
Received 17 October 2022, accepted 12 December 2022, date of publication 19 December 2022, date of current version 28 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3230683

A Key Recovery Protocol for Multiparty
Threshold ECDSA Schemes
MYUNGSUN KIM 1, SANGRAE CHO2, SEONGBONG CHOI3, YOUNG-SEOB CHO 2,
SOOHYUNG KIM 2, AND HYUNG TAE LEE 3
1Department of Mathematics, Gachon University, Seongnam-si 13120, Republic of Korea
2Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
3School of Computer Science and Engineering, Chung-Ang University, Seoul 06974, Republic of Korea

Corresponding author: Hyung Tae Lee (hyungtaelee@cau.ac.kr)

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT) (No.2020-0-00321, Privacy preserving Self-controlled Decentralized Identity Management and Security
Technology in 5G service environment).

ABSTRACT Recently, threshold ECDSA schemes have received much attention from the security commu-
nity, due to the need of efficient key management in the blockchain system. For the practical use of threshold
cryptosystem, a key recovery protocol is essential for users who lost their own secret shares to recover them.
It was studied for a long time in the proactive secret sharing area, but the main aim of recent studies in that
area is to achieve stronger security and so they are immoderate for the currently existing threshold ECDSA
schemes. In this paper, we provide a new key recovery protocol for threshold ECDSA schemes that is secure
against static corruptions by malicious adversaries, as in the common adversary model of the state-of-the-art
threshold ECDSA schemes. Our proposed protocol reduces both the computational and communication costs
to O(t2) from O(t3) where t is the threshold of the schemes, that is, the minimum number of users required
for generating a valid signature. According to our experimental results, when t = 2 with 128-bit security,
while the previous result takes 10.46 ms in total for all computations (excluding the transmission time on the
network), our protocol takes 4.21 ms, which improves by a factor of about 2.48 times. The advantage of our
protocol over the previous result is bigger when t is larger. For example, when t = 9 with 128-bit security,
while the previous result requires 333.42 ms in total for all computations, our protocol requires 56.61 ms,
which outperforms the previous result by a factor of about 5.89 times.

INDEX TERMS Recovery protocol, proactive security, threshold ECDSA, secret sharing.

I. INTRODUCTION
A (t, n) threshold signature scheme allows to distribute the
right of sign generation with n parties and then to generate a
signature by joining at least t parties among them.1 It enables
us to distribute and store a secret key securely and so can be
applied for secure key management on the network. Thus,
there were various studies [1], [2], [3], [4], [5] to design
threshold signature schemes since its concept was firstly
introduced byDesmedt and Frankel [6]. In particular, with the

The associate editor coordinating the review of this manuscript and

approving it for publication was Aneel Rahim .
1In some references on threshold ECDSA schemes, a (t, n) threshold sig-

nature scheme indicates the scheme where a valid signature can be generated
by cooperating with at least t + 1 parties, not t parties. However, to clarify
throughout the paper, we define a (t, n) threshold scheme as in the body text.

development of blockchain and cryptocurrencies, a threshold
version of ECDSA schemes has received much attention
from cryptography and security communities. Differently
from other widely utilized signature schemes, like RSA [7]
and Schnorr signatures [8], it was a difficult task to design
efficient threshold signature schemes based on (DSA and)
ECDSA [9], due to the form of signatures that includes an
inverse of a randomly chosen element which should be secret
to all parties. However, since the appearance of fascinating
applications on blockchain and cryptocurrencies, recently
there have been proposed various elegant results on designing
threshold ECDSA schemes [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20].

Though threshold signature schemes make an adversary
harder, it is not the aegis for preventing it from attaining a

133206 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-0461-3053
https://orcid.org/0000-0002-5640-0295
https://orcid.org/0000-0002-3190-0293
https://orcid.org/0000-0002-0920-2026
https://orcid.org/0000-0002-8568-5680

M. Kim et al.: Key Recovery Protocol for Multiparty Threshold ECDSA Schemes

secret key: Once it captures secret shares of at least t par-
ties, it can generate a valid signature by itself. This type of
potential threats was introduced by Ostovsky and Yung [21]
and several solutions [22], [23], named proactive threshold
signatures, were presented to avoid such type of attacks.
Compared to traditional threshold signature schemes, proac-
tive threshold signatures additionally provide two protocols,
refresh and recovery: A refresh protocol updates secret shares
of n parties without changing the corresponding secret and
public keys of a group of n parties. So, if parties run the
refresh protocol periodically, then an adversary should attain
secret shares of at least t parties in the same period and it
makes threshold signature schemes more secure. A recovery
protocol is for a party who needs to recover his/her secret
share for several reasons, e.g., an attacker’s extortion and a
party’s simple loss. The protocol runs with the help of other
honest parties and the party who needs to recover succeeds
after executing the protocol.

Recently, proactivation has been also considered in
threshold ECDSA schemes. In the open-source [24] of
Doerner et al.’s threshold ECDSA schemes [15], the refresh
protocol for (2, 2) threshold ECDSA schemes was provided,
though the detailed description of the protocol was not
explictly given. Later, Canetti et al. [17] presented the refresh
protocol for (n, n) threshold ECDSA using Paillier additive
homomorphic encryption scheme [25] and zero-knowledge
proof techniques. They stated that their refresh protocol can
be easily extended to (t, n) threshold settings for t ≤ n by
applying the secret sharing technique, but the detail was not
given. In [26], Kondi et al. provided refresh protocols, but
their protocols focused on the case where some of parties
are offline. They presented the refresh protocol for (2, n)
threshold schemes and showed that it is impossible to design
refresh protocols for (t, n) if t > 2 where some of n parties
are offline. But, all aforementioned works did not consider
a recovery protocol. To the best of our knowledge, there
is only one recent result for a key recovery protocol [27]
for threshold ECDSA schemes, but their protocol considered
(1, 3) threshold ECDSA schemes only.

Since each party in (t, n) threshold ECDSA schemes has
the same type of secret shares with that of (t, n) secret sharing
schemes, one may consider the approach to applying cur-
rently existing proactive secret sharing schemes [28], [29],
[30] for threshold ECDSA schemes. However, recent stud-
ies on proactive secret sharing schemes mainly attempt to
achieve robustness and fairness against active corruptions.
So, almost all existing solutions achieve stronger security,
but are rather inefficient. On the other hand, the currently
existing ECDSA schemes exclude robustness and fairness,
and consider static corruptions by malicious adversaries only.
Thus, it is immoderate to apply the existing proactive secret
sharing techniques directly to threshold ECDSA schemes.

A. OUR CONTRIBUTION
In this paper, we provide a new key recovery protocol for
(t, n) threshold ECDSA schemes with t < n which is secure

against static corruptions by malicious adversaries with-
out considering robustness and fairness, as in the common
adversary model of the currently existing threshold ECDSA
schemes. In our protocol, there are t + 1 parties where one
party, say P1, lost his/her secret share and wishes to recover
it, whereas other t parties join with their own secret shares to
help P1. At the beginning of the protocol, all parties, except
P1, generate random values which will be shared with other
parties and used for hiding his/her secret share before sending
it to P1. This step can be understood as generating secret
shares for zero. In the previous work [22] which achieves
the same security level with ours, this step was realized by
employing secret sharing techniques for zero. That is, each
party generates a random polynomial of degree t − 1 whose
constant term is zero, evaluates it at identities of other parties,
and then shares them with other parties each. However, this
brings about a relatively heavy verification step to check
whether the received secret shares are generated correctly
using verifiable secret sharing schemes [31], [32]. We bypass
this verification step by generating just random values as
shares and then letting each party add them to his/her own
secret appropriately. In this modification, randomly selected
shares play a role of masking secret shares and then they are
removed after P1’s simple calculation. As a result, we reduce
both the computational and communication costs to O(t2)
from O(t3).

We also present our implementation results of the proposed
recovery protocol and the previous protocol [22] for various t
and security levels. Our experimental results show that when
t = 2with 128-bit security, our protocol takes 4.21ms in total
for all computations excluding the data transmission time on
the network, while the previous result takes 10.46 ms in total.
Thus, ours reduces the required time by a factor of about
2.48 times. If t is larger, the advantage of our protocol over the
previous result is bigger: When t = 9 with 128-bit security,
our protocol requires 56.61 ms in total for all computations,
while the previous result requires 333.42 ms in total. So,
ours outperforms the previous result by a factor of about
5.89 times.

