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Photo Sketch synthesis
Abstract Automated formulation of sketches from face photos has seen successive growth since

the work of Wang and Tang in recent years. Each new methodology is, however, able to partially

achieve its objective of sketch synthesis while using pairs of photos and viewed sketches as a training

medium. The viewed sketches are also used as a testing medium to determine the success of those

methodologies. Resulting sketches do not fully capture all features of the training photos and

viewed sketches. Their similarity value to respective sketch is also around 30 – 50%. One technique

may produce sketches with sharp edges, but they do not bear completeness of facial features.

Another technique produces sketches with the completeness of facial elements, but they are not

well-focused. Second limitation of existing techniques is attributable to face-recognition procedure

which is used as a validation step for these methodologies. Face-recognition process with help of

synthesized sketches delivers reliable results over datasets with a limited diversity of age, ethnicity,

and light intensities. We propose a novel and cost-effective approach to fuse resulting sketches of

two test techniques. The two techniques are merged to yield a better sketch containing well-

defined features, sharp contours, and less noise. Secondly, fusion suppresses limitations of the com-

ponent methodologies reaching the resulting sketch. To test this idea of combining sketch-synthesis

methods, we experiment with the most basic techniques of image fusion including simple (arith-

metic), PCA, and Wavelet based fusions. The proposed setup considered FCN (complete features

but less sharpness) and Fast-RSLCR (sharp edges but missing contours) as candidate techniques.

It is tested on two datasets namely CUFS and CUFSF. Second dataset incorporates variations

of age, ethnicity, light intensities, and slightly deformed features between photos and viewed
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sketches. Our results indicate achievement of 60.29% SSIM score (enhancement by 3.84%) and

79.03% face-recognition score (enhancement by 5.62%) as compared to Fast-RSLCR.

� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Automated synthesis of face sketches [1–5] applies to domains
of online entertainment [6] face recognition [7–11] and legal

purposes [12]. Face images acquired from the security and
surveillance tapes are used by police and other agencies. Usu-
ally, these images are of low resolution, poor quality, occluded,
and/or blurred [13]. As an alternative, sketches are drawn by

forensic artists upon clues provided by eye-witnesses or the
artist’s examination of the subject or security tapes [14]. Other
purposes include but not limited to: (a) identification of per-

sons who are victims of accidents, and their faces are not fit
for classical photography and (b) search of missing persons
where relevant or most recent photographs are not available.

These sketches then help in the identification and search of
the suspect or wanted individuals. We consider it useful to for-
mulate an arrangement where a photo database is converted to

sketch domain by an algorithm trained on viewed sketches by
a particular artist. Therefore, a forensic sketch by the same
artist would be tested against that database of synthesized
sketches carrying his style. This intra-domain comparison

would also constitute a validation step of our work involving
face-recognition procedure.

Image-based techniques of generating sketches fail to trans-

late the drawing style of a sketch artist. Therefore, it results in
sketches being more resembling the original photos [15]. Syn-
thesis by example-based techniques can capture subtle proper-

ties of the photos which are identifying characteristics. These
features are also given importance by sketch artists who high-
light them by shadows, strokes, accentuation, and other draw-
ing parameters. Exemplar-based methods work with datasets

containing pairs of the photos and their corresponding
viewed-sketches. Tang and Wang [16,17] set the foundation
for the synthesis of sketches based on face photos. They used

principal component analysis to match test photos with candi-
date patches from the training dataset. Target sketches are for-
mulated by the linear addition of those patches. Coefficients

are computed from the linear relationship between test photos
and the training photos. In this process minute and defining
features of the test-photo are lost because they are not trans-

lated to the resulting sketch which is blurred. To address the
deficiencies of pioneer work, novel techniques were put forth.
A comparative analysis of all such methodologies is given in
[18] which may be referred to for detail study. Here we men-

tion related work post-March 2017.
The conventional hand-engineered based approaches have

been the focus for computer vision based methods including

sketch synthesis. Zhang and Ji [19] employed a previous con-
cept of active appearance model to synthesize sketches from
photos using Eigen transformation as the conversion medium.

