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Abstract: Existing methods in portfolio management deterministically produce an optimal portfolio.
However, according to modern portfolio theory, there exists a trade-off between a portfolio’s expected
returns and risks. Therefore, the optimal portfolio does not exist definitively, but several exist,
and using only one deterministic portfolio is disadvantageous for risk management. We proposed
Dirichlet Distribution Trader (DDT), an algorithm that calculates multiple optimal portfolios by taking
Dirichlet Distribution as a policy. The DDT algorithm makes several optimal portfolios according
to risk levels. In addition, by obtaining the pi value from the distribution and applying importance
sampling to off-policy learning, the sample is used efficiently. Furthermore, the architecture of
our model is scalable because the feed-forward of information between portfolio stocks occurs
independently. This means that even if untrained stocks are added to the portfolio, the optimal
weight can be adjusted. We also conducted three experiments. In the scalability experiment, it was
shown that the DDT extended model, which is trained with only three stocks, had little difference
in performance from the DDT model that learned all the stocks in the portfolio. In an experiment
comparing the off-policy algorithm and the on-policy algorithm, it was shown that the off-policy
algorithm had good performance regardless of the stock price trend. In an experiment comparing
investment results according to risk level, it was shown that a higher return or a better Sharpe ratio
could be obtained through risk control.

Keywords: deep reinforcement learning; exploration methods; portfolio optimization

1. Introduction

Financial Portfolio Management (PM) is a problem of sequentially allocating and
balancing a number of funds into several risky financial assets such as stocks, bonds, or
cash. The goal of portfolio management is to maximize the expected return while mini-
mizing investment risks. Traditional portfolio management has determined the weights of
financial assets based on statistical indicators. Specifically, there is a well-known portfolio
optimization method called modern portfolio theory (MPT) [1]. MPT allows an efficient
portfolio to be computed by using the relationship between the expected return and risk,
where the risk is measured by the standard deviation of returns. While MPT provides
a theoretically interpretable portfolio, it has a limitation in that a number of statistical
features, which can be obtained from big data, cannot be considered [1]. Furthermore, MPT
highly depends on the accurate prediction of the expected return and its standard devia-
tion [1]. To overcome such limitations, recent studies have employed deep learning-based
approaches that can automatically extract meaningful features from high-dimensional big
data. In particular, applying deep reinforcement learning (Deep RL) methods to solve
the portfolio management problem has continuously received attention since deep RL
has the ability to learn sequential decision-making based on features extracted from deep
neural networks. Hence, the importance of deep RL algorithms is being emphasized since
portfolio management problems can be formulated as the sequential determination of the
weight of each financial asset.
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In this regard, several existing off-policy and on-policy deep RL methods have been
applied to PM problems [2,3]. For off-policy RL, Ref [2] applied deep Q-learning to manage
the portfolio of a fixed number of assets. In general, Q learning is an off-policy approach
that can reuse experiences sampled during a training phase. Hence, off-policy approaches
are usually more sample efficient than on-policy methods. However, the deep Q learning
method used in [2] has a clear limitation in scalability since the architecture of the Q network
is fixed depending on the number of assets, and, hence, it cannot function if the number of
assets is extended. In PM, scalability means that the network can infer the weight of assets
that have not been used for training. If the network is not scalable for the number of assets,
it is inefficient since it should be re-trained every time a new stock is added.

To alleviate this issue, [3] applied proximal policy optimization [4], which is a well-
known on-policy method, and they proposed a new architecture that can handle a dynamic
number of financial assets. The fact that the model has scalability gives variety in stock
selection and facilitates trading strategy construction, new assets can be added to our
portfolio, or existing assets can be excluded from the portfolio. While the proposed model
in [3] is scalable, it has a drawback in that on-policy methods have been mainly employed
to train the network. In on-policy algorithms, the samples used to update the agent cannot
be reused after updating the parameter, which often hampers sample inefficiency. Hence, it
is essential to develop an off-policy algorithm to improve sample efficiency.

Furthermore, the previous models often consider a deterministic policy that can decide
on only one optimal portfolio vector [2,3]. However, designing a deterministic policy is
not robust to a variety of situations. If the policy network is stochastic, the agent can have
more than one optimal action, and we can have portfolio options according to the expected
rate of return and risk. In this regard, it is inevitable to develop scalable and multi-modal
methods for PM to consider a dynamic number of assets in the test phase.

Hence, we propose Dirichlet Distribution Trader (DDT), which can incorporate both
sample efficiency and scalability. To increase sample efficiency, we apply the off-policy
learning algorithm to train the scalable network. In particular, we use an importance
sampling technique to implement the off-policy algorithm. To compute importance weights,
we define a distribution over the portfolio vector. Since the valid portfolio vector consists of
the simplex, the Dirichlet distribution, which is a distribution on the simplex, is employed,
while previous studies only employ a deterministic policy instead of learning a policy
distribution. Furthermore, learning an optimal distribution of a portfolio has a clear benefit
in a test phase. By using a portfolio distribution, we can construct various trading strategies
during the test time by sampling the proper portfolio from the optimal distribution. To
make the model scalable for a dynamic number of assets, we employ similar network
architecture to that proposed in [5], where the information of each asset flowed identically
in the network. However, we do not use Recurrent Neural Network, and use MLP for a
single time step state.

