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ABSTRACT ARTICLE HISTORY
Applying data mining techniques for rainfall modeling because of a lack of sufficient memory com- Received 5 July 2021
ponents may increase uncertainty in rainfall forecasting. To solve this issue, in this research, a Accepted 11 November 2021
deep-learning-based long short-term memory (LSTM) model is developed for the first time for fore-

casting monthly rainfall data, and its capability is compared with a random forest (RF) data-driven g:::\{;fg:g’. forecasting;
model. To this end, monthly rainfall data for a period of 41 years (1980-2020) from two meteoro- long short-term memory;
logical stations in Turkey, namely Rize and Konya, with different climatic conditions, are used. The rainfall; random forest;
analysis is carried out using optimum window sizes for determining the optimum lag times of rainfall Turkey

time series. The performance of the models is evaluated using five statistical measures, namely root
mean square error (RMSE), RMSE-observations standard deviation ratio (RSR), Legate and McCabe's
index (LMI), correlation coefficient (R) and Nash—Sutcliffe efficiency (NSE), and also using two visual
means, namely Taylor and violin diagrams. The results reveal that the LSTM model, as a more effi-
cient tool, outperforms the RF model in forecasting rainfall at both stations, with improved RMSE of
12.2-14.9%, RSR of 12.3-14.8%, R of 9.4-13.5% and NSE of 32.9-33.2%. The LSTM-based approach
proposed herein could be adopted over any global climatic conditions to forecast the monthly
rainfall with reasonable accuracy.

/ \ & LST™ ® ® ® |\
1 I 1
| ! | Noumvem N bl oo
i i i A Lebed A 1
i | |
I : I\ e ® ) i
| e A I = |
| | | = 4 = |
Original rainfall time series ‘ RR X 9 |
| = % I l
1|3 | | RF x ]
i in | § | | | = ’ |
et M bl Mg i B
| 0 20 00 w | | |
I
: i G|
| / - ) - | | |_RMSE, RSR, LML R, NSE “Taylor, Violin, and Box Plots |
| ! | Jl |
1| E® ! | |
i s
1| s | | f |
\ ! \ IR | ) !
A\ 7 \ sl /7

CONTACT Qian Zhang @ 20200420@wzu.edu.cn; Changhyun Jun @ cjun@cau.ac.kr; Shahab S. Band @ shamshirbands@yuntech.edu.tw

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.


http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/19942060.2021.2009374&domain=pdf&date_stamp=2022-01-10
http://orcid.org/0000-0002-7134-0067
http://orcid.org/0000-0001-6109-1311
mailto:20200420@wzu.edu.cn
mailto:cjun@cau.ac.kr
mailto:shamshirbands@yuntech.edu.tw
http://creativecommons.org/licenses/by/4.0/

ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS . 249

1. Introduction
1.1. Problem statement

Rainfall is a dynamic meteorological variable, which
affects different hydrological and agricultural processes
both directly and indirectly. It behaves as a natural agent
by governing the natural hydrological cycle, and, sub-
sequently, affects the regional crop water requirements.
Despite its significance in maintaining the hydrologi-
cal cycle, sometimes excessive rainfall leads to flooding
disasters, which, in turn, adversely affect societies and
human civilizations. The situation may be exacerbated
by the dynamic environmental and landscape conditions
of a region. Hence, quantification of the possible rainfall
magnitude over a region well in advance will have a use-
ful impact on the decision-making process. In Turkey,
a substantial amount of spatial variation in rainfall is
noticed, in that a considerable part of Turkey is suscep-
tible to dry conditions due to a lack of adequate rain-
fall. This leads to acute water scarcity problems during
lean periods, adversely affecting agricultural operations.
These inherent variabilities associated with Turkey’s cli-
matic pattern necessitate the accurate prediction of plau-
sible rainfall scenarios over the concerned region well in
advance.

