction.

• Fronthaul delay: Distributing signals from BBU to DA
ports experiences a fronthaul delay. The fronthaul delay
is different from a backhaul delay, which is caused by the
limited backhaul capacity and signaling among different
cells [18], [19], as it occurs within the same cell. Signif-
icant fronthaul delay can be avoided from delay-tolerant
optical fiber (around 5 s/km) and a residual optical delay
tuner (up to 15 ns) [24].

• Propagation delay: There is a delay in propagation of
transmit signal from DA port to UE. Due to the large
number of DAs distributed over the coverage area, we can
almost always find the proper DA which is sufficiently
close to the US such that the propagation delay is negli-
gible. With 25 to 900 DAs, intra-antenna distance (IAD)
that is a minimum distance of neighboring DAs varies
from 30 m to 200 m (refer to Section VII), which is the
coverage of small cells, such as pico and femto cells,
where the propagation delay is not critical issues.

• Feedback (signaling) overhead: For the MU-MIMO,
the required amount of channel state information (CSI)
is enormous due to the large number of DAs (refer to
Subsection IV-C). The burden of severe signaling over-
head can be effectively reduced from the proposed AS and
UC followed by the cluster-based parallel processing.

• Energy consumption: To activate many DAs, high en-
ergy or power consumption is expected. However, as we
pointed out in Section I, the energy consumption behavior
of L-DAS is unclear. Throughout the paper, we focus on
EE characterization of L-DAS and propose EE-improving
baseband algorithms.

• Remaining issues: A synchronization issue is tightly re-
lated to the delay issues. To completely resolve the rec-
ognized delay issues and synchronization issues is out of
scope of our work. Please refer to Section VIII for other
notable, remaining issues.

Parts of issues of L-DAS, such as high computational com-
plexity, resource consumption for feedback overhead, and
energy consumption, have been rigorously considered in the
paper. For convenience, some notations and symbols used
throughout the paper are listed in Table I.

III. EE MAXIMIZATION PROBLEM FORMULATION

For simplicity, we assume that i) each UE has a single receive
antenna and ii) any channel matrix constructed from the selected
DAs is full rank. Denoting a received signal at UE by , its
vector form is written as

(1)

where is a -by- MU-MIMO channel matrix2; is an
-by- binary, transmit AS matrix whose th element

if the th DA is selected for UE , and

2The channels are assumed to be sufficiently static forMU-MIMO precoding,
i.e., large coherence time of channels. This assumption is supported by realizing
a user association or scheduling, which groups users who move with a low
mobility less than 1 km/h for example.

otherwise; is an -by- precoding matrix; is a -dimen-
sional diagonal matrix whose th diagonal element deter-
mines a power portion assigned to UE is
a transmit signal vector where is a transmit symbol to UE
with ; and is an additive white
Gaussian noise (AWGN) vector whose th element is an
AWGN at UE and obeys the complex normal distribution with
a zero mean and a variance, i.e., . The th el-
ement of represents a channel gain consisting of
the path loss and the small scale fading between
DA and UE . The channels are assumed to be inde-
pendent and identically distributed (i.i.d.).
The received signal-to-interference-plus-noise ratio (SINR)

of UE is derived from in (1) as

(2)

Under sufficient input backoff assumption, a PA input signal
is linearly amplified and the PA output signal has a Gaussian
distribution [12]. Hence, we can further assume that UE can
achieve throughput over bandwidth Hz as3

The system throughput per unit time (bits/sec) is then written as

(3)

Now, we propose a power consumption model which coin-
cides with signal model (1) and captures the effect of the core
design factors of L-DAS, such as , and maximum output
power of DA. The power consumption function of L-DAS
transmitter is basically modeled as two parts as

(4)

where the first part is a transmit power dependent (TPD)
term and the second part is a transmit power independent
(TPI) term (refer to Fig. 1).
The TPD power consumption is the sum of all TPD terms of

DAs as

(5)

where is a system dependent power loss coefficient ,
which can be empirically measured, is the efficiency of PA
at the th DA , and the th element of