In the experimental part, companies were selected from the NASDAQ 100 index
to find companies with sufficient trading volume. The selected stocks are divided into
Up and Down trends, and we construct datasets variously according to the trend with
these stocks. After such settings, we compared the proposed model with other DRL
algorithms, such as DQN, PPO, and other PM methods, as benchmarks. As a result of
the experiments, our proposed model outperforms the existing methods and shows a
state-of-the-art performance with respect to profit. Furthermore, we also empirically show
the advantages of using the Dirichlet distribution for PM. Therefore, the contributions of
our proposed methods can be summarized as follows:

• We propose a model using Dirichlet distribution, which is suitable for PM and off-
policy learning.

• We conduct experiments comparing on-policy and off-policy algorithms.
• We conduct experiments with various trend datasets and compare them with other

algorithms. As a result, our proposed model outperforms the other algorithms
and SOTA.
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• The proposed model utilizes representative values of the Dirichlet distribution to
allow investors to selectively adopt investment attitudes according to risk propensities
such as risk-averse and risk-seeking types.

2. Related Work

For decades, researchers in the financial field have tried to replace human traders with
computers [6–8]. In recent years, thanks to the development of machine learning [9,10],
stock investment strategies using deep learning have been proposed. These learning-
based methods can be categorized into supervised learning or on/off-policy RL methods.
Furthermore, we classify learning-based methods under the criterion of whether they are
scalable or nonscalable. We present our categorization in Table 1.

As with the cases of natural language processing and computer vision, the financial
field has benefited from progress in machine learning. For example, Ref [11] improved the
traditional momentum strategy [8] using an autoencoder. Ref [12] analyzed the effectiveness
of deep neural network (DNN) within the context of stock investment strategy. Ref [13]
implemented long short-term memory networks (LSTM) [9] for price prediction in the
financial market and showed that LSTM can outperform memory-free classification models,
including DNN. However, in general, these supervised learning-based models for stock
market trading strategies are trained to make price predictions. Therefore, additional layers
are needed to convert prices into action. Furthermore, training supervised learning models
requires binary labels for actions, which are lacking in general cases.

Table 1. Categorization of learning-based portfolio management approaches.

Scalable Not Scalable

On-Policy RL [3] [14]

Off-Policy RL Ours [3,5,15] [2,16,17]

Supervised Learning - [11–13]

Apart from the supervised learning-based methods, reinforcement learning algo-
rithms have long been attracting the attention of researchers in the financial field. In
recent years, deep reinforcement learning (DRL), which combines deep learning as a func-
tion approximation for reinforcement learning, has been adopted for many sequential
decision-making problems, such as controlling robotic systems [18,19], generating hu-
manoid motions, learning how to play video games [20–23], and learning trading strategies.
These DRL models can be divided into two categories, on-policy or off-policy, depending
on which algorithm is used for the model. We first introduce recent advances in DRL
algorithms and second introduce recent research to apply DRL to portfolio management
problems. Lee et al. [18,19] proposed a novel exploration method in DRL by using the
generalization of the entropy term. Cetin and Çeliktutan [20] proposed a novel action
space, called a routine space, to enable agents to learn effective behavior. Wang et al. [21]
extended the classical value iteration method to multi-step RL by proposing a new multi-
step Bellman optimality equation, which uses the latent space of multi-step bootstrapping.
Kong et al. [22] proposed a new sampling strategy for off-policy RL, which imposes a high
sampling probability to recently added data in the replay buffer to mitigate unbalanced
exploitation issues between initial data and new data. Vijayan and A. [23] introduced a
policy gradient algorithm that employs importance sampling for policy evaluation with a
smoothed functional-based gradient estimation. Then, recent research in PM has applied
DRL methods to the problem of decision-making on portfolio vectors. On-policy RL al-
gorithms have the target policy as the policy used to make decisions in the stock market.
Specifically, models for PM using on-policy RL algorithms mainly use proximal policy
optimization (PPO) [4], policy gradient (PG) [24], and A2C algorithms [25]. For example,
Ref [14] transplanted modern portfolio theory [26] into an RL framework to make direct
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mapping between market situation and trade position. In this process, Ref [14] used the
on-policy RL algorithms PG and A2C compared to DQN.

On the other hand, the off-policy RL algorithms, whose target policy is different
from the behavior policy, have an advantage in sample efficiency. In particular, Deep
deterministic policy gradient(DDPG) [27] and deep Q-network(DQN) [28] have been
widely adopted as the off-policy RL algorithms for stock market trading. For instance,
Ref [16] used DQN with a convolutional neural network(CNN) to take the stock market
images as input for making investment strategies. Ref [2] introduced a novel mapping
function that can handle infeasible action caused by combinatorial operating spaces and
applied DQN to derive PM investment strategies. Ref [17] showed model using DRL can
outperform the classical RL algorithm SARSA [29] on stock market trading, and MLP has
a better performance than gated recurrent unit(GRU) and CNN on feature extracting the
stock market data.