Rainfall prediction has remained a major global con-
cern within the scientific community for the past few
decades. The major challenges faced in the process of
rainfall prediction include its random nature and its fre-
quency. Moreover, the unavailability of long-term his-
torical data renders the rainfall prediction process more
intricate and cumbersome. As far as the occurrence of
rainfall is concerned, a given atmospheric condition may
yield rainfall and sometimes it may not. Hence, a clear
understanding of the atmospheric processes that play a
crucial role in governing the occurrence of rainfall over a
region is essential. Furthermore, rainfall is an interlinked
phenomenon that is implicitly influenced by other mete-
orological variables such as minimum and maximum
temperature, pressure, relative humidity and wind speed.
Hence, the consideration of these associated meteorolog-
ical parameters in the rainfall prediction process is of
utmost importance. Since rainfall is a major variable that
has a correlation with certain adverse natural phenom-
ena, such as flood movements, avalanches, landslides and
drought, the accurate prediction of rainfall can serve as
an early warning system for adverse natural processes.

With advances in science and technology, numerous
techniques such as data mining, artificial intelligence,
deep learning and machine learning are employed in
the field of rainfall prediction. These advanced tech-
niques can address the inherent stochastic and non-
linear behaviors involved in the rainfall prediction

mechanism (Nayak et al., 2013). The rainfall predic-
tion process is accompanied by two fundamental pro-
cesses, namely dynamic and empirical approaches. The
dynamic approach incorporates process-based equations
by means of physical models to predict rainfall over a
region. However, considering the cost, computational
efficiency and expertise needed to operate these models,
the generalized application of this approach has been lim-
ited in the rainfall prediction application domain (Dash
et al., 2018). Under such a scenario, the empirical data-
driven approach seems to be the best possible alternative,
with limited input data availability and cost-effectiveness.

The chaotic behavior of atmospheric conditions,
coupled with the associated meteorological variables,
hinders the application of the conventional empirical
approach for rainfall prediction. A machine learning-
based approach has proved to be the most feasible tech-
nique, by extracting hidden patterns from the histori-
cal rainfall data. Prior to the processing of rainfall and
other meteorological variables using a suitable machine
learning algorithm, the most common preprocessing
operations, namely dusting and normalization, have to
be performed to reduce the noise and bias present in
the raw data. Commonly used data mining techniques
in practice include artificial neural networks (ANNs),
gene expression programming (GEP) and support vector
machine (SVM). Most of these data mining approaches
have had considerable application in hydrological mod-
eling fields, including rainfall-runoff modeling (Hosseini
& Mahjouri, 2016) and evapotranspiration modeling
(Elbeltagi et al., 2020). The random forest (RF) tech-
nique has also emerged as a powerful machine learning
algorithm owing to its inherent potential for quick train-
ing and high flexibility with classification algorithms,
which can work well for all types of data, namely balanced
data and unbalanced data (Breiman, 2001). However,
the applicability of RF algorithm to the field of rainfall
prediction is yet to be evaluated.

Nevertheless, meteorological data sets are subject to a
high degree of autocorrelation and the forecasting pro-
cess may become complex with data mining approaches.
Furthermore, the lack of a sufficient memory component
in the conceptualization of the algorithm leads to the dis-
appearance of gradients in the network, thereby increas-
ing the predictive uncertainty in rainfall prediction. To
solve this issue, deep learning methods are becoming
widely used in complex hydrological problems such as
wind prediction (Liu et al., 2018), evaporation predic-
tion (Majhi et al., 2020) and streamflow prediction (Fu
etal.,, 2020). In deep learning methods, which are a type of
machine learning method, the machines think similarly
to humans. Deep learning is a collection of algorithms,
the primary goal of which is to model high-level concepts
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in data sets. Deep learning modeling is accomplished by
the use of a deep graph composed of numerous pro-
cessing layers that incorporate a variety of linear and
nonlinear transformations.

1.2. Literature review

In recent years, studies have been carried out on rain-
fall modeling (forecasting or prediction) using different
data mining models, such as ANNs (Samantaray et al.,
2020; Zhang et al., 2018), GEP (Danandeh Mehr, 2018),
SVM (Samantaray et al., 2020; Yu et al., 2017), RF (Jakhar
etal., 2020; Yuetal., 2017), decision tree (Gupta & Ghose,
2015) and hybrid intelligent models (Choubin et al., 2017;
Danandeh Mehr et al., 2019; Yen et al., 2019; Abdul-
Kader, Salam, & Mohamed, 2021). In general, however,
there are few studies about rainfall forecasting using data
mining models in the literature.