3We consider the system performance after equalization. The equalizer can be
located at the receiver or the transmitter in the form of orthogonal frequency-di-
vision multiplexing (or similar techniques), and is assumed to be able to remove
the effects of inter-symbol interference (ISI) over any frequency band. The ISI
therefore is ignored from the performance evaluation of our system with arbi-
trary .
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the matrix inside a bracket is the transmit power of DA . The
average transmit power of DA is derived from (1) as

The TPI power consumption is modeled as

(6)

where is the power consumption of an RF circuit, which
is proportional to the number of RF chains and depends on the
type of eRF and oRF modules; is the power consump-
tion of signal-processing at BBU, which depends on baseband
processing including precoding is the overhead
power consumption for signaling to obtain CSI, which depends
on network size ; and is the fixed power consumption in-
cluding a part of power consumption at, for example, a power
supply, an alternating current to direct current (AC/DC) con-
verter, a DC/DC converter, and an active cooling system at BBU
and/or DAs. We further precisely model , and

in (6) as follows (refer to Fig. 1):

(7a)

(7b)

(7c)

In (7a), is the power consumption of eRF module at
BBU for DA , which includes digital-to-analogue (D/A) con-
verter, filters, synthesizer, and mixer; is the power con-
sumption per unit-bit-and-second of oRF modules connected
the th fiber line, which includes possibly modulator driver,
laser, optical amplifier, and E/O and O/E converters; and is
a target rate of UE .
In (7b), the first term is proportional to the number of active

RF chains with order of . The active RF-chain number is
the same as the dimension (number of columns) of precoding
matrix . The exponent implies the overhead power con-
sumption of MU processing compared to SU processing. For
example, if , there is no overhead for MU-MIMO signal
processing computation4. If , MU-MIMO signal pro-
cessing computation consumes relatively higher power than SU
signal processing. The maximum of exponent is assumed to
be no greater than two as the computational complexity for
-dimensional MU-MIMO precoding, e.g., zero-forcing (ZF)

MU-MIMO precoding, is roughly , while that for SU is

4This is the same power consumption model as [17], [21], in which
the high power consumption for MU-MIMO precoding was not addressed. For
example, if and , there is no difference of signal processing
power consumption between four-individual SU processing and single 4-by-4
MU processing.

; therefore, is a reasonable assumption. In the
second term of (7b), is the signal processing related power
consumption per unit frequency at the baseband module, which
is independent of the number of active RF chains.
In (7c), is the signaling power consumption for channel

estimation per frequency at the baseband module, which de-
pends on a network size. Here, we simply model the network
size as a linear function , which actually depends on network
topology. The reasonable value of is assumed to be between
0.5% and 50% of (see Table II in Section VII).
From (3) and (4), we express a system EE (not the sum of

per-user EE) as a function of , and as

and formulate the EE maximization problem as follows:

(8a)

(8b)

(8c)

(8d)

(8e)

where (8a) is the objective function; (8b) follows a per-antenna
average power constraint5, which is induced by different max-
imum power capability of the PA, denoted by , and radio
regulations; the inequalities in (8c) are per-user rate constraints,
i.e., quality-of-service (QoS) constraints; (8d) follows from the
diagonal structure of ; and (8e) is for AS.
The problem (8) may be infeasible as (8b) and (8c) give the

upper and lower bounds of transmit power, respectively, which
may not be satisfied simultaneously for any selected DAs and
precoding. In the infeasible case, two possible options may be
to i) discard the outage UEs who do not achieve their own target
rate, and solve again the new optimization problem with the re-
maining feasible UE set, and ii) reduce the target rates of the
outage UEs. Note that it is difficult to immediately check the
feasibility of the problem. Assigning all DAs to all UEs does
not guarantee the feasibility. Rather than that, the use of all DAs
may increase infeasibility because it increases the dimension of
channel matrix, resulting in high probability of ill-conditioned
channel matrix. The ill-conditioned channel matrix increases
transmit power while the transmitter performs ZF-MU-MIMO
precoding. Similar effect on L-MIMOwith ZF-MU-MIMOwas
reported in [3]. If a particular DA exceeds its maximum output
power, transmit power of all DAs coupled through the ZF prop-
erty should be scaled down, resulting in significant throughput
degradation. This gives us a strong motivation to consider AS
for the L-DAS with ZF-MU-MIMO later.