B. RELATED WORK
Since the concept of threshold cryptosystem was proposed
by Desmedt and Frankel [6], there were various stud-
ies on constructing threshold signature schemes. However,
it was a challenging problem to design efficient threshold
DSA/ECDSA schemes for a long time. Due to the develop-
ment of blockchain, the need of threshold ECDSA schemes
was also raised. In 2016, Gennaro et al. [10] made a break-
through using threshold additive homomorphic encryption
[33], [34]. Later, there have been proposed various studies on
designing threshold ECDSA schemes and they can be divided
into two categories by exploited cryptographic tools.

The first category includes the schemes that use additive
homomorphic encryption. Lindell [11] proposed two-party
threshold ECDSA schemes using Paillier encryption [25].
Then, Lindell and Nof [13] extended it to the multi-party

VOLUME 10, 2022 133207

M. Kim et al.: Key Recovery Protocol for Multiparty Threshold ECDSA Schemes

setting using additive ElGamal encryption [35]. Indepen-
dently, Gennaro and Goldfeder [12] proposed multi-party
threshold ECDSA schemes using Paillier encryption.
Castagnos et al. [16] presented an efficient two-party ECDSA
scheme using additive homomorphic encryption over class
groups. Canetti et al. [17] proposed UC-secure and proac-
tive multi-party ECDSA schemes using Paillier encryption.
Recently, Deng et al. [19] proposed an efficient multi-party
ECDSA protocol using additive homomorphic encryption
over class groups by improving the corresponding sigma
protocols.

The second category includes the schemes that use other
cryptographic primitives. Doerner et al. [14] presented a
two-party ECDSA scheme using oblivious transfer and sub-
sequently they extended it to the multi-party setting [15].
Damgård et al. [20] proposed a multi-party ECDSA scheme
using secret sharing techniques. Their protocol is effi-
cient, but requires the honest majority assumption. Finally,
Xue et al. [18] recently proposed a two-party online-friendly
ECDSA scheme. Their construction can be applied for
both cases that use additive homomorphic encryption and
oblivious transfer each and improved the required online
time. We remark that it is assumed that adversaries in all
aforementioned schemes in both categories can corrupt par-
ties at the onset of the execution. That is, they allow adver-
saries for static corruptions only. In addition, they did not
consider robustness and fairness.

Though secret keys for threshold schemes are distribu-
tively stored, they still have a security issue once at least t
secret shares for (t, n) threshold schemes are revealed. This
type of threats was introduced by Ostrovsky and Yung [21].
To avoid such an attack, proactive threshold schemes were
introduced in [22] and [23]. Following the original works,
there have been proposed various studies [28], [29], [30] on
proactive secret sharing that additionally provides refresh and
recovery protocols, to enhance the security and improve the
efficiency. However, the direction for recent proactive secret
sharing schemes focuses on achieving stronger security, e.g.,
robustness and fairness against adaptive corruptions in the
dynamic setting. Thus, they are excessive to apply directly
for threshold ECDSA schemes.

Recently, there have been proposed several studies on pro-
viding the proactive security to threshold ECDSA schemes.
In the open-source [24] of Doerner et al.’s protocol [15],
a function for the refresh protocol was given, but it works
only for (2, 2) threshold ECDSA schemes. Canetti et al. [17]
proposed a refresh protocol using Paillier encryption and
zero-knowledge proofs, but they provided a description of
the refresh protocol for (n, n) threshold ECDSA only and just
stated that one can easily obtain a refresh protocol for (t, n)
threshold ECDSA schemes with t < n by applying secret
sharing techniques. In [26], Kondi et al. presented refresh
protocols where some of parties are offline. However, the
aforementioned works did not consider a recovery protocol.
As far as we know, the authors in [27] only considered
the recovery protocol, but the proposed construction was

for (1, 3) threshold ECDSA schemes only, not for general
cases.

C. OUTLINE OF THE PAPER
Section II reviews the definitions and models for the prob-
lem that we consider in this paper and introduces building
blocks for our construction. We provide our key recovery
protocol with analysis in Section III. Several implementation
results and concluding remarks are given in Section IV and
Section V, respectively.

II. DEFINITIONS AND BUILDING BLOCKS
In this section, we provide our communication model and
definitions for key recovery protocols. Then, we review com-
mitment schemes and secret sharing schemes which are main
building blocks of our recovery protocol as well as key gen-
eration for (t, n) threshold ECDSA schemes.

A. MODELS AND DEFINITIONS
Now, we briefly introduce our communication model, adver-
sary types, and definitions for key recovery protocols.

1) COMMUNICATION MODEL
It is assumed that our computational model consists of a
set of t + 1 parties, P1, . . . ,Pt+1, and they are connected
by a complete network of private point-to-point channels as
well as a broadcast channel. For simplicity, we assume that
a semantically secure encryption scheme [36] is employed
for establishing a secure channel. We also assume that the
network is partially synchronous and so an adversary speaks
last in every communication round.

2) ADVERSARY TYPES
We assume that an adversary can corrupt up to t − 1 parties
among t + 1 parties. (Since we focus on (t, n) threshold
schemes, if t parties are corrupted, then the adversary can
learn the secret information. On the other hand, we note that
our protocol does not consider robustness and so does not
require the honest majority assumption.) The adversary is a
probabilistic polynomial-time (PPT) Turing machine and sets
corrupted parties at the onset of the execution. In other words,
the adversary is static. We consider a malicious adversary and
so the parties corrupted by the adversary can behave in any
way.

3) CRYPTOGRAPHIC ASSUMPTION
We use the discrete logarithm (DL) assumption [37, §3.5].

Throughout the paper, for any set X , we use x
$
←− X to denote

a uniform random sampling of x from X .
Definition 1: Let G be an additive cyclic group of prime

order q = q(λ) where λ is the security parameter. Let P be
a random generator of G. Given an instance (P, aP) with
randomly chosen a ∈ Zq, the discrete logarithm problem
(DLP) is to find a ∈ Zq.

133208 VOLUME 10, 2022

M. Kim et al.: Key Recovery Protocol for Multiparty Threshold ECDSA Schemes

We say that the DL assumption holds if for any PPT adver-
sary A

Pr[A(P, aP) = a : a
$
←− Zq]

is negligible in the security parameter λ.

4) (t ,n)-SECRET SHARING
A secret sharing scheme allows a dealer to share a secret
sk among n parties P1, . . . ,Pn, such that any authorized
subset of parties can use all their shares to reconstruct the
secret, whereas any other non-authorized subset learns noth-
ing about the secret from their shares. More formally, we give
a definition of (t, n) secret sharing. We begin by introducing
a useful new notation: For an algorithm A, the expression
a ← A(· · ·) denotes that A is executed on the elided inputs
and a is assigned its output, throughout the paper.
Definition 2: A (t, n)-secret sharing scheme over message

space M is a pair of algorithms (Share,Recon) such that:
(sk1, . . . , skn)← Share(sk) is run by a dealer to distribute

shares. It is a randomized algorithm that takes as input
a secret sk ∈ M and outputs an n-tuple of shares
(sk1, sk2, . . . , skn).

sk ← Recon(ski1 , . . . , skit) is run by a subset of t or more
parties to reconstruct the secret sk. It is a deterministic
algorithm that given a t-tuple of shares outputs a secret
sk ∈ M.

There have been various (t, n) secret sharing schemes, e.g.,
see References [38], [39], [40], [41]. We will further discuss
Shamir’s secret sharing scheme among them because most of
threshold ECDSA schemes rely on it (see Section II-C for the
details).

5) A KEY RECOVERY PROTOCOL
In this paper, we consider the following scenario: There are
t + 1 parties, P1, . . . ,Pt+1, where each party has a secret
share ski for secret sk of (t, n) threshold ECDSA scheme with
t < n.2 Suppose a party, say P1, lost his/her secret share
and wishes to recover it. The aim of a recovery protocol is
to recover sk1 with the help of other parties, P2, . . . ,Pt+1,
without revealing secret information of other parties and
secret sk .
We formalize the syntax and security notion of key recov-

ery protocol below.
Definition 3: A key recovery protocol K is a pair of poly-

nomial time algorithms (Group,Recover) such that:
G ← Group(n, t, i) is run by a party Pi which lost his

secret share ski and wishes to recover it. This algorithm
takes as input a pair of threshold parameters (t, n) and
the index of the party Pi, and outputs an ad-hoc group
G ⊆ {P1, . . . ,Pn}\{Pi} of cardinality≥ t in which each
party Pj owns its secret share skj.

2In fact, our proposed protocol can be applied for other threshold cryp-
tosystems, beyond threshold ECDSA schemes. However, we mainly pay
attention to threshold ECDSA schemes in this paper.

ski ← Recover(pk, {skj}j∈G) is run by the parties Pi and
Pj ∈ G\{i}. The algorithm takes as input the public
key pk and a set of secret shares {skj} of the parties in
G, denoted by {skj}j∈G, and outputs the restored secret
share ski to the party Pi and nothing to the parties in G.
We remark that the public key pk is implicitly given from
an algorithm at a higher level.