The long short-term memory (LSTM) model is a
deep learning model that has been successfully applied
to rainfall-runoff simulation (Hu et al., 2018; Kratzert
etal., 2018; Li et al., 2021). Nevertheless, there have been
only a few studies on rainfall prediction. Poornima and
Pushpalatha (2019) proposed an intensified LSTM model
to predict rainfall in the Hyderabad region of India,
and compared it with the LSTM, Holt-Winters, autore-
gressive integrated moving average (ARIMA), extreme
learning machine (ELM) and recurrent neural net-
work (RNN) models. The proposed method showed
promising results. Haq et al. (2021) used an LSTM
model and rainfall parameters, including El Niflo and
the Indian Ocean Dipole (IOD), to predict rainfall in
Indonesia, and obtained accurate predictions, with a
mean arctan absolute percentage error (MAAPE) value
0f 0.58.

1.3. Research aims

Based on the best knowledge of the authors, there have
been no studies on rainfall forecasting using an LSTM
model. Hence, in the present study, for the first time,
an LSTM model is used for rainfall forecasting. More-
over, as another innovation, a fixed sliding window is
applied for determining the best lag time for the LSTM
model’s inputs with a computer program. Alternative
methods that have been used in the literature to select the
optimal lags of rainfall are the autocorrelation function
(ACF), partial autocorrelation function (PACF), aver-
age mutual information (AMI), principal component
analysis (PCA), RF and relief algorithm (Mohammadi
et al., 2020; Sumi et al., 2012). The third innovation of
the present research is that performance of the fixed
sliding window LSTM method will be evaluated using

Taylor diagrams. The chosen study area in this research is
Turkey, which is characterized by different climatic con-
ditions, from humid to semi-arid, experiencing varying
degrees of rainfall behavior throughout the year. Hence,
it is useful to evaluate the efficacy of machine learning-
based and LSTM-based approaches in rainfall forecast-
ing over an area with varying topographic and climatic
conditions, and the obtained results could be used as
a guiding tool for researchers, engineers and decision
makers.

In light of the above discussions, the specific research
gaps of these studies are outlined as follows: (1) in
past rainfall forecasting studies, the classical data min-
ing models were applied to model rainfall; and (2) the
efficacy of different data mining approaches in rain-
fall forecasting studies is yet to be evaluated thor-
oughly. Considering these gaps, the present studyhas
the following specific objectives: (1) to develop fixed
sliding window machine learning-based LSTM and RF
frameworks for forecasting rainfall; and (2) to compare
the performances of the two developed approaches in
reproducing rainfall characteristics in two locations in
Turkey.

2. Materials and methods

2.1. Long short-term memory (LSTM) neural
network

The LSTM model, which is an RNN method, has the
ability to learn long-term relationships and dependen-
cies (Hochreiter & Schmidhuber, 1997). It can generate
errors without vanishing gradients by adding cell modes
with constant errors. Unlike other RNNs, LSTM, instead
of having one layer of neurons, has four layers of neu-
rons that interact according to a specific structure. LSTM
has quadruple the parameters and computational cost
of RNN. It has three gates and a network for comput-
ing memory input. The input or update gate serves to
check whether the information obtained from the cur-
rent moment is worth storing in long-term memory.
The output gate is used to transfer only the information
that needs to be output. The role of the forget gate is
to check the memory time in the memory cell and to
forget unnecessary past information. Parameters to be
determined using training data comprise the number of
hidden layers and neurons, maximum epoch and learn-
ing rate. Batch size can be determined algorithmically
or randomly. Functions in the gates are determined and
computed based on the expected error and maximum
epoch (Cai et al., 2020; Salman et al., 2018). The architec-
ture of the LSTM layers is presented in Figure 1, where
X is a time series having C channels with a length of S,
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Figure 1. Long short-term memory (LSTM) layer architecture (Mathworks, 2020).