Their work is however restricted to basic facial features only
and it did not include glasses, earrings, or other external ele-
ments of the face. Radman A. and Suandi [20] introduced a
completely novel method of synthesizing a pseudo-sketch from
the photo. Their work employed simple arithmetic functions
and morphological operations on a single photo to generate

its pseudo-sketch. This technique does not involve any training
or testing scheme. Reliable extraction of hair masks is rela-
tively a weak area of this methodology. Jiang et al [21] also

tested a novel idea of using residual image which is difference
of the photo and its viewed sketch in the exemplar domain of
face-sketch synthesis. The neural network and its variants

including deep learning building blocks [22] e.g. convolutional
neural networks (CNN) [23–29], Long Short Term Memory
(LSTM) [30] and Autoencoders [31,32] have proved themselves
a good choice for many domains of computer vision. Some

neural network based approaches in the context of face
sketches are discussed in the following text. The work of
Zhang et al [33] focused on translating identity specific and

common information from face image to the sketch by
employing two complex structures collectively termed as Mar-
kov Random Neural Fields (MRNF). It gave comparative

results with other methods by using two face-recognition tech-
niques and it showed higher performance due to visually
improved textures of the sketches. Jiao et al [34] explored the

use of neural-network composed of two convolutional, pool-
ing, and multilayer perceptron layers to synthesize a sketch
from a photo. It was observed that computationally this syn-
thesis scheme is relatively light-weight since it did not involve

complex optimization problems like conventional example-
based methods. It produced sketches with competitive scores
of quality parameters as compared to exemplar-based meth-

ods. This work, however, did not conduct face recognition
procedure as a validation step to establish the existence of a
superior edge and contour information of its resulting images.

Zhang et al [35] proposed a modified adversarial generative
network called pGAN which consisted of four different stages.
Its novelty lay in use of a parametric sigmoid function in the
overall process and addition of illumination layer to the inter-

mediate sketch. Moreover, the authors experimented with
training the network with one dataset and testing it by another.
Therefore, it could generate sketches from photos in the wild

like those of celebrities. Our proposed methodology considers
the next two contributions to the field of photo-sketch synthe-
sis. Zhang et al [36] proposed a model of sketch synthesis

called Fully Convolutional Network (FCN) based on a convo-
lution neural network. In that method whole photo is used as
input and the network captures relationships between a per-

son’s identity characteristics from the photo and their transla-
tion to sketch by the viewed artist. This method benefits from
generative discriminative minimization in the post-processing
stage. This methodology, however, fails to maintain the sharp-

ness of shapes and edges. Lu et al [37] proposed model of face
sketch synthesis by employing a combination of FCN and

http://creativecommons.org/licenses/by-nc-nd/4.0/
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exemplar based approaches. Chen et al [38] proposed a model
of face sketch synthesis based on a group of three elements of
Deep Learning. They demonstrated their arrangement could

learn intricate details of sketches and then it could produce
sketches from photos outside the training dataset. Wang
et al [39] introduced a model called Random Sampling and

Locality Constraint (RSLCR) and its improved version
(Fast-RSLCR) based on offline random sampling against
online K-NN search to synthesize a sketch. This method works

well on one dataset, but its results are not equally superior on
second dataset which contained more diversity than the first
dataset. In the abovementioned discussion we have seen that
different methodologies follow procedures that are customized

and well-suited to specific purposes. On the other hand, each
one of them, however, involves a minor or major problem.
Therefore, any given method of photo-sketch formulation does

not meet all requirements as stipulated by the gold standard of
a viewed sketch.

We propose to unite strong points of existing algorithms in

a way that resulting sketch bears distinct features, sharp edges,
well-defined contours, and least noise. The main contribution
is discussed as follows:

i. To demonstrate our proposed scheme, we chose two
techniques FCN [36] and Fast-RSLCR [39] to mitigate
their weaknesses by considering and combining their

strong points.
ii. We unite the sketch-based result of these techniques by

six different algorithms such as simple union-based

fusion, PCA based fusion, and four variations of
wavelet-based fusion.

iii. The outcome fusion images are applied to face sketch

similarity and recognition using SSIM and NLDA
respectively for performance evaluation of the proposed
approach.

The rest of this paper is organized as follows. We first delin-
eate problems of existing methodologies in Section 2. Our pro-
posed scheme of operation is given in Section 3.

