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In this work, a new stacked encoder–decoder transformer (SEDT)
model is proposed for action segmentation. SEDT is composed of a
series of encoder–decoder modules, each of which consists of an en-
coder with self-attention layers and a decoder with cross-attention lay-
ers. By adding an encoder with self-attention before every decoder, it
preserves local information along with global information. The pro-
posed encoder–decoder pair also prevents the accumulation of errors
that occur when features are propagated through decoders. Moreover,
the approach performs boundary smoothing in order to handle ambigu-
ous action boundaries. Experimental results for two popular benchmark
datasets, “GTEA” and “50 Salads”, show that the proposed model is
more effective in performance than existing temporal convolutional net-
work based models and the attention-based model, ASFormer.

Introduction: Video understanding is required in many diverse fields
supporting human life, such as surveillance systems, robotics, medical
care, and silver care. Accordingly, many efforts to understand the video
have been attempted. In this paper, we focus on a temporal action seg-
mentation task. Temporal action segmentation is to understand human
activity and how long it has lasted in a long untrimmed video. In other
words, it is a dense classification of all frames of a video. Action seg-
mentation is not just classification for each video frame but context un-
derstanding across video frames. A model should be able to consider the
global context of the video as well as the local context between neigh-
bour frames.

In previous works [1–3], the temporal convolutional network (TCN)
was one of the dominant approaches for action segmentation. It is one
of the 1D convolutional networks along with the time axis. TCN can
aggregate local context between neighbour frames with a fixed kernel
size. Based on this, TCN can get a global context of a video by aggre-
gating local contexts through stacked layers. Note that the global con-
text is gradually strengthened, but the local context fades as the TCN
layer deepens. To solve this problem, ASFormer [4] firstly applied the
self-attention mechanism, which was popularly applied to NLP tasks, on
action segmentation. Unlike convolutional layers, self-attention can get
global context at once since it calculates the relationship between all fea-
tures. But, ASFormer still has the same problem of fading local context
as other TCN-based models [1–3].

To cover this, we propose a new stacked encoder–decoder transformer
model (SEDT) for action segmentation. An encoder is added before each
decoder on the transformer-based framework [4] to form an encoder–
decoder pattern [5, 6]. Additional encoder returns a new initial predic-
tion from the decoder output feature, preventing the accumulation of
errors that may appear from successive decoders. In addition, we intro-
duce a new boundary smoothing strategy that lessens the ambiguity of
the action class near the action boundary. Our framework yields state-
of-the-art results on two challenging datasets: 50 Salads [7] and GTEA
[8]. On 50 Salads, our framework records higher F1 scores of 4.8, 5.3,
and 5.1 for the thresholds 0.1, 0.25, and 0.5, respectively, than the state-
of-the-art transformer-based model [4]. On GTEA, our method also out-
performs existing approaches for all metrics.

Proposed architecture: In this section, we present our stacked encoder–
decoder transformer (SEDT) for temporal action segmentation as shown
in Figure 1. The proposed SEDT model is composed of stacked N
encoder–decoder modules, each of which consists of an encoder and a
decoder. This encoder–decoder module pattern [5, 6] can prevent error
accumulation caused by successive decoders from ASFormer [4]. The
encoder with stacked encoder blocks predicts initial prediction with the
self-attention mechanism, and the decoder with stacked decoder blocks
refines the prediction of the encoded feature from the encoder. The de-
coder gets class prediction probability by the encoder as a new input,

Fig. 1 An overview of the stacked encoder–decoder transformer model
(SEDT), which consists of N encoder–decoder modules. Each encoder–
decoder module has an encoder and a decoder, each of which consists of
L encoder blocks and L decoder blocks, respectively

Fig. 2 Illustration of the (a) encoder and (b) decoder block

and the encoder–decoder module conveys the refined feature to the next
encoder–decoder module.

Encoder: An encoder consists of several encoder blocks shown in Fig-
ure 1. It consists of two sub-layers, a feed-forward layer and a self-
attention layer, as shown in Figure 2a. We use a dilated temporal con-
volutional layer as a feed-forward layer to overcome the lack of the large
training dataset instead of a point-wise fully connected layer originally
used in transformer [9]. The dilation of the feed-forward layer is doubled
between layers i and i + 1 (e.g. 2(i−1), i = 1, 2, . . .). The linear transfor-
mation with dilation rate is followed by ReLU activation:

X ′
l = FF(Xl ),

FF(x) = ReLU(xW + b),
(1)

where FF consists of a dilated convolutional layer and an activation. Xl

and X ′
l are input features of the lth encoder block and output features of

FF, respectively. FF is followed by instance normalization [10]:

X ′′
l = InstanceNorm (X ′

l ). (2)

The attention mechanism for the self-attention layer is as follow:

Q = X ′′
l Wq, K = X ′′

l Wk,V = X ′′
l Wv

Attention(Q, K,V ) = Softmax(QKT \√dk )V,
(3)

where Wq,Wk,Wv are the learnable query, key and value matrices, re-
spectively, and

√
dk is a scaling factor. The self-attention layer gets

a query, a key, and a value through the linear projections of the fea-
ture from the feed-forward layer. It aggregates the global context by
calculating the relationship between all frames in the video with
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Fig. 3 An example of ambiguous frames near action boundary on 50 Salads

attention in Equation (3). We use single-head self-attention instead of
multi-head self-attention following ASFormer [4]. ASFormer experi-
mentally shows that the performance difference between single-head and
multi-head self-attention is not significant. Residual connection is ap-
plied before two sub-layers:

Xl+1 = σ (Attention(Q, K,V ) + X ′′
l ) + Xl , (4)

where σ is a 1 × 1 convolutional layer to adjust the number of channels
for the next encoder block. Xl+1 is the output of the lth block and the
input of the (l + 1)th block. We do not use positional encoding following
ASFormer [4] since the temporal convolutional layer used in the feed-
forward layer can model the relative position of frames.

Decoder: The structure of the decoder block is the same as the encoder
block except for one sub-layer. As shown in Figure 2b, The type of at-
tention mechanism is the only difference between the encoder and the
decoder blocks. The cross-attention layer gets a query from the previous
feed forward layer, and a key and a value from the previous encoder:

Q = X ′′
l Wq, K = EWk,V = EWv, (5)

where E is the encoded feature from the previous encoder. The same
attention operation in Equation (3) is applied. In the case of the first
decoder block on the decoder, it gets a query from the class probability
of the encoder output.

Boundary smoothing (BS): The action segmentation model takes input
videos as a sequence of frames and returns an action class for each
frame. Since an action takes place across frames, an action consists of
a sequence of several frames. It is ambiguous to label a single action
on a frame where an action transition occurs near the action boundary.
Note that an action transition is a move to the next action. We observed
that the action boundaries are ambiguous on one-hot encoded ground-
truth (GT) labels. As shown in Figure 3, frames #1870 and #1876 are
hard to classify an action with the single frame observation (SFO). More
specifically, many frames are associated with one or more actions, mak-
ing it difficult to distinguish some actions among frames near the action
boundary due to overlapping actions. Considering this, we present an
approach where the original GT class probability gradually decreases as
the frame approaches the action boundary.

Inspired by ref. [11], the cosine function is adopted to smoothly de-
crease probability as

BS(xpos, T ) = amin + 1

2
(amax − amin)

(
1 + cos

xpos

T
π

)
, (6)

where T is the half-length of the action segment including the input
frame. amax and amin are possible maximum and minimum confidence
of the original action class, respectively. xpos is the relative frame posi-
tion from the centre frame of the action segment. For example, xpos is
in range of −T to T . The decreased GT class probability by boundary
smoothing in each frame is given to the neighbour action segment class.
But, the action segment can have two (left and right) neighbour action
segments. We divide the action segment into two sub-segments based on
the centre frame of the action segment. Now, each of the sub-segments
can have only one neighbour segment. Then, the decreased probability
by boundary smoothing is assigned to the neighbour segment class for
each sub-segment. In other words, the farther away from the centre frame
within the action segment, the more noise is given to the neighbour ac-

Table 1. The statistics of the action segmentation datasets

Dataset #class #video Splits Viewpoint Scene

GTEA [8] 11 28 4 Egocentric Activity in kitchen

50 Salads [7] 19 50 5 Top-view Preparing salads

tion segment class. Boundary-smoothed GT labels are used to train the
model instead of the original GT labels.

Loss function: Following the work [1], the combination of frame-wise
classification loss Lcls and truncated mean square error loss Lt-mse was
used for the loss function. The classification loss is the cross-entropy loss
for each frame, and the truncated mean square error loss is a smooth loss
that prevents drastic change over class probability between consecutive
frames. The classification loss Lcls and the smooth loss Lt-mse are

Lcls = 1

T

∑
t

− log(yt,c), (7)

and

Lt-mse = 1

TC

∑
t,c

(log yt,c − log yt−1,c)2, (8)

where yt,c is the predicted probability for the ground truth label c at time
t. T and C are the number of video frames and action classes, respec-
tively. We use a combination of these two losses with a balance weight λ

which was set to 0.25 in our experiments. The total loss L is

L =
∑

s

Ls
cls + λLs

t-mse, (9)

where s is the index of the encoders and decoders in the model. For
model training, we minimize the sum of losses collected from all en-
coders and decoders.