However, both the on-policy and off-policy DRL models mentioned so far did not
consider the scalability of the model. Although scalability is needed to handle portfolios
of various sizes, only a few studies have considered the scalability of the trading model.
For example, Ref [5] introduced a novel DRL structure, which consists of an ensemble
of identical independent evaluators (EIIE) topology and portfolio-vector memory (PVM).
By using the EIIE, including three networks CNN, RNN, and LSTM, the model is able to
deal with multi-channel input, and the portfolio, with scalability. Ref [15] also used IIE
to handle portfolios of various sizes. However, this model exploited the softmax function
to normalize the output. Similarly, Ref [3] employed IIE for scalability, but its activation
function is a Min-Max normalized function. Since both softmax and Min-Max activation
functions induce one optimal portfolio vector, the existing models with scalability have a
weakness in the diversity of the trading environment. On the contrary, we set the model to
learn the distribution of the portfolio, making our model have robustness in a variation of
the stock market.

3. Preliminaries
3.1. Financial Portfolio Management

Financial portfolio management is the task of sequentially re-balancing all weights of fi-
nancial assets by considering future profits. To develop an automatic portfolio management
system, in this section, we mathematically formulate the portfolio management problem.

We first define a time step t. The time step t is defined as a time slot from the opening
to the closing of a stock market in which a stock can be bought or sold. At time step t, the
environment (or the market) provides the agent (or the trading system) with stock data for
the portfolio assets from the previous business day. Then, the time step t is divided into
two periods: the period before re-balancing the portfolio and the period after re-balancing
the portfolio. If our trading agent determines the portfolio based on previous stock data, it
makes changes in the portfolio and its value within the time step t. Hence, we can separate
the time step t into the period before the agent’s action and the term after the agent’s action.

At every time step t, an agent determines the portfolio weights based on previous
stock data. The portfolio weights can be expressed as a vector of all holding weights of K
assets, including both cash and non-cash assets. We denote the portfolio vector as wt at the
period before the agent’s action in time step t.

wt = [wt,1, wt,2, ..., wt,K]
ᵀ (1)

where wt,i indicates the percentage of the ith asset among total funds. The ith entry of wt is
denoted as wt,i, which means the weight of the ith asset before taking action. Specifically,
the first element of portfolio vector, wt,1, is a proportion of cash. Then, the portfolio vector
changed after taking action at time step t is denoted as w′t. Finally, the portfolio vector at
the initial time step w0 is w0 = (1, 0, 0, ..., 0)T , which consists of cash only.
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The goal of the trading agent is to determine the best wt based on the previous stock
market data, which is encoded as a stock feature vector. The stock feature vector vt,i of the
ith asset at time t is defined as

vt,i = ( f o
t , f h

t , f l
t , f c

t , f v
t ), (2)

where the five features o, h, l, c, and v represent open, high, low, close price, and volume,
respectively. Then, stock feature matrix Xt is defined by stacking vt,i for all assets as follows,

Xt = [vᵀt,1, vᵀt,2, · · · , vᵀt,K]
ᵀ, (3)

where the shape of Xt is K× 5.
To compute the profit of wt, we employ the concept of the portfolio value, which is an

amount of investment evaluated by reflecting the changed stock price and transaction cost.
PVt and PV′t are denoted as the portfolio value of wt and w′t, respectively. To calculate a
portfolio value and a changed portfolio by price fluctuations for every time step, the closing
price vector at t is defined as Equation (5).

pt = (pt,1, pt,2, ..., pt,K)
T (4)

In a continuous time sequence from t to t + 1, two factors affect the portfolio value:
cost and closing price fluctuations. In time step t, the agent predicts the desired portfolio
w′t. In order to change the current portfolio wt to the desired one, the transaction cost must
be paid, which can be computed as follows,

ct =
K

∑
i=1

c× τt,i, (5)

where τt,i represents a trading amount of ith asset, and c indicates a commission rate.
After executing transactions, we can compute the pseudo portfolio weight as follows,

ŵt,i =


wt,i −

τt,i
PVt

if i ∈ S−t
wt,i +

τt,i
PVt

if i ∈ S+
t

wt,1 +
∑j∈S−t

τt,j−∑j∈S+t
τt,j−ct

PVt
if i = 1

wt,i otherwise

, (6)

where S− and S+ represent a set of indices of assets to sell and buy, respectively. Then, w′t is
determined by normalizing the pseudo portfolio as follows, w′t = ŵt/ ∑i ŵt,i. Furthermore,
PV′t can be obtained by substituting the transaction cost, i.e., PV′t = PVt − ct.

After computing w′t and PV′t , we reflect on the effect of the closing price change to
computing the portfolio vector at time step t+ 1. When the time step changes from t to t+ 1,
all assets’ prices in the portfolio may be changed depending on closing price fluctuation.
Hence, the portfolio value is changed. Equation (8) shows the changing formula of w′t to
wt+1, and Equation (9) shows the changing formula of PV′t to PVt+1 where rt means a price
change rate vector from t to t + 1 and rt,i = pt+1,i/pt,i,

rt = (1, rt,2, rt,3, ..., rt,K) (7)

wt+1 =
w′t � rt

rᵀt w′t
(8)

PVt+1 = PV′t · r
ᵀ
t w′t, (9)

where � indicates an element-wise multiplication. The flow chart of the portfolio and
portfolio value changes is shown in Figure 1.
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Figure 1. Illustration of the procedure of transactions during time step t. at indicates an action of the
trading agent where wt changes to w′t after at.