5Per-antenna instantaneous transmit power constraint is considered to avoid
PA clipping effect in [21], while per-antenna average power constraint is con-
sidered in [17]. The average transmit power is also an important metric to char-
acterize the transmitter’s efficiency and used typically in transmitter design (see
e.g., [25]).
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TABLE I
SOME NOTATIONS AND SYMBOLS USED IN THIS PAPER

Obtaining jointly by directly solving (8) is diffi-
cult due to i) the non-convex objective function and constraints6,
ii) the integer optimization variables , and iii) the enor-
mous computational complexity of handling the very large size
of matrices . Moreover, obtaining the full CSI, i.e.,
-by- complex-valued matrix , at the BBU is a burden for

the network and resource management. Therefore, instead of
solving (8) directly, we propose i) a suboptimal, cluster-based
decomposition approach by determining in Section IV, and
ii) further decomposition of the per-cluster subproblem into two
optimization problems to find and in Sections V and VI,
respectively.

IV. ANTENNA SELECTION AND USER CLUSTERING

To resolve the complexity issues of solving (8), we proposed
the antenna selection (AS) and user clustering (UC) methods
which enable us to decompose (8) into multiple subproblems
by a cluster. We cluster the UEs (or equivalently the selected
DAs) based on an SINR threshold such that inter-cluster in-
terferences (ICIs) are small enough to split the original opti-
mization problem (8) into the cluster-based subproblems. Con-
sequently, cluster-based parallel computation and feedback can
reduce computational complexity and feedback (or signaling)
information, and make an L-DAS practicable.

6Contrary to the power minimization problem in [5], which can be relaxed
to second-order cone program and solved efficiently with the branch-and-cut
(BnC) method, (8) is still non-convex even after the continuous relaxation. Fur-
thermore, since computable upper bound for problem (8) is unavailable, BnC
type of methods is not applicable to (8).

A. Antenna Selection (AS) Algorithms

As mentioned in the previous section, AS could be a crucial
strategy to improve EE of the L-DAS with ZF-MU-MIMO.
Moreover, our previous studies on a fundamental SE-EE
tradeoff [12] motivate us to consider an AS strategy, which
can control SE-EE tradeoff and achieve the Pareto optimal
tradeoff [11], [17], [21], [26], [27].
There are a few heuristic algorithms for the AS, such as

channel norm based (CNB) greedy, precoding norm based
(PNB) greedy, and power consumption based (PCB) greedy
algorithms [17]. However, the CNB-, PNB-, and PCB-greedy
algorithms are irrelevant for the large-size network. The three
greedy methods initially assign all DAs and discard one DA in
each iteration sequentially; thus, they prohibitively require high
computational complexity as or increases. Precisely, the
time complexities of CNB-, PNB-, and PCB-greedy algorithms
are , and , respectively [17]. To
circumvent the high complexity, we propose two simple-yet-ef-
fective AS algorithms that determine the set of DAs assigned
to UE , denoted by , and the corresponding AS matrix .
1) Channel-Gain-Based (CGB)-Greedy AS Algorithm: The

CGB-greedy algorithm assigns each UE to a single DA based on
the channel gain, e.g., received signal strength indicator (RSSI)
used for 3GPP-LTE [28]. In other words, a UE and a DA are
paired with each other whose channel gain is as large as pos-
sible. Since the BBU is able to differentiate RSSIs received from
different DAs, no additional resource is required.
Let be a predetermined number of DAs that are supposed

to be assigned to UE .We assign DA to UE whose channel
gain is the strongest, and discard the DA from the subsequent
allocation procedure. If DAs are assigned to UE , discard
the UE from the subsequent allocation procedure. This allo-
cation procedure is repeated until all UEs are discarded.
Note that full CSI is not required for the AS procedure, and

that the original AS is an combinatorial problem, yet
the greedy AS algorithm requires only time complexity
with for sorting channel gains. Thus,
the computational complexity is also reduced dramatically com-
pared to the existing greedy algorithms. The CGB-greedy AS
algorithm is summarized in Algorithm 1.