Dataset: To evaluate proposed architecture, we use two challenging
datasets: Georgia Tech Egocentric Activities (GTEA) [8] and 50 Sal-
ads [7]. The statistics for the datasets are listed in Table 1. We used the
I3D [12] feature, which was extracted from all video frames with the di-
mension of 2048. GTEA is originally 15 fps (frames per second) videos,
and 50 Salads is 30 fps videos. We downsampled 50 Salads I3D features
to achieve 15 fps to be consistent with GTEA for model training. When
evaluating the model performance on 50 Salads, we duplicate all frame
results to fit 30 fps to assess with the original ground truth class label,
following the practice in ref. [1].

Experimental setup: Our model consists of three encoder–decoder
modules. Each encoder–decoder module consists of an encoder and
a decoder, consisting of 10 encoder blocks and 10 decoder blocks,
respectively. The model was trained 120 epochs with the Adam opti-
mizer. Channel dropout [13] is used with the rate of 0.5 and 0.3 for
GTEA [8] and 50 Salads [7], respectively. The batch size was 1 for
all experiments. The channel dimension of all sub-layers was 64. For
boundary smoothing, we set amax and amin to 1.0 and 0.9, respectively.
We followed previous works [1–4] to evaluate our methods: frame-wise
accuracy (Acc), segmental edit distance (Edit), and segmental F1
score at temporal intersection over union with thresholds 0.1, 0.25, 0.5
(F1@10, F1@25, F1@50). These three metrics are commonly used for
action segmentation.

Quantitative results: We compared proposed methods to state-of-the-
art frameworks based on temporal convolutional networks (TCN) and
attention mechanisms (Attention). As shown in Table 2, Our model
with boundary smoothing achieves state-of-the-art results except for
accuracy on 50 Salads. SEDT outperforms existing TCN and attention-
based methods for all metrics. Our method with boundary smoothing
has higher F1 scores of 4.8, 5.3, 5.1 for the thresholds 0.1, 0.25, 0.5
(F1@10, 25, 50), respectively, compared to ASFormer [4]. As for
segmental edit distance, SEDT also shows 4.9 higher performance than
ASFormer. Ours without boundary smoothing (SEDT†), the method
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Table 2. Comparison with existing state-of-the-art TCN and
attention-based methods on 50 Salads. SEDT is the proposed ap-
proach with boundary smoothing. SEDT† is that without bound-
ary smoothing. Metric with bold shows the best record, and the
underlined gives the second best

Method F1@{10, 25, 50} Edit Acc

TCN MS-TCN [1] 76.3 74.0 64.5 67.9 80.7

ASRF [2] 84.9 83.5 77.3 79.3 84.5

C2F-TCN [3] 84.3 81.8 72.6 76.4 84.9

Attention ASFormer [4] 85.1 83.4 76.0 79.6 85.6

SEDT† (ours) 87.0 85.8 79.0 81.1 86.7

SEDT (ours) 89.9 88.7 81.1 84.7 86.5

Table 3. Comparison with existing state-of-the-art methods on
GTEA

Method F1@{10, 25, 50} Edit Acc

TCN MS-TCN [1] 85.8 83.4 69.8 79.0 76.3

ASRF [2] 89.4 87.8 79.8 83.7 77.3

C2F-TCN [3] 90.3 88.8 77.7 86.4 80.8

Attention ASFormer [4] 90.1 88.8 79.2 84.6 79.7

SEDT† (ours) 92.2 90.5 82.7 89.9 80.8

SEDT (ours) 93.7 92.4 84.0 91.3 81.3

Fig. 4 Qualitative results of the compared methods on GTEA

records the second best for all metrics except accuracy. It shows that
SEDT is better for learning the context of video than TCN-based and
attention-based methods. It also shows that the boundary smoothing
strategy enables additional performance gains by lessening the am-
biguity near the action boundary. On GTEA, our model outperforms
TCN-based and attention-based models for all metrics, as shown in
Table 3. SEDT without boundary smoothing also performs better than
TCN and attention-based methods.

Qualitative results: We conducted a qualitative analysis of the proposal
with ASFormer [4]. Figure 4 visualizes the results of action segmenta-
tion on GTEA. Our method detects action segments more precisely than
ASFormer, as shown in Figure 4b. It shows that the proposed module is
effective in aggregating local and global contexts in the video. Compared
to ASFormer and SEDT†, SEDT with boundary smoothing is better for
detecting small action segments such as “open” and “background” as
shown in Figure 4a,c. It shows that the proposed boundary smoothing
strategy effectively detects short action segments.

Conclusion: We have presented a new SEDT by adding an encoder
prior to every decoder. By stacking self-attention and cross-attention al-
ternatively, SEDT preserves local information with global information
and prevents error accumulation caused by propagating only decoders.
Moreover, we have proposed boundary smoothing to handle ambigu-
ous action boundaries, showing additional performance improvements.
The proposed framework yields state-of-the-art performance in tempo-

ral action segmentation on two challenging datasets. However, SEDT has
several limitations, such as fading local information inside the encoder
and high computational costs to calculate attention scores between all
frames. These limitations will be addressed in future studies.
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