Moreover, it satisfies the following correctness requirement:
• Correctness: For all sk ∈ M and for all Î = {i1, . . . ,
ik} ({1, 2, . . . , n}\{i} of cardinality at least t − 1,

Pr
ski←Recover(pk,{skj}j∈G)

[Recon(ski, {skl}l∈̂I) = sk] = 1.

We next define the security for such a key recovery pro-
tocol. Intuitively, we require that if the adversary is trying to
learn any secret information about honest parties’ secret share
ski and the secret sk , it will fail.
Definition 4 Real Model: LetK be a key recovery protocol

where each party Pi has a secret input xi and a public input
yi. Each Pi returns an output zi after the execution of the
protocol K. Let A be an adversary that can corrupt up to
t − 1 parties. Let x = (x1, y1, . . . , xt+1, yt+1), let r =
(r1, . . . , rt+1, r∗) be the random inputs the parties and the
adversary respectively, let I∗ be the index set of the corrupted
parties, and let a ∈ {0, 1}∗ be the auxiliary input. We denote
the output of the adversary after the execution of the protocol
as Real(A)

K,A(x, I∗, a, r) and the output of the party Pi as
Real(i)K,A(x, I∗, a, r). Then let

RealK,A(x, I∗, a, r) = 〈Real(A)
K,A(x, I∗, a, r),

Real(1)K,A(x, I∗, a, r), . . . ,

Real(t)K,A(x, I∗, a, r)〉.

We define the RealK,A(x, I∗, a, r) to be the random variable
for a uniformly chosen r. Finally we define a distribution
ensemble RealK,A indexed by (x, I∗, a) as

{RealK,A(x, I∗, a, r)}x∈({0,1}∗)2×(t+1),I∗(I ,a∈{0,1}∗

where an index set I = {i1, . . . , it }.
Definition 5 Ideal Model: Let f : ({0, 1}∗)t+1 →

({0, 1}∗)t+1 be a (t+1)-ary functionality. We define the output
of f as:

f ((x1, y1), (x2, y2), . . . , (xt+1, yt+1)) = (z1, . . . , zt+1).

In the ideal model, parties send their input (xi, yi) to a trusted
party which computes f and returnsPi its output value zi. The
ideal model adversary B can see (y1, . . . , yt+1) and secret
values {xj}j∈I∗ for the corrupted parties, and further replace
{(xj, yj)}j∈I∗ with {(x∗j , y

∗
j)}j∈I∗ of its own choice. We denote

the output of the ideal model adversary after the evaluation
as Ideal(B)

f ,B(x, I
∗, a, r) and the output of the party Pi as

Ideal(i)f ,B(x, I
∗, a, r). Then let

Idealf ,B(x, I∗, a, r) = 〈Ideal(B)
f ,B(x, I

∗, a, r),

VOLUME 10, 2022 133209

M. Kim et al.: Key Recovery Protocol for Multiparty Threshold ECDSA Schemes

Ideal(1)f ,B(x, I
∗, a, r), . . . ,

Ideal(t)f ,B(x, I
∗, a, r)〉.

Similarly to the real model, we define a distribution ensemble
Idealf ,B indexed by (x, I∗, a) as

{Idealf ,B(x, I∗, a)}x∈({0,1}∗)2×(t+1),I∗(I ,a∈{0,1}∗ .

Definition 6: Let f be as in Definition 5 and K be a
(t + 1)-party key recovery protocol for computing f . Then
we say that K securely computes f in the statically corrupt
setting if for all PPT algorithmA, there exists an ideal model
adversary B whose running time is polynomial in the running
time of A, and such that

Idealf ,B
c
≈ RealK,A

where
c
≈ means computationally indistinguishable between

two ensembles.
In addition to the above requirements, proactive secret

sharing schemes generally are required to achieve the robust-
ness. This property means that the adversary cannot deny
their outputs to the honest parties. However, to the best of
our knowledge, all currently existing ECDSA schemes do not
consider the robustness. So, we exclude it from the security
requirements for the recovery protocol.

We remark that more than t parties who have their own
secret shares may join the key recovery protocol for (t, n)
threshold schemes if n > t + 1. We can easily adjust our pro-
posed protocol for this case. However, for simple explanation,
we assume that exact t + 1 parties join the protocol where t
parties among them have their own secret shares. In addition,
two or more parties may lose their secret shares. In this case,
we can recover secret shares by running the recovery protocol
sequentially if there exist at least t parties who have their own
secret shares. So, we assume that just a party loses his/her own
secret share in the protocol.

B. COMMITMENT
We briefly review a commitment scheme to make our
key recovery protocol secure even in the malicious model.
Roughly, we let each party commit to a randomness to mask
its secret share before it provides the secret share masked by
the randomness.

1) COMMITMENT
A commitment scheme consists of two algorithms Kg and
COM, which are defined as follows:
ck ← Kg(1λ) is called the key generation algorithm that

takes the security parameter λ and outputs the commit-
ment key ck . The message space Mck , the randomness
space Rck , and the commitment space Cck are specified
in ck .

B ← COM(ck, b; r) is called the commitment algorithm
that takes b ∈ Mck and outputs a commitment B ∈ Cck
using randomness r ∈ Rck . To commit to a message

b ∈ Mck , the sender selects r
$
←− Rck and computes the

commitment B = COM(ck, b; r). We omit ck when no
confusions arise.

We formally define two properties of the security for the
commitment scheme.
Definition 7 Hiding property: A commitment scheme is

hiding if for all polynomial-time interactive algorithms
A, the following probability is negligible in the security
parameter λ:∣∣∣∣∣∣∣Pr
β = β∗

∣∣∣∣∣∣∣
ck ← Kg(1λ); (b0, b1)← A(ck);

β
$
←− {0, 1}; r

$
←− Rck ;

B← COM(bβ; r);β∗← A(ck,B)

− 1
2

∣∣∣∣∣∣∣ .
Definition 8 Binding property: A commitment scheme is

binding if for all polynomial-time interactive adversaries
A, the following probability is negligible in the security
parameter λ:

Pr

 COM(b0; r0) = COM(b1; r1)
and

b0 6= b1

∣∣∣∣∣∣ ck ← Kg(1λ);(b0,b1
r0,r1

)
← A(ck)

 .
2) INSTANTIATIONS
Let P and Q be two random generators of a groupG of prime
order q. Consider a commitment scheme simply defined as
COM(b; r) := bP. It is known as the Feldman commit-
ment [31], and satisfies unconditionally binding and compu-
tationally hiding properties under the assumption that the DL
problem is hard inG. Another scheme, known as the Pedersen
commitment [32], is of the form COM(b; r) := bP + rQ,
where r ∈ Zq. Pedersen commitments are unconditionally
hiding and computationally binding under the DL assump-
tion. Finally, a committer may use H (b) or H (b ‖ r) to
commit to b for a collision-resistant hash function H . Refer
to Section 3.5 of [42] that covers commitment schemes for
details.
Remark 1: A popular way to achieve the malicious secu-

rity is to combine a commitment scheme and zero-knowledge
proof protocols. However, this approach is clearly quite effec-
tive at the price of computation and communication over-
heads. For this performance reason, we let a sender open
a commitment to a value over a secure channel later. Then
a receiver can test if the sender honestly committed to the
value only by a simple calculation and more importantly,
it can directly use the value in subsequent computation. This
approach is more suitable for our setting.

C. SHAMIR SECRET SHARING
Secure key distribution is one of key components to design
threshold cryptosystems. Among various techniques for key
distribution, a Shamir secret sharing scheme [43] is the most
well-known and widely utilized technique. It is based on
polynomial evaluation and interpolation, and consists of two
phases: key distribution and reconstruction.

Suppose n parties, P1, . . . ,Pn, would like to share a secret
key sk with threshold t , that is, t − 1 or fewer parties cannot

133210 VOLUME 10, 2022

M. Kim et al.: Key Recovery Protocol for Multiparty Threshold ECDSA Schemes

recover the secret key sk using their own secret shares ski’s,
whereas at least t parties can recover it jointly. In the key dis-
tribution phase, a dealer first generates a random polynomial
f (x) of degree t − 1 with the constant term f (0) = sk . Then,
he evaluates f (x) at i for each partyPi and forwards ski = f (i)
toPi as his/her own secret share via a secure channel between
the dealer and Pi.
Next, once a need arises, t parties join the reconstruction

phase to recover the secret key sk . In the reconstruction phase,
each party computes the Lagrange coefficient

`Ji (0) =
∏
J\{i}

−i
j− i

(1)

where J is the set of indices of t parties, e.g., J = {1, 2, 4} if
P1,P2, and P4 join the key reconstruction phase for t = 3.
Then, each party computes and shares

sk ′i = `
J
i (0) · ski

with all other parties. Once receiving sk ′i ’s, each party suc-
ceeds in recovering the secret key sk by computing∑

i∈J

sk ′i =
∑
i∈J

`Ji (0) · ski.