Experimentation, results, and their analysis are discussed in
Section 4. Concluding remarks and options for future work
are mentioned in Section 5.

2. Problems of existing techniques

Image generation by convolution network suffers from Border

Effect which produces dark patches on the edges of resulting
images. Therefore, to address that issue, FCN [36] paper intro-
duced cropping of the images. Convolution operations reduce

the feature map. An increasing number of layers further shrink
feature domain. One solution to this problem is the addition of
padded information on the edges of an image under process
before convolution operations but such an arrangement intro-

duces border effect [40]. Therefore, padding was not added to
images during the training and testing phases. As a result,
actual images of 155 * 200 shrank to (143 * 188) in the process.

The second limitation of the convolutional technique used by
FCN to generate sketches is its inability to render sharp edges
and clear contours of features. This inadequacy is also

observed when we compare its result with synthesized sketches
of [17]. Lack of sharp edges in the result of FCN indicates the
absence of high-frequency components in the generated
sketches. This omission deprives the sketch of its distinctive

features. Moreover, it also means the sketch is vulnerable to
its chief characteristics being missed during verification and
recognition processes. FCN technique was used on only one

publicly available database called The Chinese University of
Hong Kong (CUHK) Face sketch database termed as CUFS
in its separate and original contributor [17]. CUHK is com-

posed of photos of Asiatic ethnicity with the minimum varia-
tion of age and facial features. Authors of FCN also
mentioned that their given technique might be employed in a
dataset covering the diversity of age, race, facial features,

and occlusions like glasses, earrings, etc. A comparative anal-
ysis of existing techniques of photo sketch generation is given
in [18]. Comparison is based on sketches generated by different

techniques when employed to two datasets including CUFS
comprising 606 images and CUFSF consisting of 1025 images,
both publicly provided by [17]. The latter dataset contains req-

uisite diversity of age, race, and facial features. Moreover,
these sketches are more exaggerated in appearance, and they
contain intentional deformations and differences in details

with respect to their corresponding photographs. Such factors
were introduced to make them better represent forensic
sketches in real world. This attribute is one of the main reasons
for performance loss of most face sketch synthesis algorithms.

That comparative work computed values of SSIM and face-
recognition scores by NLDA [41] technique. There, we see that
Fast-RSLCR achieved best scores against other methods and

its performance gap is much smaller to FCN which scored as
second-best. We reprint a portion of that result as ‘existing
work’ in our results section here to compare with the results

of our work. It is also obvious from these scores that Fast-
RSLCR and FCN are valid candidates for further improve-
ment regarding CUFSF or any other dataset that offers more

diversity than CUFS. Lastly, we see from these results that all
methodologies’ scores are in 700s and below regarding CUFSF
dataset whereas their results lie in 900s when applied to the
CUFS dataset. It is compelling evidence that:

(i) Given methodologies are unable to handle a diversity of
face images.

(ii) They need further improvement of respective algorithms
and reconsideration of process details.

(iii) A new scheme may be devised to collectively utilize the

merits of given methods for CUFSF or any other data-
set containing variations as discussed earlier.

3. Proposed methodology

In the previous section, we discussed individual techniques of
face-sketch generation/synthesis work well on the dataset with

the least diversity of ethnicity, facial features, and age. Their
performance is less in comparison to a dataset like CUFSF
which does contain said variation. Moreover, we have also

observed that FCN [36] and Fast-RSLCR [39] are two tech-
niques that qualify for improvement. The novelty of our work
lies in the effort by which we propose the parallel fusion of

these two techniques whereby ‘synthesis’ properties of Fast-
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RSLCR and ‘generative’ characteristics of FCN are combined
to yield a sketch which is devoid of inherent shortcomings of
individual techniques, and it also contains the benefits of par-

ent methodologies such as:
(a) The shapes and contours become sharp.
(b) Edges of the sketch do not contain any deformations.

(c) Collectively the sketch is a reliable map of variation of
facial features in the dataset.