Algorithm 1: CGB/MDB-greedy AS algorithm

1. Initial setup:
, and

given ’s.
2. while do
3. find .
` ' for CGB, for MDB

4. set and
5. if then
6.
7. end if
8. end while

2) Minimum-Distance-Based (MDB)-Greedy AS Algorithm:
Instead of channel gains, distance information between DA
and UE , i.e., , can be considered for the AS. This strategy
is typically considered for a simple system without prepro-
cessing at the transmitter, to reduce signaling information and
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backhaul overhead [7]. If the BBU has the location information
of UEs with free, the MDB-greedy method can simplify the AS
procedure as the BBU can omit the RSSI detection procedure.
This motivates us to consider a simple MDB-greedy algorithm.
However, if BBU needs to perform the localization, the sig-
naling power consumption model in (7c), which is designed
for CGB-greedy algorithm, should be modified. To observe
the effect of signaling power consumption on EE, we consider
various values of for EE evaluation in Section VII.
The basic structure of MDB-greedy algorithm is the same

as the CGB-greedy algorithm except the metric at line 3 in
Algorithm 1.

B. User Clustering (UC) Algorithm

After the AS, DAs are dedicated to the specific UEs according
to , and we can then define a minimum SINR between two
UEs and as (9) at the bottom of this page. The SINR in (9)
is defined under the assumptions of maximum transmit power
and maximum ratio combining, and it can be interpreted as a
distance metric between UE and for UC. Based on the dis-
tance (not physical distance) between UEs, we cluster UEs who
are close to one another. In other words, if two UEs are located
too close to each other and the corresponding SINR is too low
due to the strong inter-user-interferences (IUIs), we cluster and
support them by using MU-MIMO precoding.
Denote the set of UEs in cluster by such that

and where and . With a given
minimum distance , UE will be included to cluster if their
distance is shorter than as follows:

(10)

where the distance metric between two clusters is defined as

(11)

The complexity of the UC is linear, e.g., between and
for a hierarchical clustering algorithm [29]. Denoting a

cluster set by , the proposed UC algorithm is
summarized in Algorithm 2.

Algorithm 2: User clustering (UC) algorithm

1. Initial setup: distance , clusters where
, and given .

2. while do
3. find the distance of most closest pair of clusters
and , i.e., in (11).

4. if then
5. merge clusters as .
6. update .
7. end if
8. end while

C. Cluster-Based Subproblems

Once we complete the UC with , the ICIs are suppressed
such that the minimum SINR in (9) is greater than . Assuming
sufficiently high and the correspondingly negligible ICIs7, the
SINR (2) of UE in a cell is rewritten with only IUIs within the
cluster as

(12)
where , and are per-
cluster AS, precoding, and power control matrices, respectively.
and consist of column vectors and , respectively,

where . is a diagonal matrix whose diagonal elements
consist of , where . Hence, the per-cluster EE is
defined accordingly as

(13)

where, from (3)–(7),

Here, is the number of DAs assigned in cluster and is
the set of DAs assigned to cluster .
Using obtained from AS to (13), we split the original

problem (8) into multiple subproblems by the cluster as

(14a)

(14b)

(14c)

(14d)

7For example, there are no ICIs if , as there is only one cluster. In the
case, supporting all UEs with MU-MIMO through the DAs in the cluster yields
different (long) propagation delays and synchronization issues. However, with
a typical between 20 dB and 30 dB, both assumptions of negligible ICI and
short propagation hold, because i) neighboring UEs typically consist a cluster,
ii) the clusters are generally separated far away from one another for the high
EE as shown in our numerical results in Section VII, and iii) there is no joint
beamforming (i.e., MU-MIMO precoding) among the clusters.

(9)
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Fig. 2. Illustration of AS and UC for 20 UEs and 400 distributed antennas (DAs). (a) AS through a CGB/MDB-greedy algorithm with
. (b) Clustering through Algorithm 2 with dB. (c) Clustering through Algorithm 2 with dB.