In fact, if t parties, excluding P1, join the key reconstruc-
tion phase with their own secret shares ski, they can jointly
recover the secret share of P1 by replacing `Ji (0) and sk

′
i =

`Ji (0) · ski with

`Ji (1) =
∏
J\{i}

1− i
j− i

and sk ′i = `
J
i (1) · ski, (2)

respectively.
In addition, there are several issues on using the Shamir

secret sharing scheme. First, in the description of the scheme
above, there is a dealer who knows the secret key sk .
To remove the help of the dealer, each partyPi performs as the
dealer to share a secret si which is selected by Pi him/herself
and privately sends si,j to Pj for 1 ≤ j ≤ n as the secret share
of Pj for si. Then, each party Pi sets his secret share ski to∑n

j=1 sj,i and regards sk as
∑n

i=1 si, which is secret to all.
This holds from the relation f (a)+ g(a) = (f + g)(a) where
f , g are polynomials and a is a point in the domain of f and g.
Second, after finishing the key reconstruction phase, one

obtains the secret key sk . However, in the practical schemes
that exploit the secret sharing scheme, the final result is the
same as an outcome of algorithms which take the secret key
as an input, not the secret key itself. For example, the party
who join the signing protocol of threshold ECDSA schemes
obtains a valid ECDSA signature of an input message, not the
secret key itself. Thus, we can repeatedly use shared secrets
in practice.

D. KEY GENERATION RESULT IN THRESHOLD
ECDSA SCHEMES
Since this paper focuses on a key recovery protocol for (t, n)
threshold ECDSA schemes, it is assumed that parties already

share a secret by jointly executing a key generation proto-
col. The detailed descriptions of key generation protocols in
threshold ECDSA schemes are not our interest, so we omit
them. However, it is important to know that each party has
which type of secret shares after the key generation protocol.

Let G be an additive cyclic group of prime order q over
elliptic curve E and P be a generator of G. We assume that a
threshold ECDSA scheme is defined overG. To execute a key
recovery protocol, t + 1 parties already shared a secret with
threshold t . So, n should be larger than t in (t, n) threshold
ECDSA schemes. In this case, the Shamir secret sharing
scheme is used for secret key sharing in all currently existing
ECDSA schemes. As a result, each party has a secret share
ski where ski = f (i) for a random polynomial f (x) which
is hidden to all parties and whose constant term is a secret
sk = f (0). Furthermore, Xi = skiP is a public key for partyPi
and X = skP is the common public key for n parties. We note
that the relations

sk =
∑
j∈J

`Jj (0)skj and X =
∑
j∈J

`Jj (0)Xj

hold where J is a subset of indices of n parties with the
size t or larger, and `Jj (0) is the Lagrange coefficient defined
as in Equation (1) of Section II-C.

III. OUR KEY RECOVERY PROTOCOL
In this section, we first present the description of our key
recovery protocol for threshold ECDSA schemes. We then
provide security and efficiency analysis of the proposed
construction.

A. PROTOCOL DESCRIPTION
The aim of the proposed protocol is to re-issue the secret share
of the party who lost it for (t, n)-threshold ECDSA schemes
where the re-issued share is the same as the previously issued
one. More concretely, in our protocol there are t + 1 parties,
P1, . . . ,Pt+1, where one party, say P1, lost his secret share
sk1 and wishes to recover it with the help of all other parties
Pi’s who join the protocol with their own secret shares ski’s
each. We assume that Xi = skiP and X = skP are public to all
parties, whereP is a generator of an underlying additive cyclic
groupG over an elliptic curve E , as described in Section II-D.

1) PROTOCOL ABSTRACTION
We begin with presenting how our protocol works in the
abstract level. To recover P1’s secret share, P1 should obtain

sk1 =
∑
j∈G

`G
j (1) · skj

where G = {2, 3, . . . , t + 1} and `G
j (1) is the Lagrange

coefficient defined as in Equation (2) of Section II-D. At the
same time, ski should be hidden to P1. To hide ski, at the
beginning of the protocol, each party Pi for i ∈ G generates
random values bij’s for j ∈ G\{i} and passes bij to Pj with
the commitment to bij via a secure channel. Then, each party
Pi for i ∈ G adds the shares generated by him/herself to

VOLUME 10, 2022 133211

M. Kim et al.: Key Recovery Protocol for Multiparty Threshold ECDSA Schemes

FIGURE 1. Illustrative toy example of our key recovery protocol with the
Feldman commitment scheme [31] when t = 2. The black, blue, green,
and red letters correspond to Steps 1), 2), 3), and 4), respectively. `Gi (x) is
the Lagrange coefficient polynomial of a party Pi where G = {2, 3}. The

symbol a ?
= b indicates to check equality of a and b; thus unless the

equality holds, then the process will be terminated.

`G
i (1) · ski, subtracts all the received shares from it, and sends
the final result to P1. Lastly, P1 obtains sk1 by adding all
received values from other parties.

2) PROTOCOL DESCRIPTION
We are ready to describe our key recovery protocol in detail.
Recall that a key recovery protocol consists of a pair of poly-
nomial time algorithms–Group,Recover (see Definition 3).

a: THE AD-HOC GROUPING ALGORITHM Group(n, t ,1)
A subset of n parties groups together by aggregating the
identities of parties that wish to engage in a key recovery
process. Conceptually, an easy way to obtain such a subset
is a public bulletin board for parties who wish to create an
ad-hoc group.

We should notice that a single party that is allowed to set
up a group may have a power that can easily be abused. For
example, some corrupted party can always group a single
honest party with other t − 1 parties that it can control over.
Thus we consider a secure way to prevent the party from
grouping the parties as it wishes. Informally, all parties run a
sort of joint coin tossing protocol so that the parties controlled
by the malicious adversary are uniformly distributed within
all the groups running the protocol.

The algorithm starts with a request from party P1 which
wishes to recover its secret share. Then our grouping algo-
rithm directly uses the group setup protocol proposed by
Lindell and Waisbard in [44, §5.2]. At the end of the execu-
tion, the grouping protocol outputs a group of t parties G =
{Pi1 , . . . ,Pit }. For completeness, we provide a description of
Lindell and Waisbard’s protocol in Appendix A.

b: THE RECOVERY ALGORITHM Recover(pk, {skj }j∈G)
The secret share recovery algorithm jointly works as follows.
For notational simplicity, we think of the group G as a set of
indices rather than a set of identities, and thus wewrite simply

G = {2, 3, . . . , t + 1}. As mentioned before, we assume that
the party P1 requests a recovery process.
1) Each Pi, i ∈ G, performs the following steps:

For each j ∈ G and j 6= i,
a) Select a random element bij from Z∗q and a ran-

domizer rij from Rck .

b) Compute and send Bij = COM(bij; rij) to Pj.

2) Each Pi, i ∈ G, opens Bij by sending (bij, rij) to Pj.

3) Each Pi, i ∈ G, performs the following steps:

For each j ∈ G and j 6= i,
a) Check whetherBij is the commitment to bij. Abort

if it does not hold.

b) Compute

si = `G
i (1)ski +

∑
j∈G\{i}

(bij − bji)

where `G
i (1) =

∏
j∈G\{i}

1− j
i− j

.

c) Send si to P1 over a secure channel.

4) P1 performs the following steps:
a) Compute sk ′1 =

∑
i∈G

si.

b) Check if

sk ′1P = X1.

Abort if it does not hold.

c) Output sk ′1.

We briefly check over the security property of our protocol
first. For the correctness, while P1 adds all received values,
random values bij’s that are added or subtracted by other
parties are all cancelled since addition and subtraction of each
value are performed once each. So, the correctness of the
proposed protocol is guaranteed.

Let us move on the secrecy. We notice that P1 needs the
help of t − 1 parties to get rid of random values from the
received values. However, because we allow the corruption
of up to t − 1 parties including P1, P1 cannot learn the
information on sk . If P1 is not corrupted, other parties cannot
receive the secret information related to the target honest
party because the values related to secret share are passed to
P1 only via a secure channel. So, the secrecy of the proposed
protocol is also guaranteed.

In the next subsection, we will provide a detailed analysis
of security evaluation.

c: Toy Example for t = 2
In Figure 1, we provide a toy example for better understand-
ing how our key recovery protocol works, where we consider
three parties, P1,P2, and P3, and suppose that the party
P1 lost his/her secret share sk1. Recall that for the secret share
ski ofPi, the corresponding public key is written asXi = skiP.