3.2. Markov Decision Processes for Portfolio Management

We cast the portfolio management problem into the problem of learning an optimal
strategy for sequential decision-making by using reinforcement learning algorithms. A
reinforcement learning is generally formulated as a Markov decision process (MDP), which
consists of a tuple (S ,A, P, r, γ) where S is a set of states, A is a set of actions, P indicates
a transition probability of a next state given state and action pair, r is a reward function
mapping from S ×A× S to R, and γ is a discount factor.

In the portfolio management problem, similar to [5], a state at t is defined by the stock
feature matrix Xt and the portfolio vector w′t at the end of t as follows,

st = (Xt, w′t). (10)

Then, an action at t is defined as a gap between the current portfolio wt and the desired
portfolio Dt,i. Therefore, the ith entry of at is defined as Equation (11).

at,i = wt,i − Dt,i (11)

at,i means the weight to be traded. Note that, for ∀i, at,i ∈ [−1, 1] and ∑i at,i = 0 hold. If
at,i is a negative number, the ith asset must be sold, and if at,i is a positive number, the ith
asset must be bought. However, in this way, the agent cannot have a hold position except
when at,i is 0, which can lead to a large transaction cost due to frequent transactions. In this
regard, we introduced a hyperparameter for threshold δ and truncated the action value to
zero if |at,i| < δ hold to make ith asset not be traded. Further, when the agent cannot sell or
buy the asset by a proportion of at,i, at,i is mapped to the maximum share that can be sold
or bought.

For a reward function, since our agent re-invests the profits, we use a continuous
compounding rate of return as a reward function, which is defined as

rt = ln(PVt)− ln(PV0). (12)

3.3. Distribution of a Portfolio

In this section, we define a distribution of a portfolio. Portfolio vector wt has innate
sum-to-one constraints. In other words, a set of valid portfolio vectors is equivalent to
an N − 1-dimensional simplex. Hence, to assign a distribution of a portfolio, we employ
the Dirichlet distribution, which is a well-known parametric distribution over a simplex.
Dirichlet distributions with concentration parameters α1, α2, ... αK > 0 have a multivariate
probability density function as follows,

f (x1, ..., xK; α1, ..., αK) =
1

B(α)

K

∏
i=1

xαi−1
i . (13)
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where B(α) is the beta function defined as,

B(α) :=
∏K

i=1 Γ(αi)

Γ(∑K
i=1 αi)

, α = (αi, ..., αK) (14)

Γ(x) :=
∫ ∞

0
tx−1e−tdt. (15)

Note that random vector X sampled from Dirichlet distribution is an element in the
K − 1 simplex. Hence, ∑K

i=1 Xi = 1 and Xi ∈ [0, 1] hold. This property is suitable for
representing a portfolio vector. By using a Dirichlet distribution, we can define a stochastic
policy over action space. We would like to emphasize that this paper is the first to employ
the Dirichlet distribution to represent a stochastic policy over a portfolio vector.

4. Proposed Method

We propose a novel off-policy reinforcement learning method for scalable portfolio
management by using importance sampling with the Dirichlet policy. First, to obtain
scalability, we employ an architecture that can easily add new assets to a test phase. Second,
to increase the sample efficiency, we also apply the importance sampling method to the
Dirichlet policy that can reuse the previously sampled experience.

4.1. Architecture

We propose a scalable architecture that allows a trained policy and value network to
be applied to unseen financial assets, which are not experienced during a training phase
but in a test phase. The overview of the proposed network architecture is given in Figure 2.
Our architecture consists of two parts: a policy network as an actor with a score net and a
value network as a critic with a score net and header.

Figure 2. Architecture of score, policy, and value networks.
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First, we introduce a score network gθ whose output is the potential goodness of
each asset where θ is the parameter of the network. Assume that we consider K assets in
our portfolio. Then, in state St, we have K number of stock vectors vi,t and K number of
portfolio weights w′i,t. For each asset, vi,t and w′i,t are an input of the score network and
mi := gθ(vi,t, w′i,t) indicates the score of the ith asset. For all assets, the scores {mi}K

i=1 are
predicted by the score network.

Based on {mi}K
i=1, the Dirichlet policy can be defined. Since the characteristics of the

Dirichlet distribution are fully determined by the concentration parameters; we define
the concentration parameters as a function of scores. Specifically, since the concentration
parameters must be positive, all parameters are computed as the exponential of the scores.
Finally, to consider a cash asset, we add a cash bias. Hence, the distribution policy is
defined as

a = wt − D, D ∼ Dir([1, em2 , em3 , ..., emK ]), (16)

where 1 indicates a cash bias and D indicates the desired portfolio. By using this policy, the
agent can sample various portfolio vectors from the Dirichlet distribution.

Second, the value network, which is parameterized by φ, is defined by combining both
the score network and multi-layer perceptron (MLP) header to estimate the state value,
which is defined as

Vπ(s) = E[rt+1 + γrt+2 + γ2rt+3 + ...|St = s] (17)

The state value indicates the sum of future rewards. The MLP header uses the scores
of each asset as an input, and its output Vφ(St) predicts the state value of the given policy
π. The detailed optimization method for updating φ to predict Vπ will be proposed in the
next section.

By using this architecture, we can easily add or remove assets from the portfolio in a
test phase. In the test phase, a new asset can be considered by estimating its score and the
Dirichlet distribution can be defined over scores, including a new one. To estimate the score
of a new asset, we only need v, w′ for a new asset, i.e., m := gθ(v, w′), where w′ can be set
to zero for the first estimation. Then, a new asset can be considered by sampling a portfolio
weight from a Dirichlet distribution defined over {mi}K

i=1 ∪ m. Similarly, removing the
existing asset can be achieved by defining a Dirichlet distribution defined over {mi}K

i=1/m.