A. Methodologies Considered for Fusion.

The main objective of the combining phase is to capture sig-
nificant features from the candidate sketches and combine

them into one unit by preserving their characteristic details.
This process must not omit or lose any high-frequency compo-
nent of the candidate sketches to retain the sharpness of the

facial features and their contours. Therefore, we selected the
following techniques of image fusion for their respective mer-
its. Our proposed setup is explained in Fig. 1.

3.1. Fcn

The Fully Convolutional Network [36] consists of six layers. It

gets an input image of size 200x155. Two extra channels X and
Y are added to already three channels RGB of the photo.
Fig. 1 Process diagram
Rectified linear units are used as the activation functions.
While moving through the layers of the respective size shown
on each layer, a pseudo sketch is ‘generated’, and its size is

cropped to 188x143 to avoid the border effect. We further pro-
cess these sketches during our fusion methods which are dis-
cussed in subsequent text.

3.2. Rslcr

Random Sampling and Locality Constraint [39] takes a com-

plete set of training photos and corresponding viewed-
sketches. They are divided into an equally sized mesh of
patches that are randomly selected in an offline manner and

their relationship is recorded. For a testing photo, the candi-
date patches are selected based on locality constraint and
PCA. These selected patches are then assembled into a pseudo
sketch which is further processed in our union techniques as

discussed here next. We used the Fast-RSLCR version of this
methodology.

B. Fusion Approaches.

Three fusion methodologies are considered to test perfor-

mance of the proposed system. These approaches are discussed
in the accompanying section.
of the proposed setup.
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3.3. Simple union by arithmetic approximation

In this methodology, focus is on pixel intensity and the general
texture of the two sketches. We carry out a fusion of sketches
by attributing pixel intensities of two images to each color

channel of the resulting image which is finally approximated
to grayscale value. The relationship is expressed in Equation
(1). X, Y are any two images of identical size (m*n) pixels,
and I is the resulting unified sketch. Given images are first

rescaled to a common mask which roughly aligns the eyes,
noses, and other facial features. It’s done with the help of a
rectangle aligned at the center of the image. Then their pixel

intensities are normalized considering a minimum as 0 and
maximum as 1.

Iðm; nÞ ¼ ½ðXij \ YijÞ; ðXij \ YijÞ; ðXij \ YijÞ�j¼1!n

i¼1!m

I–½ðX;X;XÞ�::::and:::I–½ðY;Y;YÞ� ð1Þ

In Equation (1), I (m.n) is the resulting unified sketch. X is

the first candidate sketch and Y is the second candidate sketch.
i and j are the instantaneous values, and they are sequentially
selected from 1 to m and from 1 to n respectively. The \ sign
indicates that either X or Y pixel is selected according to the

preset condition. Three repetitions of ðXij \ YijÞ indicate that

these are the three pseudo RGB channels of resulting RGB
sketch. The condition expressed in second line of the equation
stipulates that I am resulting unified sketch cannot be com-
posed of all its three pseudo RGB channels being equal to pixel

intensities of either X or Y sketches. At least one channel must
be different when the other two channels are identical. It is fur-
ther explained in Algorithm 1.

The procedure starts by formulating an empty RGB image.
We nominate or manually preset values of r, s, and t as either 1
or 2 where 1 stands for the first input sketch and 2 relates to

the second input sketch.
Table 1 Illustration of simple union by arithmetic approximation.

Steps

Input Images

Convert to Grayscale

Manually Select Values

of r, s, and t

Formulate ‘Result’ by awarding input sketches to a respective

channel according to options (r, s, t)

Convert ‘Result’ to grayscale to get fused

image I
Let’s assume we set options to (r, s, t) = (2, 1, 2). We award
channel 1 and channel 3-pixel values of the second sketch and
channel 2 gets intensity values of the first sketch. This selection

procedure is arbitrary, and it can depend upon following fac-
tors of component sketches concerning the original photo:

a) Image quality values like SSIM, FSIM, etc.
b) Visual aesthetic integrity (resemblance, completeness,

less-noise, no-extra-artifacts) determined by subjective

assessment.
c) Hit-n-trial experimentation of the component sketches.

The result is an intermediate RGB structure. It is converted

to a grayscale format. The resulting image is a unified sketch
that contains the contribution of intensity at every pixel from
two-component sketches. Therefore, its composition is

enhanced as compared to the individual sketches before fusion.
The detail is given in Algorithm 1. An example is given by
illustrations in Table1.