133212 VOLUME 10, 2022

M. Kim et al.: Key Recovery Protocol for Multiparty Threshold ECDSA Schemes

We assume that the Feldman commitment scheme [31] is
employed as a commitment scheme for simple explanation.

At Step 1, the party P2 begins with picking a random
integer b23 ∈ Z∗q and computes a commitment to b23 in
B23 = b23P. Then P2 sends B23 to P3. At the same time,
P3 picks a random integer b32 ∈ Z∗q, computes B32 = b32P,
and sends B32 to P2. Subsequently, at Step 2, P2 opens B23
by sending b23 to P3 via a secure channel, while P3 opens
B32 by sending b32 to P2 via a secure channel.
At Step 3, upon receiving b32 from P3, P2 checks if b23P

equals toB32. If the two values are different, then it terminates
the recovery process. Using the Lagrange coefficient polyno-
mial `G

2 (z), P2 computes

s2 = `G
2 (1)sk2 + (b23 − b32),

where G = {2, 3} and sends s2 to P1 via a secure channel.
Similarly, P3 sends

s3 = `G
3 (1)sk3 + (b32 − b23).

to P1 via a secure channel if B23 is valid.
Finally, at Step 4, P1 is ready to find his/her secret share

sk1. Firstly, it computes sk ′1 = s2 + s3 and then it tests if the
public key X1 equals to the value sk ′1P. If the two values are
different, then abort the protocol. Otherwise P1 sets sk1 to
sk1 = sk ′1.

d: DIFFERENCES BETWEEN OURS AND THE HJKY
PROTOCOL IN [22]
The HJKY protocol presented by Herzberg et al. [22]
achieves the similar security level to ours under the adversary
model that we have considered. In fact, the construction
idea is very similar to ours, but the main difference is
that the HJKY protocol exploits verifiable secret sharing
schemes [31], [32] to generate values for masking the secret
share ski. More precisely, in their protocol, each party Pi for
i ∈ G first generates a random polynomial ri(x) of degree
t−1 with ri(0) = 0, evaluates it at j for j ∈ G\{i}, and passes
ri(j) to Pj with homomorphic commitments to coefficients.
Then, after receiving values, each party Pi checks whether
the received values rj(i)’s are correctly computed with the
committed values. If all verification passes, each party adds
the received values to his/her secret share and then sends the
result toP1. Finally,P1 obtains sk1 by applying the Lagrange
interpolation to the received values.

In the above process, to verify values ri(j)’s, each party
sends O(t) commitments to other parties each. So, the total
communication cost for this step is O(t3). Moreover, it takes
O(t) group operations to check a value ri(j) using homo-
morphic commitment schemes, like Feldman and Pedersen
commitment schemes [31], [32]. So, the total computational
cost for this step is O(t3) group operations as well.

B. SECURITY ANALYSIS
In this subsection, we look into the correctness and secrecy
of our proposed construction.

1) CORRECTNESS
Now, we investigate the correctness of our proposed key
recovery protocol. That is, we check that the party P1 obtains
his/her own secret share sk1 once other parties P2, . . . ,Pt+1
follow the protocol as described faithfully.

The following theorem shows the correctness of our pro-
posed protocol.
Theorem 1: In our recovery algorithm Recover(),

P1 obtains his/her exact secret share sk1 that he/she lost
if all parties behave as described faithfully. Therefore, our
protocol satisfies the correctness of key recover protocol in
Definition 3.

Proof: First, at Step 3, each party Pi has bji’s for all
j ∈ G with j 6= i and the relation Bji = Com(bji; rji) holds for
each j if the party Pj generates Bji honestly. Next, each party
Pi generates

si = `G
i (1)ski +

∑
j∈G\{i}

(bij − bji)

for the set G = {2, . . . , t + 1} and sends si to P1. Once
receiving si’s from Pi, P1 obtains sk1 since

sk ′1 =
∑
i∈G

si

=

∑
i∈G

`G
i (1)ski +

∑
j∈G\{i}

(bij − bji)

=

∑
i∈G

`G
i (1)ski +

∑
i∈G

 ∑
j∈G\{i}

(bij − bji)

=

∑
i∈G

`G
i (1)ski = sk1.

The second equality holds if parties P2, . . . ,Pt+1 follow
the protocol honestly. The fourth equality holds since in∑
i∈G

 ∑
j∈G\{i}

(bij − bji)

, each bij is added and subtracted

exactly once and so the result is zero. Finally, the last equality
holds from the relation of the Lagrange interpolation.

Since sk1 is the exact secret share for P1 that it lost, once
at least t parties including P1 jointly run Recon() algorithm,
it returns the secret key sk . Therefore, it satisfies the correct-
ness of Definition 3. �

2) SECRECY
Next, we take a closer look at the secrecy of our proposed
protocol. Since our protocol is designed to recover a secret
share of a particular party in the (t, n)-threshold ECDSA
scheme, all secrets are inherently revealed once t parties who
have their own secret shares are corrupted. Thus, we assume
that the adversary can corrupt up to t − 1 parties among
t + 1 parties. Furthermore, a secret share ski of Pi who is not
corrupted, should not be revealed to the adversary. Otherwise,
the adversary can have t secret shares including them of
corrupted parties and so the secret sk can be revealed.

VOLUME 10, 2022 133213

M. Kim et al.: Key Recovery Protocol for Multiparty Threshold ECDSA Schemes

The following theorem shows the secrecy of our proposed
protocol.
Theorem 2: Suppose that P1 wishes to recover the secret

share of sk, and letG = {2, 3, . . . , t+1} be a group of parties
given by algorithm Group(n, t, 1). The protocol described
in Section III-A is secure against the malicious adversary
which can corrupt at most t − 1 parties, assuming that the
exploited secure channel is established by a semantically
secure encryption scheme, and the employed commitment
scheme satisfies hiding and binding properties.

Proof: In this simulation-based proof, we will construct
an algorithm for an ideal model adversary B which is poly-
nomial in the running time. The ideal model adversary B
communicates with a set of corrupted parties I∗ ⊂ G, which
is of cardinality at most t − 1, pretending a set of honest
parties in such a way that the corrupted parties in I∗ cannot
detect if he is either in the real protocol or in the ideal world.
The incorruptible trusted party takes the input from B and
the honest parties in the ideal world, and returns the output
to B and/or the honest parties. Then B communicates with
the malicious parties in I∗, and thus they also learn the same
output. We formally describe the algorithm as follows:

1) For each simulated honest party δ ∈ 1 = G\I∗,
perform the followings:
a) Choose a random value skδ ∈ M where recall M

is a message space for a secret sharing scheme.
b) Pick random elements bδj ∈ Z∗q and randomizers

rδj ∈ Rck for each j ∈ G\{δ}.
2) Perform Steps 1 and 2 of the algorithm Recover():

a) Send the commitment Bδj∗ to bδj∗ to each mali-
cious party j∗ ∈ I∗.

b) Send an encryption of (bδj∗ , rδj∗), denoted b̄δj∗ ,
to each malicious party j∗ ∈ I∗.

c) Receive from each malicious party i∗ ∈ I∗:
i) commitment Bi∗j to bi∗j
ii) a pair of committed values (bi∗j, ri∗j) and its

encryption b̄i∗j
iii) all pairs of committed values {(bδi∗ , rδi∗)}δ∈1

and a set of corresponding encryptions {b̄δi∗}
3) B obtains {ski∗}i∗∈I∗ , {bδj∗}j∗∈I∗ , and {bi∗j}i∗∈I∗ . For all

i∗ ∈ I∗, build

si∗ = `G
i∗ (1) · ski∗ +

∑
j∈G\{i∗}

(bi∗j − bji∗).

4) B submits {si∗}i∗∈I∗ to the trusted third party. The hon-
est parties submit their sδ to the trusted third party.
• Case 1 6∈ I∗. The trusted party returns sk ′1 to the
honest party P1.

• Case 1 ∈ I∗. The trusted party returns sk ′1 to B.
5) B follows the rest of the protocol with the malicious

parties as instructed.
This completes the description ofB. To check thatB works

as required, in the real and ideal worlds, we fix arbitrary
values in the input and random tape of the environment Z ,

which forces the random choices of the players and those
of B to be the only source of randomness. We now argue
that for any set of fixed values, Z cannot computationally
determine whether it interacts with the ideal world or with
the real protocol, if we use B in the ideal world as described
above.

Note that what Z can observe is the output generated by
the parties, plus it sees the view of the corrupted parties.
As a consequence, it will be clearly sufficient to prove the
following.