4.2. Off-Policy Optimization

In this section, we introduce the optimization technique for value header φ and
score network θ. To increase sample efficiency, we propose the off-policy optimization
method. First, after executing actions, the transition pairs (st, at, rt, st+1, πθ(at|st)) are
stored in a replay buffer where π(at|st) is stored to compute the importance weight. For
the value header, φ is updated every time step with importance-weighted TD-target by
using importance sampling,

Lφ = ∑
t∈B

(
πθ(at|st)

πθold(at|st)
(rt + γVφ′(st+1))−Vφ(st))

)2

, (18)

where φ′ is a parameter for the target network, and B indicates the set of batch indices. For
each update, we sample a batch of N transitions from the replay buffer. In Equation (18), we
estimate the expectation of the squared TD loss with respect to πθ ; however, the transition
samples are generated by the previous policy πθold , which is different from distribution πθ .
Hence, this discrepancy can be compensated by multiplying the importance weight.

To update score network θ, we employ the clipped ratio loss proposed in PPO [4].

Lθ = ∑
t∈B

[
min(wt(θ)Ât, clip(wt(θ), 1− ε, 1 + ε)Ât

]
, (19)
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where wt(θ) = πθ(at|st)/πθold(at|st), ε is a clip threshold of importance ratio, and Ât =
rt + γVφ′(st+1)−Vφ(st). All processes of the off-policy optimization of value function Vφ

and policy πθ is summarized in Algorithm 1.

Algorithm 1 Drichlet Distribution Trader: DDT.

1: Input: ε, γ, N
2: Initialize critic network Vφ and actor network πθ

3: Initialize target critic network φ′ ← φ
4: Initialize replay buffer with size N
5: for episode from 1 to M do
6: Observe the state s1
7: for t from 1 to T do
8: Select action at ∼ πθ(st)
9: Execute action at, observe reward rt and state st+1

10: Store transition tuple (st, at, rt, st+1, π(at|st))
11: Set st ← st+1
12: Sample N transitions

(
sj, aj, rj, sj+1, π(aj|sj)

)
from the replay buffer

13: Update φ by the gradient: N−1∇φLφ

14: Update θ by the policy gradient:N−1∇θLθ

15: Update target networks: φ′ ← τφ + (1− τ)φ′

16: end for
17: end for

4.3. Sampling by Risk

Modeling a policy of a portfolio vector by using a Dirichlet distribution has the ad-
vantage of learning multiple optimal strategies. While a deterministic policy only suggests
a single optimal portfolio weight [5,15], the proposed method can model a distribution
over a portfolio. Hence, our method can propose multiple sets of optimal portfolio weights.
Knowing multiple optimal strategies is essential to suggesting a proper portfolio to various
types of investors depending on an investment propensity, from an aggressive one to a
passive one. For example, a risk-averse investor prefers a low-risk portfolio even if its
expected return is low, and, on the contrary, a risk-taking one rather prefers a high-expected
return even if its failure probability (or its variance) is high. In this regard, multiple
portfolios are needed. Fortunately, since our policy is modeled as a distribution, we can
sample multiple portfolios from the optimized distribution, and the sampled portfolios
have a near-optimal expected return. By using these samples, a risk-averse or risk-taking
investment can be conducted.

We propose a portfolio generation method from the resulting policy optimized by
reinforcement learning. The first method uses a mean desired portfolio, which is a mean of
a Dirichlet distribution, computed as follows,

Di =
αi

∑K
i=1 αi

, (20)

where Di indicates the desired weight of the ith asset, and αi is a concentration parameter of
a Dirichlet distribution defined in (16). The second method employs a mode of a Dirichlet
distribution, where the desired portfolio can be computed as

Di =
αi − 1

∑K
i=1 αi − K

, ∀ai > 1, (21)

The final method employs a rejection sampling based on the risk measure proposed
in [1]. In this method, first, several portfolios are sampled from πθ(·|s). Let us denote the
set of N samples as {Dj}N

j=1 where Dj is the jth sampled portfolio vector, and N is set to be

1000 in our experiments. After sampling {Dj}N
j=1, second, we compute the transaction cost
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of each sampled portfolio and select the Ntop lowest-cost portfolios, which are denoted as

{D(j)}Ntop
j=1 where Ntop is set to be 10. Then, in the final step, we compute the risk of each

portfolio D(j) as follows,
Risk := (D(j))ᵀΣD(j) (22)

where Σ denotes the covariance matrix of daily profit loss. By computing the risk, we
can finally select three types of portfolios, which are with the highest risk, the median
risk, and the lowest risk. We denote the portfolio with the lowest risk as Dlow, with the
median risk as Dmid, and with the highest risk as Dhigh. In the test phase, we compare these
portfolio generation techniques and show the characteristics of each portfolio generation.
The overview of the process of our proposed methodology, Dirichlet Distribution Trader
(DDT), is given in Figure 3.

Figure 3. Process of the Dirichlet distribution trader (DDT).

5. Experiment
5.1. Performance Metrics

The performance of trading methods is measured by the degree of return or risk.
Hence, we use four metrics for evaluating the performance. The first metric is the cumula-
tive return (CR).