Since the subproblem (14) can be solve in parallel over ,
the computational complexity of the original problem can
be significantly reduced. Furthermore, since

in (12), the required CSI for cluster
is the cluster-based channel matrix instead of the full channel
matrix . Let be a channel matrix of cluster
that consists of row vectors . Then, precisely, the
required CSI information to solve (14) is only the th columns
of , where . In other words, we need only
complex values for the cluster . The remaining values in other
columns of can be set to be zeros as they will be discarded
by AS matrix during the optimization. Hence, the feedback
(or signaling) information can be significantly reduced from

complex values for to complex values for
. In the example of Figs. 2(b) and (c), 48 and

160 complex values are required for the CSIs, respectively,
which is huge reduction compared with the 8 000 complex
values for a naive system without AS and UC.
From Jensen’s inequality, i.e.,

, we see that the per-cluster EE max-
imization in (14) is equivalent to maximize the EE upper
bound of the original problem (8). Thus, optimality loss arises
from the EE upper bound maximization in (14). However, the
decomposition strategy provides reasonable performance if
the bound is sufficiently tight, and the tightness depends on
as follows. As the clustering threshold increases, cluster

size increases and the number of clusters decreases to one (see
Fig. 2). In the case, (14a) is identical to the original objective
function (8a) without any optimality loss. On the other hand,
as decreases, the number of clusters increases resulting in
optimality loss. To mitigate the optimality loss, we consider
adaptive algorithms for the number of assigned DAs to each
UE and the clustering threshold .

D. Adaptive Algorithms for and

To mitigate the optimality loss and avoid the outages, it is
worth exploring additional DA assignment to the outage UE
if there are unallocated DAs in a network, i.e.,
. For the additional DA assignment, we increase at line

1 of Algorithm 1. With a limit of iterations, denoted by ,
the AS adaptation algorithm is summarized in Algorithm 3. In

Algorithm 3, precoding and power control in lines 7 and 8 will
be introduced in the subsequent sections.

Algorithm 3: adaptation algorithm for AS

1. Initial setup: , and
.

2. while & do
3. AS: Algorithm 1.
4. UC: Algorithm 2 with a threshold .
5.
6. for cluster do
7. precoding: (20).
8. power control: Algorithm 5 or (28).
9. if power control is infeasible &
10. then add one additional DA to UE who has

the weakest channel gain, i.e., where
s.t., .

11. end if
12. end for
13.
14. end while

The clustering threshold in (10) can be also adjusted to avoid
outage or to further improve EE. If we increase , the cluster size
will increase, while the number of clusters will decrease. Ac-
cordingly, throughput increases due to the reduced actual ICIs
after precoding and power allocation in lines 7 and 8, respec-
tively, while the processing complexity will increase due to the
enlarged cluster size, i.e., MU-MIMO matrix size (see example
in Fig. 2). On the other hand, if we decrease , the cluster size
will decrease,while thenumber of clusterswill increase.Accord-
ingly, the processing complexity can be decreased due to the par-
allel processingwith smallMUorSUmatrices,while throughput
may decrease due to the increased actual ICIs. Therefore, there
exists an optimal threshold for achieving EE maximum. If the
network has sufficiently high capability to adapt , the optimal
can be found numerically by using for example an one-dimen-

sional line search in Algorithm 4 and a bisection search. From
the numerical results in Section VII, we observe the existence of
optimal and the adaptation of can manage the actual ICIs to
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improve EE. Depending on the network requirement of the com-
putational complexity and latency, maximum number of adap-
tations will be limited.