Firstly, until Step 1 the only messages Z that will see
from honest parties are random elements and randomizers
they hold. This is perfectly simulated: Both in simulation and
in the real protocol the adversary sees t − 1 independently
random elements and values. Then it is straightforward to see
that the rest of the values in the view follow in a correct way
from the starting values.

At Step 2, Z will see results for all parties. In the ideal
world, these results are computed according to the given
function by functionality f from the inputs specified by Z .
In the real protocol, however it can check that all parties
will compute the same function from the inputs specified
by Z . In Step 2c, Z will see the corrupted parties’ view of
commitments, encryptions, and random elements. Security
of the commitment scheme guarantees that the distribution of
these commitments in the ideal is identical to that of in the real
protocol. Similarly, the security of the exploited encryption
scheme for constructing secure channels guarantees that the
distribution of these encryptions is computationally indistin-
guishable from that in the real protocol. If these values go to
the honest parties, nothing more is revealed. This covers the
case where 1 6∈ I∗. If these values go to the corrupted parties
including P1 (i.e., the case where 1 ∈ I∗), observe that in the
real protocol, there are at least two or more honest parties,
thus although the view of P1 is given by∑

δ∈1

`G
δ (1)skδ + R1︸ ︷︷ ︸

from honest parties

+

∑
i∗∈I∗

`G
i∗ (1)ski∗ + RI∗︸ ︷︷ ︸
=
∑
si∗

.

The above value is uniformly random because skδ and R1
are uniformly random. Here, R1 (resp., RI∗) is obtained by
adding random elements of the honest parties (resp., cor-
rupted parties) and subtracting random elements received by
the honest parties from all other parties in G. It is now clear
that the procedure used by B to recover a lost secret share
sk1 leads to the same distribution. This concludes the proof.

�

C. EFFICIENCY ANALYSIS
First, let us evaluate the computational cost of our protocol.
For simplicity, we assume that the Feldman commitment
scheme [31] is exploited in our key recovery protocol, and
it requires a scalar multiplication of elliptic curve point for
commitment generation and verification each. Then, the most
expensive operation in our protocol is a scalar multiplication

133214 VOLUME 10, 2022

M. Kim et al.: Key Recovery Protocol for Multiparty Threshold ECDSA Schemes

TABLE 1. Theoretical efficiency comparison of ours and the HJKY protocol [22].

TABLE 2. Experimental results of ours and the HJKY protocol for small t and various security levels (Unit: ms).

of elliptic curve point. At Steps 1 and 3, each party, except
P1, takes (t − 1) scalar multiplications, respectively. So,
P2, . . . ,Pt+1 take 2(t − 1) scalar multiplications. On the
other hand, P1 takes only one scalar multiplication at the
last step for verification. Thus, the total computational cost is
2(t−1)t+1 scalar multiplications, which correspond toO(t2).
Next, let us consider the communication cost of our pro-

tocol. Again under assuming that the Feldman commitment
scheme [31] is exploited in our key recovery protocol, at
Steps 1 and 2, each party, except P1, sends two elements in
Zq and G, respectively, to all other parties. At Step 3 each
party, except P1, sends an element in Zq to P1. So, the total
communication cost is t2|Zq|+t(t−1)|G|, which corresponds
to O(t2), where |Zq| and |G| are the bit lengths to represent
elements in Zq and G, respectively.

In Table 1, we summarize the computational and commu-
nication complexities of our protocol and the HJKY protocol
[22] that achieves the same security with ours.

IV. IMPLEMENTATION RESULTS
In this section, we present implementation results of ours and
the HJKY protocol in [22] for various parameter settings.

A. EXPERIMENTAL ENVIRONMENTS
The source codes3 of our implementation were written in
C++ and compiled using g++ 9.4.0 compiler. We used the

3https://github.com/CryptoLabCAU/KeyRecovery

OpenSSL library [45] for using the symmetric key encryp-
tion, AES-256-GCM, to establish private peer-to-peer chan-
nels, and for implementing arithmetic of large numbers and
elliptic curve operations in the protocols. However, we do
not implement data transmission on the network. Instead,
we store and read them on memory once party’s computation
at each step ends and begins, respectively. We have tested
the programs on the modern PC with Intel(R) Core(TM)
i7-11700 CPU at 2.50 GHz and 32 GB RAM. The oper-
ating system for our experiments was Ubuntu 20.04 LTS
on Windows Subsystem for Linux (WSL) on Windows
10 pro 64-bits.

B. EXPERIMENTAL RESULTS
Now, we present our experimental results of ours and the
HJKY protocol for various parameters. Each test was done
100 times and the results in the tables and graphs below are
averages of those execution times.

Table 2 gives computation times of our protocol and
the HJKY protocol for small t and several security lev-
els. In Table 2, SECP160k1, SECP192k1, SECP224k1,
and SECP256k1 denote specific Koblitz curves for 80-bit,
96-bit, 112-bit, and 128-bit security, respectively, defined by
Standards for Efficient Cryptography Group [46]. The table
shows that our protocol outperforms the HJKY protocol. For
example, when t = 2 for 128-bit security, our protocol
requires 4.211 ms in total for computations, while the HJKY

VOLUME 10, 2022 133215

M. Kim et al.: Key Recovery Protocol for Multiparty Threshold ECDSA Schemes

TABLE 3. Experimental results of ours and the HJKY protocol for various
t at 128-bit security (Unit: ms).

FIGURE 2. Total computation time of ours for various security level at
small t .

FIGURE 3. Total computation time of the HJKY Protocol for various
security level at small t .

protocol requires 10.467 ms for the same purpose. Ours
reduces the computation time by a factor of about 2.49 times.
Figures 2 and 3 pictorially present computation times of ours
and the HJKY protocol, respectively, and the results tend to
increase when t and security levels are increased, as expected.

When t is larger, the advantage of our protocol becomes
higher: Table 3 provides several implementation results of
ours and the HJKY protocol for larger t at 128-bit security.
In the table, when t = 9, while the HJKY protocol takes
333.42 ms in total for computations, ours takes 56.61 ms for
the same purpose which improves by a factor of 5.89 times.
Figure 4 shows a pictorial description of total computation
time of ours and the HJKY protocol. It shows that the gap

FIGURE 4. Comparison of total computation time of ours and the HJKY
protocol for various t at 128-bit security.

between the results of ours and the HJKY protocol becomes
larger as t is increased.

V. CONCLUSION
In this paper, we present a new key recovery protocol for a
party who lost his/her secret share that is secure against static
corruptions of up to (t − 1) parties by malicious adversaries
in (t, n) threshold ECDSA schemes. Our proposed protocol
improves the computational and communication costs from
O(t3) to O(t2). We show the efficiency improvements of our
proposed protocol by presenting implementation results.

Though our proposed protocol can be applied for other
threshold cryptosystems, the security level that our protocol
achieves is relatively weaker than those of recently pro-
posed proactive secret sharing schemes: Our protocol has
limitations that it does not achieve robustness and fairness.
It does not consider the dynamic setting as well. As a future
work, it may be interesting to improve the efficiency of cur-
rently existing proactive secret sharing schemes that achieve
stronger security as well as to enhance the security level that
threshold ECDSA schemes achieve.

APPENDIX A
GROUP SETUP PROTOCOL
Let n denote the overall number of parties in the system,
t − 1 denote the overall number of parties under the control
of the adversary, and t be the size of each group running the
key recovery protocol, except a party who lost his/her secret
key.

The grouping protocol uses two hash functions F1 and
F2 which will be considered as random oracles in the security
proof. We provide a formal description of the protocol.

1) Each Pi chooses a random ri and sends F1(ipi,pki, ri)
to the public bulletin board (PBB) where ipi and pki
indicate Pi’s IP address and public key, respectively.

2) After a short prefixed delay, each party queries the PBB
for the table of parties which have registered.

3) Each party Pi computes α = F2(F1(ip1,pk1, r1), . . . ,
F1(ipn,pkn, rn)) and parses the result α into chunks

133216 VOLUME 10, 2022

M. Kim et al.: Key Recovery Protocol for Multiparty Threshold ECDSA Schemes

of size log n, denoted α1, . . . , αn. Each party Pi is
associated with αi and the table is sorted by the αi
values.

4) Grouping is performed by taking a group of t par-

ties according to the sorting. Namely, for some i
$
←−

{1, 2, . . . , b nt c}, a group G is set to be the parties asso-
ciated with the values (αn·(i−1)+1, . . . , αn·i).

5) The PBB sends the IP addresses of the group members
to the members of each group.

6) Members of each group send each other their IP
address, public key and randomness that were used
when registering with the PBB.