CR =
PV′T − PV0

PV0
× 100(%), (23)

where T is the entire trading period. The CR is the rate of change between the initial
portfolio value and the portfolio value after an action in the terminal time step. The second
metric is the average return (AR) defined as

AR =
1
T

T−1

∑
k=0

PVk+1 − PVk
PVk

. (24)
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The AR is the mean of the daily rate of change between the portfolio value at k + 1
and the portfolio value at k. The third metric is the Sharpe ratio (SR),

SR =
E[RD − R f ]

σ
, (25)

where RD is a daily rate of return by desired portfolio D, R f is a return of risk-free asset f
for benchmarking, and σ is the standard deviation of RD. The SR measures the performance
or risk of an investment method compared to a risk-free asset, such as a bond. The last
metric is the Maximum Drawdown (MDD) as follows,

MDD =
Min(PV1:T)−Max(PV1:m)

Max(PV1:m)
. (26)

where Min(PV1:T) denotes the trough portfolio value, and Max(PV1:m) denotes the peak
portfolio value, where m is an index corresponding to the trough value. Therefore, the
MDD measures the greatest fluctuation range from the highest portfolio value point to
the lowest portfolio value point before a new peak is achieved, which we can consider the
worst case in our investment.

5.2. Data Configuration

To use companies with sufficient trading volume and fluctuations, we selected seven com-
panies for an experiment from among companies in the Nasdaq 100 index. As shown
in Table 2, we constructed seven datasets by adding or removing stocks for a variety
of experiments.

Table 2. Datasets. HA (Hawaiian Holdings), WBA (Walgreens Boots Alliance), INCY (Incyte), BIDU
(Baidu), TCOM (Trip.com), AAPL (Apple), and COST (Costco). Companies marked in bold are not
included in the base dataset, Dataset 1.

Dataset Companies Trend

1 HA, WBA, INCY -

2 HA, WBA, INCY, BIDU Down

3 HA, WBA, INCY, BIDU, TCOM Down

4 HA, WBA, INCY, AAPL Up

5 HA, WBA, INCY, AAPL, COST Up

6 HA, WBA, INCY, BIDU, TCOM, AAPL, COST Mix

7 BIDU, TCOM, AAPL, COST Mix

Dataset 1 is the base dataset. Dataset 1 consists of stocks that include both an up-trend
and a down-trend section. The down-trend dataset is a dataset in which stocks include
a falling interval within the test period, such as datasets 2 and 3. Likewise, the Up-trend
dataset is a dataset in which stock include a rising interval within the test period, such as
dataset 4 and 5. The mix-trend dataset is a dataset that mixes the Up-trend dataset and the
Down-trend dataset, which are datasets 6 and 7. All datasets are divided into two periods,
one for training and one for testing in Table 3, and the closing price plots of the seven stocks
during the full period are shown in Figure 4.
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(a) HA (b) WBA (c) INCY (d) BIDU

(e) TCOM (f) AAPL (g) COST

Figure 4. Closing price of the seven stocks in the experiments: Before January 2020, the closing price
plot during the training period is shown, and after that, the closing price during the test period
is shown.

Table 3. Train and test period.

Index Training Period Test Period

Nasdaq 100 June 2014–December 2019 January 2020–December 2021

5.3. Scalability Experiment
5.3.1. Experiment Setup

To test the scalability of the proposed model, we compare DDT-B, a model trained
on dataset 1 only, with other nonscalable models, including DDT-A, in all datasets. If we
run the experiment on dataset n (n = 2, 3, ..., 7), the nonscalable models are trained during
the training period of dataset n and tested in the test period of dataset n, but the scalable
model DDT-B is trained only during the training period of dataset 1 and tested in the test
period of dataset n. Whereas if n = 1, DDT-A equals DDT-B. Therefore, even if a new stock
is added, DDT-B infers independently between the stocks. These are shown in Table 4.

We used DDPG [27], DQN [28] as Deep RL baselines and EW (Equal Weight) as a
traditional baseline in this experiment. Therefore, we confirmed the scalability of our model
by comparing the performance difference between these baselines and DDT-A, which was
trained with data from all stocks in the portfolio, and DDT-B, which was not trained with
data on new stocks.

Table 4. Combinations of datasets used for the scalability experiment.

Test Dataset Model Train Test Scalability

Dataset n

DDPG Dataset n Dataset n x
DQN Dataset n Dataset n x

DDT-A (ours) Dataset n Dataset n x
DDT-B (ours) Dataset 1 Dataset n o

5.3.2. Experiment Results

The results of this experiment are shown in Table 5. As shown in Figure 5, except
for dataset 7, our model, DDT-A, obtained the highest CR compared to other baseline
algorithms. When DDT-B and DDT-A are compared, DDT-B’s CR is almost the same
as DDT-A’s CR, and dataset 4 showed the largest difference of 3%. Therefore, DDT-B is
scalable as it has almost the same cumulative return as DDT-A, which has been trained
with all stocks.
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In the AR results, except for datasets 5 and 7, DDT-A obtained the highest AR, and in
datasets 5 and 7, EW obtained the highest AR. In the results of SR, DDT-A achieved the
highest SR in all datasets. It means that our model produces good returns against the risk
of stock price volatility. In the results of MDD, except for dataset 5, DQN obtained the best
results. This is because the action of DQN is discrete, so it acted conservatively during the
maximum fall period.