Algorithm 4: adaptation algorithm for UC

1. Initial setup: , and .
2. compute with : Algorithm 3.
3. compute with : Algorithm 3.
4. if then
5. and .
6. else
7. compute with : Algorithm 3.
8. if then and .
9. else end if
10. end if
11. while & do
12. compute with : Algorithm 3.
13. if then .
14. else end if
15.
16. end while

V. PRECODING DESIGN

Multiple UEs in a cluster are supported by MU-MIMO pre-
coding to overcome strong IUIs. Note that a single UE in a
cluster is a special case of the MU scenario. We assume that
will be designed to satisfy (14b)–(14d) for given from

AS. Then, the th subproblem (14) is simply rewritten as

(15)

Since a ZF-based precoding is near optimal with respect to
the SE if the signal-to-noise ratio (SNR) is high enough [30],
[31], it is employed for the MU-MIMO precoding of DAS [32].
Assuming the ZF-MU-MIMO precoding , all UEs in
share the selected DAs with one another; therefore, the AS ma-
trix is reconstructed as where

. Equivalently, we can write the effective
channel matrix as , where

is a diagonal matrix whose diagonal ele-
ments are the elements of vector . The ZF-MU-MIMO pre-
coding cancels perfectly IUIs in the cluster.
Following a general ZF property, the effective channel matrix

is a diagonal matrix. Noting that the different values
of diagonal elements can be implemented by power control ,
without loss of generality (w.l.o.g.), the ZF property is degener-
ated to , where is an -dimensional identity
matrix. Thus, we express the structure of ZF-MU-MIMO pre-
coding matrix as

(16)

where is a -dimensional arbitrary matrix.
Using the structure in (16), we can simplify the per-cluster

SINR of UE in (12) to an SNR as

(17)

and obtain an optimization problem equivalent to (15):

(18)

where (a) follows the fact that rate does not depend on as the
SNR (17) is not a function of ; (b) follows that affects
only on TPD term for given and ; and (c) follows that
equal POC is preferred for high EE as reported in [21], and
is then a constant.
Again, using (16) to (18), we have an optimization problem

with respect to as

(19)

where we use the property of a Frobenius norm that
. Since the lower bound of the objec-

tive function in (19) is obtained when is a zero matrix
(refer to the Appendix in [17]), the EE-aware precoding matrix
becomes a conventional ZF-MU-MIMO precoding matrix as

(20)

For an SU cluster, refer to Remark 1.
Remark 1: There is no loss of SE optimality of cluster when

cluster includes a single UE, i.e., , because (20) is an
optimal beamforming for the SU cluster.

VI. POWER CONTROL

We now propose a cluster-based power control method. Per-
cluster optimal power control methods are proposed for SU and
MU clusters. A simple heuristic power control method is also
proposed for the MU cluster.

A. Optimal Power Control for MU Cluster

Consider an MU cluster , which supports multiple UEs.
For given and , which are obtained in Sections IV and
V, respectively, (14) is rewritten as

(21a)

(21b)

(21c)

(21d)
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By introducing an additional variable , we rewrite (21) as

(22a)

(22b)

This rewriting of the optimization problem introduces an
additional constraint (22b) to the problem. However, for
fixed , the (21b) and (21c) are convex constraints and
(21d) is linear constraint; therefore, the feasibility of this
optimization problem can be checked through solving a
convex feasibility problem [33]. This optimization problem is
quasi-convex, and the optimal can be found through sequen-
tially solving the convex feasibility problem at each step of the
bisection of . We present the bisection search in Algorithm 5.

Algorithm 5: Per-cluster optimal power control for MU

1. setup: , and a tolerance value,

2. while do
3.
4. Solve convex feasibility problem with constraints
(21b), (21c), (21d) and (22b), and find (update) .

5. if infeasible then
6. else end if
7. end while
8.

The complexity of Algorithm 5 for cluster is approximately
, where is the degree of accuracy we desire in

finding the optimal energy efficiency. This complexity analysis
follows from the fact that we need to solve, essentially, a semi-
definite program at every iteration, which costs about ,
and the number of required iterations to get the optimal en-
ergy efficiency within is [33]. To circumvent the high
complexity of per-cluster optimal power control, we consider a
non-iterative power control method in the next subsection.