7) Each group member computes F1(ipj,pkj, rj) for every
party Pj in its group and verifies that it matches what
was recorded by the center during registration. In addi-
tion, it verifies that it received the IP address of all
parties that are in its group, by the computation of F2.
If no, then it sends abort to all the parties in its group.

According to the analysis in [44], the probability of a bad

grouping is approximately
(
t−1
n

)t−2
· n. For more details of

the bound, see Section 5.2.2 of [44].

REFERENCES
[1] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, ‘‘Robust thresh-

old DSS signatures,’’ in Advances in Cryptology—EUROCRYPT (Lecture
Notes in Computer Science), vol. 1070, U. M. Maurer, Ed. Springer, 1996,
pp. 354–371.

[2] P. D. MacKenzie and M. K. Reiter, ‘‘Two-party generation of DSA sig-
natures,’’ in Advances in Cryptology—EUROCRYPT (Lecture Notes in
Computer Science), vol. 2139, J. Kilian, Ed. Santa Barbara, CA, USA:
Springer, Aug. 2001, pp. 137–154.

[3] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, ‘‘Robust and efficient
sharing of RSA functions,’’ inAdvances in Cryptology—CRYPTO (Lecture
Notes in Computer Science), vol. 1109, N. Koblitz, Ed. Santa Barbara, CA,
USA: Springer, Aug. 1996, pp. 157–172.

[4] D. R. Stinson and R. Strobl, ‘‘Provably secure distributed Schnorr signa-
tures and a (t, n) threshold scheme for implicit certificates,’’ in Proc. Inf.
Secur. Privacy, 6th Australas. Conf., in Lecture Notes in Computer Science,
vol. 2119, V. Varadharajan and Y. Mu, Eds. Sydney, NSW, Australia:
Springer, Jul. 2001, pp. 417–434.

[5] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, ‘‘Secure distributed
key generation for discrete-log based cryptosystems,’’ J. Cryptol., vol. 20,
no. 1, pp. 51–83, Jan. 2007.

[6] Y. Desmedt and Y. Frankel, ‘‘Threshold cryptosystems,’’ in Advances in
Cryptology—CRYPTO (Lecture Notes in Computer Science), vol. 435,
G. Brassard, Ed. Santa Barbara, CA, USA: Springer, Aug. 1989,
pp. 307–315.

[7] R. L. Rivest, A. Shamir, and L. Adleman, ‘‘A method for obtaining digital
signatures and public-key cryptosystems,’’ Commun. ACM, vol. 21, no. 2,
pp. 120–126, Feb. 1978.

[8] C.-P. Schnorr, ‘‘Efficient signature generation by smart cards,’’ J. Cryptol.,
vol. 4, no. 3, pp. 161–174, Jan. 1991.

[9] NIST, ‘‘Digital signature standard (DSS),’’ NIST, Gaithersburg,MD, USA,
Tech. Rep. 169, Aug. 1991.

[10] R. Gennaro, S. Goldfeder, and A. Narayanan, ‘‘Threshold-optimal
DSA/ECDSA signatures and an application to bitcoin wallet
security,’’ in Applied Cryptography and Network Security (Lecture
Notes in Computer Science), vol. 9696, M. Manulis, A. Sadeghi,
and S. A. Schneider, Eds. Guildford, U.K.: Springer, Jun. 2016,
pp. 156–174.

[11] Y. Lindell, ‘‘Fast secure two-party ECDSA signing,’’ in Advances in
Cryptology—CRYPTO (Lecture Notes in Computer Science), vol. 10402,
J. Katz and H. Shacham, Eds. Santa Barbara, CA, USA: Springer,
Aug. 2017, pp. 613–644.

[12] R. Gennaro and S. Goldfeder, ‘‘Fast multiparty threshold ECDSAwith fast
trustless setup,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.
(CCS), D. Lie, M. Mannan, M. Backes, and X. Wang, Eds. Toronto, ON,
Canada: ACM, Oct. 2018, pp. 1179–1194.

[13] Y. Lindell and A. Nof, ‘‘Fast secure multiparty ECDSA with practical
distributed key generation and applications to cryptocurrency custody,’’
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), D. Lie,
M. Mannan, M. Backes, and X. Wang, Eds. Toronto, ON, Canada: ACM,
Oct. 2018, pp. 1837–1854.

[14] J. Doerner, Y. Kondi, E. Lee, and A. Shelat, ‘‘Secure two-party threshold
ECDSA from ECDSA assumptions,’’ in Proc. IEEE Symp. Secur. Privacy
(SP). San Francisco, CA, USA: IEEE Computer Society, May 2018,
pp. 980–997.

[15] J. Doerner, Y. Kondi, E. Lee, and A. Shelat, ‘‘Threshold ECDSA
from ECDSA assumptions: The multiparty case,’’ in Proc. IEEE
Symp. Secur. Privacy (SP), San Francisco, CA, USA, May 2019,
pp. 1051–1066.

[16] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker,
‘‘Two-party ECDSA from hash proof systems and efficient instantiations,’’
in Advances in Cryptology—CRYPTO (Lecture Notes in Computer Sci-
ence), vol. 11694, A. Boldyreva and D. Micciancio, Eds. Santa Barbara,
CA, USA: Springer, Aug. 2019, pp. 191–221.

[17] R. Canetti, R. Gennaro, S. Goldfeder, N. Makriyannis, and U. Peled, ‘‘UC
non-interactive, proactive, threshold ECDSA with identifiable aborts,’’ in
Proc. ACM SIGSAC Conf. Comput. Commun. Secur., J. Ligatti, X. Ou,
J. Katz, and G. Vigna, Eds. Nov. 2020, pp. 1769–1787.

[18] H. Xue, M. H. Au, X. Xie, T. H. Yuen, and H. Cui, ‘‘Efficient online-
friendly two-party ECDSA signature,’’ in Proc. ACM SIGSAC Conf. Com-
put. Commun. Secur., Y. Kim, J. Kim, G. Vigna, and E. Shi, Eds. Virtual
Event, South Korea, Nov. 2021, pp. 558–573.

[19] Y. Deng, S. Ma, X. Zhang, H. Wang, X. Song, and X. Xie, ‘‘Promise
∑

-
protocol: How to construct efficient threshold ECDSA from encryptions
based on class groups,’’ in Advances in Cryptology—ASIACRYPT (Lecture
Notes in Computer Science), vol. 13093, M. Tibouchi and H. Wang, Eds.
Singapore: Springer, Dec. 2021, pp. 557–586.

[20] I. Damgård, T. P. Jakobsen, J. B. Nielsen, J. I. Pagter, andM. B. Østergaard,
‘‘Fast threshold ECDSA with honest majority,’’ J. Comput. Secur., vol. 30,
no. 1, pp. 167–196, 2022.

[21] R. Ostrovsky and M. Yung, ‘‘How to withstand mobile virus attacks
(extended abstract),’’ in Proc. 10th Annu. ACM Symp. Princ. Distrib.
Comput., L. Logrippo, Ed. Montreal, QC, Canada: ACM, Aug. 1991,
pp. 51–59.

[22] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, ‘‘Proactive secret
sharing or: How to cope with perpetual leakage,’’ in Proc. 15th Annu.
Int. Cryptol. Conf., in Lecture Notes in Computer Science, vol. 963,
D. Coppersmith, Ed. Santa Barbara, CA, USA: Springer, Aug. 1995,
pp. 339–352.

[23] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung,
‘‘Proactive public key and signature systems,’’ in Proc. 4th ACM Conf.
Comput. Commun. Secur. (CCS), R. Graveman, P. A. Janson, C. Neuman,
and L. Gong, Eds. Zurich, Switzerland: ACM, Apr. 1997, pp. 100–110.

[24] J. Doerner. (2021). Open Source for mpecdsa. GitLab. Aug. 6, 2022.
[Online]. Available: https://gitlab.com/neucrypt/mpecdsa/activity

[25] P. Paillier, ‘‘Public-key cryptosystems based on composite degree residu-
osity classes,’’ in Advances in Cryptology—EUROCRYPT (Lecture Notes
in Computer Science), vol. 1592, J. Stern, Ed. Prague, Czech Republic:
Springer, May 1999, pp. 223–238.

[26] Y. Kondi, B. Magri, C. Orlandi, and O. Shlomovits, ‘‘Refresh when you
wake up: Proactive threshold wallets with offline devices,’’ in Proc. 42nd
IEEE Symp. Secur. Privacy (SP), San Francisco, CA, USA, May 2021,
pp. 608–625.

[27] K. Bae, J. Park, and J. Ryou, ‘‘Secure recovery protocol of (1,3)
distributed key share with trustless setup for asset management in
blockchain,’’ J. Korea Inst. Inf. Secur. Cryptol., vol. 31, no. 5, pp. 863–874,
2021.