Table 5. Test results of the scalability experiment. The best results are marked as bold font.

Dataset Algorithm CR SR AR MDD

1

DDPG 16.068 0.3997 0.0486 −27.660

DQN 8.295 0.2556 0.0269 −23.343

EW 7.206 −0.1396 0.0441 −36.425

DDT-A 29.164 0.6563 0.0730 −29.389

2

DDPG 23.068 0.5636 0.0651 −33.042

DQN 23.737 0.6265 0.0571 −24.587

EW 20.955 0.4147 0.0663 −35.781

DDT-A 40.136 1.0340 0.0878 −29.973

DDT-B 39.591 0.7730 0.0872 −29.836

3

DDPG 17.863 0.4779 0.0538 −32.097

DQN 4.996 0.1519 0.0242 −28.368

EW 13.141 0.3133 0.0519 −36.341

DDT-A 30.819 0.6763 0.0745 −31.589

DDT-B 30.569 0.6683 0.0743 −31.535

4

DDPG 41.697 0.8876 0.0902 −30.741

DQN 27.920 1.0265 0.0601 −17.566

EW 53.268 0.8349 0.1087 -34.390

DDT-A 57.365 1.0563 0.1091 -28.038

DDT-B 54.796 1.0265 0.1061 −28.721

5

DDPG 51.901 1.0571 0.0983 −24.440

DQN 54.583 0.9782 0.1018 −27.540

EW 66.709 0.9723 0.1200 −28.548

DDT-A 67.749 1.1385 0.1189 −25.417

DDT-B 66.418 1.1211 0.1170 −25.197

6

DDPG 38.469 0.8697 0.0792 −26.235

DQN 32.077 0.7910 0.0684 −25.533

EW 55.809 0.8845 0.1075 −30.791

DDT-A 59.475 1.0217 0.1095 −27.796

DDT-B 57.314 1.0008 0.1069 −27.980

7

DDPG 43.459 1.0587 0.0902 -25.952

DQN 38.824 1.0701 0.0727 −16.071

EW 76.419 1.1116 0.1329 −27.299

DDT-A 60.323 1.1582 0.1073 −22.073

DDT-B 58.675 1.1574 0.1051 −21.864
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(a) Dataset 1 (b) Dataset 2 (c) Dataset 3 (d) Dataset 4

(e) Dataset 5 (f) Dataset 6 (g) Dataset 7

Figure 5. Cumulative returns for the seven datasets of algorithms for the scalability test.

5.4. On-Policy and Off-Policy Experiment
5.4.1. Experiment Setup

We used DDT-A as the off-policy algorithm, PPO as the on-policy algorithm, and DDT-
On, which was a trained DDT with an on-policy algorithm. In this experiment, we compare
the results of the on-policy algorithm that uses samples more inefficiently than the off-policy
algorithm in each dataset with different trends by comparing the off-policy algorithm and
the on-policy algorithm. All algorithms used for this experiment are summarized in Table 6.

Table 6. Test results of On-Off experiment. The best results are marked as bold font.

Dataset Algorithm CR SR AR MDD

1

PPO 6.954 0.2284 0.0265 −22.405

DDT-On −0.515 −0.3363 0.0202 −30.413

DDT-A 29.164 0.6563 0.0730 −29.389

2

PPO 13.304 0.4921 0.0492 −25.494

DDT-On −6.004 −0.2535 0.0114 −36.946

DDT-A 40.136 1.0340 0.0878 −29.973

3

PPO −0.393 0.0010 0.0140 −27.132

DDT-On 1.632 −0.0914 0.0266 −33.825

DDT-A 30.819 0.6763 0.0745 −31.589

4

PPO 48.695 1.0582 0.0939 −23.922

DDT-On 42.606 0.8645 0.0892 −28.606

DDT-A 57.365 1.0563 0.1091 −28.038

5

PPO 40.444 0.9481 0.0798 −22.438

DDT-On 31.534 0.6592 0.0688 −22.849

DDT-A 67.749 1.1385 0.1189 −25.417

6

PPO 36.987 0.8522 0.0762 −25.423

DDT-On 26.294 0.3282 0.0636 −25.696

DDT-A 59.475 1.0217 0.1095 −27.796

7

PPO 53.896 1.1777 0.0977 −18.112

DDT-On 32.839 0.7657 0.0701 −25.379

DDT-A 60.323 1.1582 0.1073 −22.073
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5.4.2. Experiment Results

The results of this experiment are shown in Table 6. As shown in Figure 6, in the
results of CR, DDT-A obtained the highest CR in all datasets. In particular, in datasets 1, 2,
and 3, which are datasets that do not include AAPL or COST, where stock prices increase
monotonically, the on-policy algorithms obtained lower CR, SR, and AR than DQN and
DDPG, which are the off-policy algorithms of the previous experiment. In the results of
SR, Except for datasets 4 and 7, DDT-A obtained the best SR, and in datasets 4 and 7, PPO
obtained the best SR with a slight difference from DDT-A. In the results of AR, DDT-A
obtained the best AR in all datasets, and in the results of MDD, PPO obtained the best
MDD in all datasets. As a result, if stocks with the same trend in both the train and test
data are not included in the portfolio, the performance difference between the on-policy
algorithm and the off-policy is wider than in the case where it is not.