B. Heuristic(Optimal) Power Control for MU(SU) Cluster

For simple closed-form solution, we modify (21). To this end,
we decompose the power control matrix as

(23)

where is a common power scaling factor for power limit
of PAs and target rate of UEs in cluster is a diagonal
matrix with the diagonal element ; and is the relative
power portion of UE , such that and

. The relative power portion factors are deter-
mined, heuristically, based on the minimum required power for
the target rate as follows [21]:

(24)

where is the minimum required power to satisfy (8c) when
ZF-MU-MIMO is employed, and it is derived as

Using (23) and (24) to the power constraint (21b), we have
the upper bound of as

(25)

On the other hand, using (23) and (24) to the QoS constraint
(21c), we can get the lower bound of as follows:

(26)

Thus, if satisfies (25) and (26), i.e., ,
any satisfies (21b) and (21c).
Now, for simple closed-form solution of (21), we maximize

EE lower bound instead of EE. Using (23) and an inequality
that , problem (21) can
be modified to maximize the EE lower bound, which is tight as
observed in [21], as follows:

(27a)

(27b)

where
; and

. Note
that all , and in (27) are constant
values for given , and ; and the objective function
(27a) is a quasi-concave function over . Therefore, we
can readily find the maximizer , which makes the first
derivative of the objective function in (27a) to zero, as

Considering the feasible region (27b), we get the optimal fea-
sible solution of (27) as

and obtain the heuristic power control matrix as

(28)

Since the solution in (28) is obtained from heuristic approach,
namely EE lower bound maximization and fixed in (24),
it yields performance degradation compared to in
Subsection VI-A. However, it is noticeable that the solution
in (28) has a tractable, closed-form expression, and the perfor-
mance gap is marginal as shown in the next section. Moreover,
there is no optimality loss for SU cluster as stated in Remark 2.
Remark 2: Since the EE lower bound is identical to the EE of

the SU cluster and in (24), there is no optimality loss
from power control (28) for the SU cluster.
The heuristic power control method is an algorithm.

This can be seen from the fact that the bottleneck procedure
includes the multiplication of two -dimensional matrices to
find in (27). Hence, the highest complexity order is .
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TABLE II
SIMULATION PARAMETERS FOR L-DAS/L-CAS [12], [28], [34], [35]

VII. PERFORMANCE EVALUATION AND DISCUSSION

Computer simulations are conducted to examine the average
EE performance of the proposed L-DAS. Since an instantaneous
EE is set to be zero when an outage happens, the outage per-
formance is already involved in the average EE performance.
The EE performance depends highly on the power consump-
tion models, i.e., the power consumption of TPD and TPI terms
in (5) and (6), respectively. The simulation is performed under a
typical L-DAS scenario, in which the TPI power consumption is
dominant compared to the TPD power consumption due to the
low power transmission of DAs. With , the TPD power
consumption is observed to be the portion of the TPI power con-
sumption lower than 3% in our simulation. The PA efficiency8 of
all DAs is set by 8%, i.e., , at the maximum transmit
power 17 dBm. The BBU performs the centralized, complex
processing as a macro BS, yet DA port covers small areas like
the small BSs. Hence, we follow macro BS’s power consump-
tion model for BBU, while follow a small cell BS, such as pico
and femto BSs, for DA’s power consumption model. Refer to
Table II for other detailed parameters, which are obtained from
recent studies [12], [28], [34], [35]. Note that providing the ac-
tual, accurate measurement of the parameters is out of scope of
our work.

A. Average EE Over Clustering Threshold

Fig. 3 shows average EEs over clustering threshold with
various MU-MIMO-processing power consumption order
when and . One extreme case with
yields SU clusters, each of which includes an SU; thus, it
is called a full SU scheme. Other extreme case with
yields a single MU cluster including all UEs who are supported

8High input backoff is desired to avoid nonlinearity at the PA, around 12 dB,
because a sophisticated, complex linearization method, e.g., predistortion, is not
available the simple DA port. Hence, the PA efficiency is very low.