Algorithm 1 Simple Union by arithmetic approximation

Input: Images X, Y

Step 1: X’  Convert to grayscale X

Y’  Convert to grayscale Y

Step 2: Select options (r, s, t) where r; s; t e ð1; 2Þ

1 award 1st Image & 2 awards 2nd image

to respective R, G, B channels

Restriction: options – (1,1,1) and options – (2,2,2)

Step 3: Formulate RGB image ‘Result’

Result  (X’|Y’, X’|Y’, X’|Y’)

according to options (r, s, t)

Step 4: I convert to grayscale (Result)

Output: Fused Image I
1st Sketch 2nd Sketch

Let r = 2, s = 1, t = 1

options = (2,1,1)

Channels R, G, B

Options 2,1, 1

Award sketches



Fig. 2 Effect of Simple union technique.
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Fig. 3 Effect of PCA Fusion technique.
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In Fig. 2, the positive effect of the Simple Union technique is

further highlighted by candidate images from two datasets.

3.4. Principal components-based image fusion

We combine two sketches with the help of respective weights
calculated upon Principal Component Analysis [42–44] of
two sketches as expressed in [45]. The relationship is given in
Equation (2). X and Y are any two sketches of identical size

(m*n) pixels. Then unified sketch I (m, n) is given by:

Iðm; nÞ ¼
Xm;n

i;j¼1
fPCAX � Xij;PCAY � Yijg ð2Þ

In Eq (2), different symbols are:
I (m, n): the final unified image.

PCAX and PCAY: respective weighting values based on its
principal component calculations from X and Y matrices.

Xij and Yij: individual pixel intensities at the ith row and jth

column of respective X and Y matrices.
In Equation (2) Iðm; nÞ is the resulting unified sketch. The

values of PCA lie between 0 and 1. Each pixel intensity of

the unified sketch is equal to sum of corresponding pixels
of X and Y multiplied by their respective values of PCA.
Therefore, each pixel of the unified sketch is a PCA-weighted
sum of corresponding values of X and Y.

First, covariance matrix C of the input sketches is com-
puted. Then we calculate the matrix of full Eigenvalues V
and diagonal vector D of Eigenvalues based on the covariance

matrix C. Their relationship is given by:

C � V ¼ V �D ð3Þ
PCA is then determined by a magnitude comparison of two

diagonal values in D. Depending upon the outcome of the

comparison, either column of V is normalized, and its two val-
ues are awarded to two entries of the PCA vector. Finally, the
addition of two input images weighted by scalar multiplication

with a respective column of the PCA matrix gives the unified
sketch. The detail is presented in Algorithm 2.

Algorithm 2 Principal Components Based Image Fusion

Input: Images X, Y

Step 1: C Co-Variance (X, Y)

Step 2: [ Eig_vector, Eig_diag] Eigen Transform (C)

Step 3: if Eig_diag (1,1) >= Eigen_diag (2,2)

PCA mean [ Eig_vector (first_column)]

else

PCA mean [ Eig_vector (second_column)]

Step 4: I sum (PCA (1) * X, PCA (2) * Y) // Image fusion

Output: Unified Image I

In Fig. 3, the positive effect of PCA based fusion technique is

further highlighted by two candidate images from two
datasets.

3.5. Wavelets based image fusion

The third technique of fusion of sketches belongs to the wave-
let domain. We applied the wavelet algorithm as expressed in
[46] and [47]. It decomposes the given image into wavelet coef-

ficients according to second-order Daubechies wavelet known
as dB2 [48]. We selected this wavelet since it is arbitrary regular
and its compact support for orthogonal analysis exists. More-

over, its scaling function is available, and the exact reconstruc-
tion of the signals/images is possible after their decomposition
and subsequent fusion. This wavelet bears the properties of
both discrete and continuous transformation which help in sig-

nal analysis and compression. Lastly, Daubechies wavelets
(DBN) can be computed with a fast algorithm. N denotes the
order of the wavelet.

Explicit expressions for wavelets of this class do not exist,
except for dB1. Instead, they can be represented by the squared
modulus of the transfer function of their associated filter f [49].