(a) Dataset 1 (b) Dataset 2 (c) Dataset 3 (d) Dataset 4

(e) Dataset 5 (f) Dataset 6 (g) Dataset 7

Figure 6. Cumulative returns for the seven datasets of algorithms for the On-Off test.

5.5. Risk-Aware Portfolio Management Experiment
5.5.1. Experiment Setup

We use three samples of DDT-A whose risk level is High, Mid, and Low, calculated
according to Equation (22) and these are denoted by zlow

t , zmid
t , and zhigh

t in Section 4.3.
These three samples are determined from among the ten low-cost samples of any ten
thousand samples of the Dirichlet distribution. During the test period, an action is created
by selecting only one sample of the same risk level among these three samples.

5.5.2. Experiment Results

The results of this experiment are shown in Table 7. In dataset 1, high-risk trading
obtained the highest CR and AR, but low-risk trading obtained the best values for SR and
MDD. In datasets 2 and 3, which are down-trend datasets, low-risk trading obtained the
highest CR and AR. For SR, mid-risk trading and low-risk trading obtained the best values,
respectively. However, looking at Figure 7, low-risk trading reached a high peak near 100%,
but it formed a large drawdown after that, and mid-risk trading obtained the best MDD. In
datasets 4 and 5, which are up-trend datasets, high-risk trading obtained the highest CR
and AR. For SR, mid-risk trading obtained the best results, and for MDD, low-risk trading
got the best results. In dataset 6, mid-risk trading achieved the best results in all metrics, in
dataset 7, low-risk trading obtained the best results in all metrics.

Specifically, in MDD, except for dataset 6, the low-risk or mid-risk result is better than
the MDD of PPO in the previous experiment, and the best MDD of dataset 6, −25.899 of
low risk, is also not much different from the −25.424 of PPO.

This experiment shows the characteristics of trading according to risk level. In general,
high-risk investments expect high returns. These expectations are met in the up-trend
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dataset but not in the down-trend dataset. Further, in the downtrend dataset, low-risk has
a SR similar to or much higher than that of mid-risk. On the other hand, mid-risk has better
MDD than low-risk. Therefore, if SR is the most important criterion, low-risk investment
can be considered, and if MDD is the most important criterion, mid-risk investment can
be considered.

That is, we have the advantage of being able to select samples that reflect these
characteristics according to the level of risk.

(a) Dataset 1 (b) Dataset 2 (c) Dataset 3 (d) Dataset 4

(e) Dataset 5 (f) Dataset 6 (g) Dataset 7

Figure 7. Cumulative returns for the seven datasets of algorithms for the sampling test.

Table 7. Test results of the sampling-by-risk experiment. The best results are marked as bold font.

Dataset Risk Level CR SR AR MDD

1

High risk 44.431 1.0549 0.1294 −38.349

Mid risk 24.296 0.9722 0.0536 −22.952

Low risk 15.307 1.0584 0.0399 −21.772

2

High risk 18.572 0.7216 0.0511 −27.134

Mid risk 12.9616 1.0555 0.0361 −21.806

Low risk 28.033 0.8753 0.0754 −48.019

3

High risk 13.955 0.4027 0.0474 −28.803

Mid risk 7.572 0.2529 0.0303 −25.104

Low risk 22.825 0.9276 0.0618 −40.221

4

High risk 70.525 1.1355 0.1318 −33.110

Mid risk 70.145 1.2844 0.1171 −19.616

Low risk 18.194 0.7712 0.0474 −18.317

5

High risk 49.416 0.9672 0.0968 −27.293

Mid risk 30.142 1.0279 0.0664 −24.416

Low risk 27.385 0.6949 0.0575 −20.636

6

High risk 20.524 0.7498 0.0547 −29.589

Mid risk 11.041 0.5010 0.0355 −27.886

Low risk 28.095 0.8146 0.0651 −25.899

7

High risk 49.786 1.2745 0.0970 −25.348

Mid risk 70.340 1.3422 0.1178 −18.030

Low risk 55.105 1.0813 0.1060 −32.327
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6. Conclusions

We proposed a Dirichlet Distribution Trader (DDT) that is a scalable DRL model for
selectively managing portfolios according to risk. Its policy has a Dirichlet sistribution
in order for an agent to generate multiple portfolio samples. Therefore, our algorithm
can selectively manage the portfolio according to the level of risk after selecting 10 port-
folios with low transaction costs. In the Risk-Aware Portfolio Management Experiment,
we showed that the cumulative returns of portfolios corresponding to each of the three
risk levels had distinct characteristics according to the trend of the dataset and showed
the need for selective portfolio management. In addition, since the value π(a|s) can be
obtained from the distribution, efficient training is possible through off-policy learning by
importance sampling, and we showed in the on-policy and off-policy experiment that it
has better performance than on-policy learning. Our model is not limited to the number
of portfolio stocks and has the scalability to adjust the weight of new stocks added to the
portfolio even if only three stocks in the base dataset are learned. Furthermore, in the
scalability experiment, DDT-A, which is trained on only three stocks, showed almost the
same performance as DDT-B, which is trained for all stocks in the portfolio. Based on these
advantages, comparative experiments show that DDT is superior to other algorithms in
risk metrics and return metrics.
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