Fig. 3. Average EE over clustering threshold with various power consump-
tion models when , and nW/Hz.

by ZF-MU-MIMO simultaneously, which is called a full MU
scheme. If there is less penalty for MU precoding computation
compared to SU precoding computation, i.e., , EE in-
creases as increases up to the saturation of EE when .
In other words, the full MU scheme achieves the highest EE.
This is because MU-MIMO achieves the higher throughput
than interference-limited SU scheme and there is small addi-
tional power consumption for the MU signal processing. Note
that ICIs are inversely proportional to the threshold.
On the other hand, if the power consumption penalty for MU

precoding increases, i.e., , the overhead MU-MIMO-pro-
cessing power consumption decreases significantly the EE. We
observe that there exists the optimal and the EE turns to de-
crease if . In other words, the EE can be severely reduced
if there are toomanyMU clusters in the network. As increases,
MU signal processing has more penalty on MU-MIMO-pro-
cessing power consumption, and decreases, resulting in more
SU clusters for high EE. Note that the depends on various pa-
rameters, such as , and the power consumption model, and
thus, it is difficult to be found analytically. An EE gap between
per-cluster optimal and heuristic power control is negligible in
the points contiguous to the maximum EE when the penalty of
power consumption for MU precoding is nonnegligible.
For the sake of comparison, we add the average EE of a

large-size colocated antenna system (L-CAS). The L-CAS
can be interpreted as one naive implementation of L-MIMO
system that employs a full MU with a simple AS method that
selects antennas which give the largest average channel
gains. The L-CAS may have sufficiently powerful processor to
compensate nonlinear effects at the PAs; therefore, the L-CAS
BS can employ a PA with much higher efficiency than the DAs
in L-DAS. In simulation, we set the PA efficiency of L-CAS by
60%, i.e., , with the corresponding signal processing
power consumption increased by 10%. Furthermore, we set

pW/bit/s as there is no oRFs. Numerical result
shows that EE performance of L-CAS is very poor because of
the high power consumption to overcome the large path losses.
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Fig. 4. Average EE over number of UEs, , with various UC thresholds
when , and nW/Hz.

Fig. 5. Average EE over network size, , with various ’s when
, and dB.

B. Average EE Over Number of Users

Fig. 4 shows average EEs over with various UC thresholds
when and . Two extreme cases of UC

schemes with and are compared with a UC
with fixed by 22 dB, which is a proper threshold based on the
results in Fig. 3 and allows both MU and SU schemes. The full
MU scheme achieves higher EE than the full SU scheme with
heuristic power control, because the MU-MIMO-processing
power consumption is not dominant when and the full
MU-MIMO achieves higher throughput than the full SU case.
As increases, UC with dB achieves higher EE than
full MU scheme because the MU-MIMO-processing power
consumption increases severely and becomes dominant, which
is noticeable as the large number of UEs is our interest of this
work. However, when there are small number of UEs, less than
nine, full MU scheme outperforms the system with dB.

Using Algorithms 3 and 4 in Subsection IV.D, and can
be adapted and EE can be improved over any number of UEs.
For the adaptation parameters, we use

dB, and the initial threshold dB. Per-cluster
optimal power control further improves the EE.

C. Average EE Over Network Size

Fig. 5 shows average EEs over network size , i.e., the
number of DAs (not active DAs), when ,
and dB. We evaluate EEs with three different signaling
power consumption models with nW/Hz.
The average EE increases as increases because severe path
loss can be circumvented with the increased degree of freedom
of AS. On the other hand, the network power consumption will
also increase as increases, due to the nonzero even with
a proper AS. Therefore, an EE increases and turns to decrease
as increases, and the optimal network size is observed, e.g.,
around with nW/Hz. As expected, the EE
optimal network size decreases as increases.

VIII. CONCLUSION

In this paper, we have considered EE maximization problem
for an L-DAS. The power consumption of L-DAS transmitter
has been modeled. A simple channel-gain-based antenna selec-
tion and SINR-threshold-based user clustering methods have
been proposed to reduce the computational complexity of pre-
coding and power control and, at the same time, to reduce the
signaling overhead. Iterative algorithms to adapt the number of
assigned antennas and the clustering threshold have been con-
sidered. Numerical results have validated the potential of the
L-DAS.
Remaining issues for further work regarding deployment, im-

plementation, and operation of L-DAS include cell planning,
regular/irregular deployment of antennas, synchronization for
large cluster, robustness against CSI error, infrastructure cost for
wired optical fronthaul, and a comparative, quantitative study of
L-DAS and L-CAS considering capital expenditure and opera-
tional expenditure.
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