Ct represents the cell state at time step t, and ht is the
output or hidden state (Mathworks, 2020). To compute
the first input and output states, the first LSTM is used
for the first time step of the series and the early state of
the network. For computing the input cell state and out-
put (ct), the current state of the network (ct —1, ht —1)
and the next time step of the sequence are used in this
block at time ¢.

The state of the layer includes the cell state and output
(hidden) state. At time step ¢, the output state includes the
output of the LSTM layer. The cell state has information
on the previous steps. At any time step, the layer removes
or adds information from or to the cell state. The gates
control these updates. To control hidden and cell state,
several ingredients of the LSTM architecture are imple-
mented. The cell state update level is controlled by the
input or update gate (i), and the cell state level, which is
added to the output state, is controlled by the output gate
(0). The cell candidate (g) adds information to the cell
state, and the cell state reset level is checked by the forget
gate (f). A schematic diagram showing the flow of data at
time step ¢ is shown in Figure 2. For further details, please
refer to Cho et al. (2020).

Forget Update Output

Ciq —0 !\ > C,
© 00 OJ'

b I t t f .
X

Figure 2. Schematic diagram showing flow of data at time step t
(Cho et al., 2020).

2.2. Random forest (RF)

The RF model includes a group of randomized regres-
sion trees that perform by developing large numbers of
regression trees and then collecting them to obtain a sin-
gle output (Figure 3). It creates a valid error estimated by
applying out-of-bag (OOB) data, and estimates covariate
importance by changing the arrangement order of values
of each covariate in the OOB sample and predicting OOB
samples using the changed variable (Zhao et al., 2012).
The change in the OOB error then provides an indica-
tion of the importance of that covariate in the data set.
The efficiency of the RF model depends on two parame-
ters, namely ntree (the number of trees in the forest) and
mtry (the number of auxiliary data points in each random
subset), which are optimized by increasing mtry from 1 to
10 (the total number of covariates) and ntree from 100 to
10,000 by increments of 100 (Ghorbani et al., 2020; Were
etal., 2015).

2.3. Study area and data used

This research uses the monthly rainfall data from two
meteorological stations in Turkey. The locations of
Turkey and these two stations (Rize and Konya) are
shown in Figure 4. Rize Station, in north-east Turkey,
has a humid climate, and Konya, in central Turkey, has
a semi-arid climate. Rainfall data for 41 years, ranging
from 1980 to 2020 (486 records), have been compiled
by the Turkish State Meteorological Service for both sta-
tions. The observed monthly rainfall time series and heat
maps of monthly rainfall data for Rize and Konya Sta-
tions are presented in Figure 5. It is clear from Figure 5(b)
that the extreme value of rainfall between April and
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Figure 3. Structure of the random forest (RF) model.
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Figure 4. Locations of meteorological stations in the case study.

September has decreased at Rize Station; however, it
seems that there is no trend in rainfall values for Konya
Station, and high rainfall values are seen between Febru-
ary and July. Statistical properties of the rainfall data set,
along with training (77%) and testing (22%) data sets,
are reported in Table 1. In comparison with the liter-
ature review, this data span is sufficient to construct a
machine learning model and it is adequate to mimic the
actual trend in the rainfall data set. The maximum and
minimum records of rainfall at Rize and Konya Stations
are 46.871 and 0cm and 22.239 and 0 cm, respectively.
The stochasticity of the data set at Rize Station is more
complex as the variation between the maximum and
minimum records is very high.

2.4. Error analysis

Different metrics have been used by researchers in the lit-
erature to analyze their models, and there is no standard
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for a unified parameter. In this study, to evaluate and
compare results of the models, five metrics are used, as
follows.

Nash-Sutcliffe efficiency (NSE):

=Y 00) - f())?
NSE=1— L l. f_lz (1)
i—1 (0(i) —0)
Root mean square error (RMSE):
=
RMSE = | ; (0(i) — f(i)? (2)

Coeflicient of correlation (R):

=) -9 (f() — )

= (3)

R= —— ‘ —
S o) — 9222 (i) -
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Figure 5. Observed time series and heat map of monthly rainfall
data for (a) Rize Stations and (b) Konya Station.

RMSE-observations standard deviation ratio (RSR):

N o) — )2

Table 2. Performance ranking of Nash-Sutcliffe efficiency (NSE)
and root mean square error observations standard deviation ratio
(RSR) (Moriasi et al., 2007).