Let
PN�1

j¼0 Cj
N�1 be the binomial coefficients then.

H0ðxÞ ¼ 1ffiffiffi
2
p

XN�1

j¼0
fje
�ijx ð4Þ

BðyÞ ¼
XN�1

j¼0
Cj

N�1 þ jy
j ð5Þ

jH0ðxÞj2 ¼ fðcos2ðx
2
Þg

N

Bfsin2ðx
2
Þg ð6Þ

Equation (4) mentions the associated filter f and its trans-
form H, Equation (5) presents related coefficients and Equa-

tion (6) contains the defining relationship of Daubechies
wavelets. In these equations y is the signal variable, x is the
frequency, and N is the order of wavelet as in the case of
DBN. Three factors play an important role while combining

two sketches by this scheme. The first factor is the level of
decomposition of the image. We chose level 5 which retains
a fair degree of original information of the image properties.

The second and third factors relate to the methods of select-
ing ‘approximations’ and ‘details’ while combining two
images. They may be any of the minimum, maximum, mean,

image-1, image-2, or a random value. Four combinations were
tried namely, max-max, max–min, mean-mean, and min–max.
These factors are further discussed in [48,49]. In Fig. 4, the
effect of the Wavelet-based Union technique is shown by

two candidate images from two datasets. The scheme of this
fusion method is given in algorithm 3.



Fig. 4 Effect of Wavelet Union technique.
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Algorithm 3 Wavelets Based Image Fusion

Input: Images X, Y, Wavelet Name w_name, Level l,

Approximation a, Detail d

Step 1:X’  Wavelet Decompose (X, l, w_name)

Step 2:Y’  Wavelet Decompose (Y, l, w_name)

Step 3:Unified Co_Effs Wavelet Fusion (X’, Y’, a, d)

Step 4:I Wavelet Reconstruction (Unified Co_Effs)

Output: Fused Image I
4. Experiments and results

We conducted our experiments through MatLab R2017a run-
ning on Core i5� CPU 5400, @2.66 GHz, 4 GB physical mem-
ory, and 64-bit operating system. Practical implementation
involved the fusion of images by Simple, PCA, and Wavelet

methods. The third method further included four cycles of
computations for min–max, max–min, max-max, and mean-
mean options. dB2 wavelet and level 5 of the decomposition

were used. Some sample sketch images formed by the proposed
and existing methods are illustrated in Fig. 5.

A. Datasets

Experiments were conducted on two publicly available

datasets. First is named CUFS and it is an acronym for the
Chinese University of Hong Kong (CUHK) Face Sketch data-
base [17] and it is further composed of three other datasets.
Those components are shown in Table 2. The second dataset

is called CUFSF [17] which is based on 1194 images selected
by the academics of CUHK from photo-sketch pairs of
FERET database [50]. Authors of [18] implemented different

algorithms from state of the art. Sketches produced by their
work are publicly available for further academic research.
We used the set of resulting synthesized sketches (338 from

CUFS and 944 from CUFSF) for our fusion studies. It may
be noted that the total numbers of images (606 of CUFS
and 1194 of CUFSF) do not apply to our work. Further con-
figuration of these datasets is given in Table 2.

B. Performance Measures.
The performance measures used in this work are discussed
in the accompanying subsections.

4.1. Ssim

Structural SIMilarity Index (SSIM) [53] is a legacy parameter
to ascertain similarity of the individual and unified sketches to

their respective viewed-sketches. It was put forth by Wang et al
[53]. We use this parameter here to undertake a comparison of
our results with previous works in the state of art.

We computed all evaluation parameters to gauge the qual-

ity of unified sketches concerning their gold standard of viewed
sketches drawn by the artists. Since each of FCN [36] and Fast-
RSLCR [39] used pairs of original photos and viewed-sketches

as a training medium, therefore at this stage SSIM gives us a
clear estimation of how much the proposed methodology has
effectively imitated, reproduced and/or restored descriptive

properties of the sketch artists. SSIM values were computed
in two arrangements. SSIM value was computed between a
synthesized-sketch and its corresponding forensic-sketch, and

we documented it as ‘concerning sketches’. This type is
recorded simply as SSIM in previous works. Secondly, we cal-
culated SSIM value between a synthesized-sketch and its cor-
responding photo (grayscale) and we termed it as ‘concerning

photos’. Equation (7) shows mathematical relationship of
SSIM. It is reproduced here from [53]. SSIM value equal to
�1 signifies completely isolated inputs and its value equal to

+ 1 depicts truly identical images. Tables 3 and 4 show SSIM
values calculated for discrete datasets for their comparison
with component techniques of the fusion operation.