[28] V. Nikov and S. Nikova, ‘‘On proactive secret sharing schemes,’’ in
Selected Areas in Cryptography (Lecture Notes in Computer Science),
vol. 3357, H. Handschuh and M. A. Hasan, Eds. Waterloo, ON, Canada:
Springer, Aug. 2004, pp. 308–325.

[29] S. Dolev, K. E. Defrawy, J. Lampkins, R. Ostrovsky, and M. Yung,
‘‘Proactive secret sharing with a dishonest majority,’’ in Security and Cryp-
tography for Networks (Lecture Notes in Computer Science), vol. 9841,
V. Zikas and R. D. Prisco, Eds. Amalfi, Italy: Springer, Aug./Sep. 2016,
pp. 529–548.

VOLUME 10, 2022 133217

M. Kim et al.: Key Recovery Protocol for Multiparty Threshold ECDSA Schemes

[30] K. Eldefrawy, T. Lepoint, and A. Leroux, ‘‘Communication-efficient
proactive MPC for dynamic groups with dishonest majorities,’’ in Applied
Cryptography and Network Security (Lecture Notes in Computer Science),
vol. 13269, G. Ateniese and D. Venturi, Eds. Rome, Italy: Springer,
Jun. 2022, pp. 565–584.

[31] P. Feldman, ‘‘A practical scheme for non-interactive verifiable secret shar-
ing,’’ in Proc. 28th Annu. Symp. Found. Comput. Sci. Los Angeles, CA,
USA: IEEE Computer Society, Oct. 1987, pp. 427–437.

[32] T. P. Pedersen, ‘‘A threshold cryptosystem without a trusted party
(extended abstract),’’ in Advances in Cryptology—EUROCRYPT (Lecture
Notes in Computer Science), vol. 547, D. W. Davies, Ed. Brighton, U.K.:
Springer, 1991, pp. 522–526.

[33] R. Cramer, I. Damgård, and J. B. Nielsen, ‘‘Multiparty computation from
threshold homomorphic encryption,’’ in Advances in Cryptology—
EUROCRYPT (Lecture Notes in Computer Science), vol. 2045,
B. Pfitzmann, Ed. Innsbruck, Austria: Springer, 2001, pp. 280–299.

[34] I. Damgård and M. Jurik, ‘‘A generalisation, a simplification and some
applications of paillier’s probabilistic public-key system,’’ in Proc. 4th Int.
Workshop Pract. Theory Public Key Cryptogr. (PKC), in Lecture Notes
in Computer Science, vol. 1992, K. Kim, Ed. Cheju Island, South Korea:
Springer, Feb. 2001, pp. 119–136.

[35] T. E. Gamal, ‘‘A public key cryptosystem and a signature scheme based
on discrete logarithms,’’ IEEE Trans. Inf. Theory, vol. IT-31, no. 4,
pp. 469–472, Jul. 1985.

[36] S. Goldwasser and S. Micali, ‘‘Probabilistic encryption,’’ J. Comput. Syst.
Sci., vol. 28, no. 2, pp. 270–299, Apr. 1984.

[37] A. Menezes, P. V. Ooschot, and S. Vanstone, Handbook of Applied Cryp-
tography. Boca Raton, FL, USA: CRC Press, 1997.

[38] J. C. Benaloh and J. Leichter, ‘‘Generalized secret sharing and monotone
functions,’’ in Proc. 8th Annu. Int. Cryptology Conf., in Lecture Notes in
Computer Science, vol. 403, S. Goldwasser, Ed. Santa Barbara, CA, USA:
Springer, Aug. 1988, pp. 27–35.

[39] E. F. Brickell and D. M. Davenport, ‘‘On the classification of ideal secret
sharing schemes,’’ J. Cryptol., vol. 4, no. 2, pp. 123–134, 1991.

[40] M. Bertilsson and I. Ingemarsson, ‘‘A construction of practical secret shar-
ing schemes using linear block codes,’’ in Proc. Workshop Theory Appl.
Cryptograph. Techn., in Lecture Notes in Computer Science, vol. 718,
J. Seberry and Y. Zheng, Eds. Gold Coast, QLD, Australia: Springer,
Dec. 1992, pp. 67–79.

[41] M. Karchmer and A. Wigderson, ‘‘On span programs,’’ in Proc. 8th Annu.
Struct. Complex. Theory Conf. San Diego, CA, USA: IEEE Computer
Society, May 1993, pp. 102–111.

[42] I. Damgård, ‘‘Commitment schemes and zero-knowledge protocols,’’ in
Lectures on Data Security, Modern Cryptology in Theory and Prac-
tice, Summer School (Lecture Notes in Computer Science), vol. 1561,
I. Damgård, Ed. Aarhus, Denmark: Springer, Jul. 1998, pp. 63–86.

[43] A. Shamir, ‘‘How to share a secret,’’ Commun. ACM, vol. 22, no. 11,
pp. 612–613, Nov. 1979.

[44] Y. Lindell and E. Waisbard, ‘‘Private web search with malicious adver-
saries,’’ in Privacy Enhancing Technologies (Lecture Notes in Computer
Science), vol. 6205, M. J. Atallah and N. J. Hopper, Eds. Berlin, Germany:
Springer, Jul. 2010, pp. 220–235.

[45] OpenSSL–Cryptography and SSL/TLS Toolkit, Version 1.1.1N.
Accessed: Apr. 7, 2022. [Online]. Available: https://www.openssl.org

[46] (2010). SEC 2: Recommended Elliptic Curve Domain Parameters, Ver-
sion 2.0. Accessed: Jul. 15, 2022. [Online]. Available: https://www.
secg.org/sec2-v2.pdf

MYUNGSUN KIM received the B.S. degree in
computer science and engineering from Sogang
University, Seoul, South Korea, in 1994, the
M.S. degree in computer science and engineering
from Information and Communications University
(ICU), Daejeon, in 2002, and the Ph.D. degree
in mathematics from Seoul National University
(SNU), Seoul, in 2012. He was working with the
Department of Information Security, University of
Suwon. He is currently an Associate Professor

with the Department of Mathematics, Gachon University. His research inter-
ests include efficient constructions of cryptographic algorithms and their
practical applications to real-world solutions.

SANGRAE CHO received the B.Eng. degree
in computing from Imperial College London,
in 1996, and the M.Sc. degree in information
security from the Royal Holloway, University
of London, in 1997. He started his career as a
Researcher at LG Corporate Technology Institute,
in 1997, and he worked at the Electronics and
Telecommunications Research Institute (ETRI),
South Korea, as a Security Researcher for more
than 15 years. During that time, he has been

actively involved in constructing a national PKI infrastructure project, until
2001. He is currently a Senior Researcher with the Authentication Research
Team, ETRI. In 2004, he has done several projects relating to digital identity
management, including SAML v2.0 and authentication technology based on
fast identity online (FIDO) specifications.

SEONGBONG CHOI received the B.Sc. degree in
computer science and engineering from Jeonbuk
National University, Republic of Korea, in 2020,
and the M.S. degree in computer science and engi-
neering from Chung-Ang University, Republic of
Korea, in 2022, where he is currently pursuing the
Ph.D. degree with the School of Computer Science
and Engineering. His research interest includes
public key cryptography.

YOUNG-SEOB CHO received the Ph.D. degree
in computer science from Inha University,
South Korea. Since 1998, he has been working
on research projects with the Electronics and
Telecommunications Research Institute (ETRI)
and continuously conducted numerous projects
on national and international level. He is cur-
rently a Principal Researcher with the Information
Security Research Division, ETRI. His current
research interests include multiparty computation,
blockchain identity management, and AI security.

SOOHYUNG KIM received the B.S. and M.S.
degrees in computer science from Yonsei Uni-
versity, Seoul, South Korea, in 1996 and 1998,
respectively, and the Ph.D. degree in computer sci-
ence from the Korea Advanced Institute of Science
and Technology (KAIST), Daejeon, South Korea,
in 2016. He is currently a Project Leader with the
Information Security Research Division, Electron-
ics and Telecommunications Research Institute
(ETRI), Daejeon. His research interests include

biometrics, identity management, payment systems, and network and system
security.

HYUNG TAE LEE received the B.Sc., M.Sc., and
Ph.D. degrees in mathematics from Seoul National
University, Republic of Korea, in 2006, 2008, and
2013, respectively. He was a Research Fellow with
Nanyang Technological University, Singapore,
and an Assistant Professor with Jeonbuk National
University, Republic of Korea. He is currently an
Assistant Professor with the School of Computer
Science and Engineering, Chung-Ang University,
Republic of Korea. His research interests include

computational number theory, cryptography, and information security.

133218 VOLUME 10, 2022