Performance ranking NSE RSR

Very good 0.75 < NSE < 1.00 0.00 < RSR < 0.50
Good 0.65 < NSE < 0.75 0.50 < RSR < 0.60
Satisfactory 0.50 < NSE < 0.65 0.60 < RSR < 0.70

Unsatisfactory NSE < 0.50 RSR > 0.70

where f(i) and o(i) are forecast and observed rainfall
values, respectively; p and o are averaged forecast and
observed values, respectively; and N is the number of data
points.

The lower the values of RMSE and RSR, the more
accurate the model’s results are; conversely, the higher
the values of NSE and R, the better the model’s per-
formance is. Table 2 presents the adopted performance
ranking system based on four different ranges of NSE and
RSR values.

Besides the statistical metrics presented in Table 2, a
Taylor diagram is employed to assess the accuracy of the
models (Taylor, 2001). The Taylor method is basically a
graphical representation of the modeled and observed
data. In the Taylor diagram, the radial distance from
the origin refers to the ratio of the normalized standard
deviation of the simulation to that of the observation,
and the azimuth angle represents the correlation coeffi-
cient between the modeled and observed data (Ghorbani
etal., 2017).

3. Results and discussion

Owing to the massive advances in computer-aided mod-
els, the current research aims to develop a deep learning
model and validate its predictability performance against
the RF model in simulating the rainfall process in two
stations with different climatic conditions. The sliding
window method can generate data with the current time

RSR = (4)  step. For example, if the data for a month are to be fore-
\/ ZEZIV (0(i) _J_‘)z cast, then the n-dimensional data can be generated from
the data of the previous n months to generate forecasts
Legate and McCabe’s index (LMI): (Dong et al., 2020). In this study, the maximum num-
N _ ber of dimensions for the dimensional construction of all
IMI=1— Zi:} [f () — 0@ (5) months is set to 8, which means that data from 8 months
ZEIIV lo(i) — o| before this month are used. Therefore, first, eight data sets
Table 1. Statistical characteristics of monthly rainfall (cm) at two stations in Turkey.
Station Data set No. records Mean (cm) Maximum (cm) Minimum (cm) ~ Variance  (cm?) Skewness
Rize Training 377 7.454 46.871 0 26.707 3.050
Testing 109 6.166 16.096 0 11.435 0.672
All data 486 7.165 46.871 0 23.540 2.995
Konya Training 377 2.822 22.239 0 5.846 2.370
Testing 109 3.091 18.353 0 8.192 2351
All data 486 2.880 22.239 0 6315 2401
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Figure 6. Optimal lag time for forecasting rainfall at Rize and Konya Stations. RMSE = root mean square error.

are generated from a given data set by varying the win-
dow size from 1 to 8. Then, the LSTM model is trained
on these eight data sets. The window size that yields
the highest accuracy is selected as the optimal window
size (lag time), which is used to make forecasts. Figure 6
shows that the sizes of the minimum errors of sliding win-
dows are equal to 4 for both Rize and Konya Stations. In
other words, the optimum lag time of the rainfall time
series is months at both Rize and Konya Stations.

For rainfall modeling, the LSTM model is adopted as
an automated feature selection for the correlated lag time
in accordance with the mean squared error (MSE) metric.
Figure 7 shows a sample of the training progress of the
LSTM model in Mathematica software using the training
data sets of Rize and Konya Stations. It shows that MSE
values (loss) decrease with increasing rounds of training
of the LSTM model for both training and validation data
sets at both stations.

Mathematica 12 software is used to run the LSTM and
RF models. Optimal values of the training parameters of
the models obtained in this research using a trial-and-
error method are presented in Table 3.

3.1. Performance evaluation of models at Rize
Station

Figure 8 presents different graphical evaluations of LSTM
model performance in the testing phase. The graphs
show the satisfactory forecasting capability of the LSTM
model, with relatively high values of R and NSE criteria
(0.788 and 0.602, respectively) and relatively low values of
RMSE, RSR and LMI criteria (2.12 ¢cm, 0.627 and 0.389,
respectively). According to the values of NSE and RSR,
and the performance ranking in Table 2, the model shows
satisfactory performance. Based on Figure 8(a), actual
and forecast time series are mostly identical, especially
in forecasting high rainfall values. Figure 8(b) shows the
scatter diagram of the LSTM model, and Figure 8(c)
shows the scatter diagram of the residuals. Figure 8(b)

and (c) show that (1) all data points have a good corre-
lation in all ranges, (2) errors in higher ranges are trivial,
and (3) discordance in the low and medium ranges is
strong (about = 5 cm). In the scatter plots, blue to red col-
ors indicate high scatter to low scatter of the data points,
respectively. Figure 8(d) shows the probability density
function (PDF) plot for LSTM residuals. According to
the figure, the PDF distribution is normally distributed;
the residuals are approximately symmetrical, with low
values of the mean and standard error (0.45 and 2.08,
respectively).

Figure 9 shows different graphical evaluations of the
RF model performance in the testing phase. The graphs
show the satisfactory forecasting capability of the RF
model, with a relatively high value of R (0.72) and a low
NSE value (0.452), and relatively low values of RMSE,
RSR and LMI criteria (2.49 cm, 0.736 and 0.243, respec-
tively). According to the values of NSE and RSR, and the
performance ranking in Table 2, the model shows unsat-
isfactory performance. Moreover, based on Figure 9(a),
actual and forecast time series are not close to each other;
and the high rainfall values are underestimated and low
values are overestimated. Figure 9(b) shows the scatter
diagram, and Figure 9(c) shows the scatter diagram of
the residuals. Figure 9(b) and (c) indicate that (1) all data
points do not show a good correlation in all ranges, and
(2) there is high discordance in all ranges (about £ 6 cm).
Figure 9(d) shows the PDF plot for the RF residuals.
According to the figure, the PDF distribution is normally
distributed; the residuals are not symmetrical, with rela-
tively high values of the mean and standard error (0.86
and 2.34, respectively).

Figure 10(a) shows the evaluation metrics (correla-
tion, RMSE and standard deviation) in the form of a
Taylor diagram for the LSTM and RF models in the test-
ing period. It can be found that the point of the LSTM
model is closer to the observed point (in blue) compared
to the RF model’s point (2.248 and 2.512, respectively),
and this indicates the higher ability of the LSTM model
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Figure 7. Training progress of the long short-term memory
(LSTM) model at Rize and Konya Stations.

(with high and low values of R and RMSE, respectively)
than the RF technique. Figure 10(b) and (c) show violin
and box plots of the models, respectively. A box plot dis-
plays variation (such as minimum and maximum of data)
in a data set. A violin plot is like a box plot; however, it
presents the kernel probability density for different val-
ues of the modeled and actual data. Figure 10(b) and (c)
show that the violin and box plots of the LSTM model are
more similar to both plots of the actual data sets, com-
pared with the RF model. This means that the statistical
characteristics of the forecast rainfall values of the LSTM

Table 3. Training parameters of the long short-term memory
(LSTM) and random forest (RF) models.

Model
LSTM RF
Parameter Value Parameter Value
Epochs 200-400 Number of trees 500
Batch size 64 Maximum tree-depth 60
Initial learning rate 0.005 Number of splits in a tree 6
Dropout 0.2 Number of random features 48
Gradient threshold 1 Leaf size 10

model are more similar to the statistical characteristics of
the actual data. In other words, the LSTM model is more
successful in rainfall modeling than the RF model at Rize
Station. It should be noted that this conclusion is drawn
by comparing the results of Figures 8 and 9.

3.2. Performance evaluation of models at Konya
Station

Figure 11 shows different graphical evaluations of LSTM
model performance in the testing period. The graphs
show a satisfactory forecasting capability of the LSTM
model, with relatively high values of NSE and R criteria
(0.545 and 0.748, respectively) and low values of RMSE,
RSR and LMI criteria (1.92 cm, 0.670 and 0.326, respec-
tively). According to the values of NSE and RSR, and the
performance ranking in Table 2, the model again shows
satisfactory performance. Based on Figure 11(a), the
actual and forecast time series are very similar and close
to each other, except for some peak values. Figure 11(b)
shows the scatter diagram, and Figure 11(c) shows the
scatter diagram of the residuals. Figure 11(b) and (c)
show that (1) there is a very good correlation for all
data points in all ranges, (2) most errors in the lower
and higher ranges are trivial, and (3) discordance in the
medium ranges is strong (about £ 6 cm). Figure 11(d)
shows the PDF plot for LSTM residuals. According to
the figure, the PDF distribution is normally distributed;
the residuals are symmetrical, with very low values of the
mean and standard error (0.079 and 1.927, respectively).

Figure 12 shows different graphical evaluations of the
RF model performance in the testing phase. The graphs
do not show a high forecasting capability of the RF model,
with low values of NSE and R criteria (0.41 and 0.659,
respectively), and high values of RMSE, RSR and LMI
criteria (2.187 cm, 0.764 and 0.265, respectively). Accord-
ing to the values of NSE and RSR, and the performance
ranking in Table 2, the model again shows unsatisfac-
tory performance. Moreover, based on Figure 12(a), the
actual and forecast time series are not close to each
other; and high rainfall values are very underestimated
at some peaks. Figure 12(b) shows the scatter diagram,
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Figure 8. (a) Actual and forecast rainfall time series; (b) scatter plot; (c) scatter diagram of residuals; (d) probability density function (PDF)
plot of residuals of the long short-term memory (LSTM) model in the testing stage at Rize Station.
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Figure 9. (a) Actual and forecast rainfall time series; (b) scatter plot; (c) scatter diagram of residuals; (d) probability density function (PDF)
plot of residuals of the random forest (RF) model in the testing stage at Rize Station.

and Figure 12(c) shows the scatter diagram of the resid-
uals. Figure 12(b) and (c) indicate that (1) there is a
good correlation for all data points displayed in the low
and medium ranges, and (2) discordance in the higher
ranges is strong (about —7 cm). Figure 12(d) shows the
PDF plot for the RF residuals. According to the figure,
the PDF distribution is normally distributed; the resid-
uals are approximately symmetrical, with relatively high

values of the mean and standard error (0.225 and 2.185,
respectively).

Figure 13(a) shows the evaluation metrics (correla-
tion, RMSE and standard deviation) in the form of a
Taylor diagram for the LSTM and RF models in the test-
ing stage. It can be found that the point of the LSTM
model is closer to the observed point (in blue) com-
pared to the point of the RF model (1.979 and 2.595,
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Figure 11. (a) Actual and forecast rainfall time series; (b) scatter

plot; (c) scatter diagram of residuals; (d) probability density function

(PDF) plot of residuals of the long short-term memory (LSTM) model in the testing stage at Konya Station.

respectively), and this indicates the higher ability of the
LSTM model (with high and low values of R and RMSE,
respectively) than the RF technique. Figure 13(b) and (c)
show the violin and box plots of the models, respectively.
According to these figures, it can be seen that the violin
and box plots of the LSTM model are more similar to both
plots of the actual data sets, compared with the RF model.
This means that the statistical characteristics of the fore-
cast rainfall values of LSTM model are more similar to
the statistical characteristics of the actual data. In other
words, the LSTM model has a higher ability to simulate
rainfall than the RF model at Konya Station. It should

be noted that this conclusion is drawn by comparing the
results of Figures 11 and 12.

3.3. Discussion

In general, the LSTM model, as a deep learning tech-
nique, shows less error and more satisfactory perfor-
mance in rainfall forecasting than the RF model, with
improved RMSE estimates of 12.2-14.9%, RSR esti-
mates of 12.3-14.8%, R estimates of 9.4-13.5% and NSE
estimates of 32.9-33.2% at both Rize and Konya Stations,
with different climatic conditions. In other words, the
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Figure 12. (a) Actual and forecast rainfall time series; (b) scatter plot; (c) scatter diagram of residuals; (d) probability density function
(PDF) plot of residuals of the random forest (RF) model in the testing stage at Konya Station.
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Figure 13. (a) Taylor diagram; (b) violin plot; (c) box plot of the long short-term memory (LSTM) and random forest (RF) models in the

testing period at Konya Station.

LSTM model is more able to forecast rainfall successfully
in different climatic conditions. This can be attributed
to the structure of the LSTM model, which is a type of
RNN model and has a special memory ability compared
to other traditional methods to remember and learn past
long-term dependencies and relationships, such as trend,
seasonality and cycles, over long periods of rainfall time
series, and can make better forecasts (predictions) for the
future according to the current information. However,
climatic conditions have no significant impact on models’
performances, and the models show similar and accurate
results in different climatic conditions. The RF technique

shows satisfactory results owing to its inherent potential
for quick training and high flexibility with classification
algorithms, which can work well for all types of data.
The models’ capabilities in forecasting extreme rain-
fall values (i.e. high and low values) are very important
and so should also be evaluated. According to the scat-
ter diagrams of the residuals, it can be seen that residual
values of the LSTM model are lower than those of the
RF model for both high and low rainfall values. There-
fore, the LSTM technique forecasts the extreme values
of rainfall more accurately than the RF model. The suc-
cessful performance of the LSTM model in this research
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is in accordance with Poornima and Pushpalatha (2019)
and Hagq et al. (2021), who applied LSTM in rainfall pre-
diction. Moreover, Yu et al. (2017) achieved good results
by applying the RF model in rainfall forecasting; how-
ever, the RF model performed as the second best model
compared with the SVM model.

It should be noted that the estimations of both models
are more accurate in humid climatic condition (Rize Sta-
tion) than in semi-arid conditions (Konya Station). This
may be due to the fact that in humid and rainy areas, rain-
falls with similar characteristics occur on most days of
the year and in small time intervals, so a model can more
accurately determine the relationship between its input
variables (time-lagged rainfall) and output variable (cur-
rent rainfall) and therefore it can predict rainfall more
successfully. However, in semi-arid and low rainfall areas,
owing to the relatively long time interval between rain-
falls, the probability of two consecutive rainfall events
occurring with different characteristics is high and, as

a result, their modeling operation becomes a little more
difficult.

4, Conclusion

The objectives of this study were to apply a new deep
learning model (i.e. LSTM model) to simulate a monthly
rainfall data set for the first time, and to evaluate its
ability by comparing its results with the RF method at
two stations (Rize and Konya Stations) with different
climatic conditions in Turkey. A fixed sliding window
method is utilized for determining the optimum lag times
of monthly rainfall time series. The performance of an
LSTM method for modeling rainfall data is evaluated
using several statistical metrics (R, NS, RMSE, RSR and
LMI) and plots (actual and forecast time series, scat-
ter, PDF, Taylor, violin and box plots). The results show
that the LSTM method, having special memory ability,
outperforms the RF method in forecasting rainfall data
at both stations. Although the LSTM model has several
advantages in time series modeling problems, such as
learning much more quickly, having special memory abil-
ity, and solving complex, nonlinear and long time lag
problems, it has some disadvantages in the complexity
of high network training, high decoding delay and long
training time (Gu et al.,, 2021). The results of the RF
model in this study are satisfactory in rainfall forecasting
in both climatic conditions. Although the RF model has
advantages, such as solving both regression and classifi-
cation problems, solving unsupervised machine learning
problems, handling many input variables without vari-
able selection, acting as a feature selection technique and
taking care of missing data internally, this model has
some disadvantages, such as requiring a long time for

training, as it computes a lot of decision trees to deter-
mine the class, and making inaccurate predictions for
data outside the training data range (Simi, 2019).

This pioneering research provides a valid reference
for applying a fixed sliding window LSTM deep learn-
ing model as a powerful technique for rainfall forecast-
ing in different climatic conditions. For future studies,
it may be recommended to compare the performance of
the fixed sliding window LSTM model with other fixed
sliding window deep learning models (e.g. convolutional
neural networks and temporal deep belief networks) or
data-driven models (e.g. SVM and decision trees) at dif-
ferent time scales (e.g. daily and annual) and in different
parts of the world with other climatic conditions (e.g.
arid and tropical). Moreover, applying the dynamic slid-
ing window LSTM for rainfall forecasting and analyzing
its performance can be strongly recommended in future
studies.
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