SSIMðX;YÞ ¼ ð2hXhYþ K1Þð2ZXYþ K2Þ
ðh2X þ h2Y þ K1ÞðZ2

X þ Z2
Y þ K2Þ

ð7Þ

where.
X, Y= image signals.
h =mean intensity.

Z = variance, equal to the square root of standard
deviation.

K1, K2 = constants.

4.2. Nlda

Our primary focus is an attempt to test image fusion to

improve the quality of synthesized- sketches by two different
methodologies. Therefore, the choice of any reliable algorithm
to run face-recognition step as validation parameter would suf-
fice. Therefore, to test the efficacy of our proposed methodol-

ogy we chose Nullspace Linear Discriminant Analysis
(NLDA) process [41]. This technique is also employed by other
works like [18,36,39 54535352]regarding face-sketch synthesis.

With this scheme, we were able to compare our results with
state of the art. The software code of this technique was reused
from [55].

C. Evaluation Protocol

Experimentation was conducted in two phases according to
the first and second datasets. In each phase, average SSIM
scores were measured for unified sketches in contrast to their
viewed sketches. We included synthesized sketches of FCN,

Fast-RSLCR and our experimentation to compute SSIM



Fig. 5 Comparison of sketches by individual and fusion methods.

Table 2 Details of datasets For face-recognition procedure.

EXISTING WORK

Name Total Training Testing

CUFS[17] 606 268 338

CUHK[17] 188 80 100

AR[51] 123 80 43

XM2VTS[52] 295 100 195

CUFSF[17] 1194 250 944

Feret[50] 1194 250 994

PROPOSED WORK

CUFS [18] 338 150 188

CUFSF [18] 944 300 644
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and face-recognition scores under identical conditions and
protocol. The pattern of training and testing splits for NLDA
was also similar for all techniques during calculations. Our
experimentation revealed slightly superior scores for these
two methods (FCN and Fast-RSLCR) as compared to their
published results in corresponding papers.

We ran the NLDA [41] sequence for each of our six pro-
posed procedures by using image- unified sketches pairs as
training medium and unified sketches as testing elements.
Our setup considered 149 features for the CUFS dataset and

299 features for the CUFSF dataset while computing face
recognition rates for each of our proposed six methodologies.
These features are the number of dimensions of each sketch-

image that are considered iteratively during the NLDA proce-
dure. Moreover, a higher number of features for CUFSF ver-
sus CUFS datasets were considered due to more complexity of

the former database. In the first experiment, CUFS [18] dataset
was employed comprising 338 unified sketches. Serial numbers
of 150 sketches were randomly selected and their correspond-
ing original viewed sketches were used to train the NLDA

model. The remaining 188 unified sketches were employed in



Table 3 Mean values of SSIM (%) for CUFS [18] dataset.

EXISTING TECHNIQUE PROPOSED TECHNIQUES

Methods Fast-RSLCR [39] FCN [36] Simple Union PCA Fusion Wavelet-Based Fusion

Max-Max Max-Min Mean-Mean Min-Max

With respect to Sketches 55.42 52.14 54.23 54.70 53.17 53.40 54.60 52.77

With respect to Photos 53.26 54.28 56.70 55.01 52.56 52.44 55.04 53.32

Table 4 Success rates (%) for face recognition on CUFS [18] dataset at 1/3rd of features against FCN.

EXISTING TECHNIQUE PROPOSED TECHNIQUES

Simple Union PCA Fusion Wavelet-Based Fusion

FCN [36] Max-Max Max-Min Mean-Mean Min-Max

SUCCESS RATE 96.49 % 96.46 % 96.49 % 96.49 % 96.53 % 96.52 % 96.54

FEATURES 94 32 30 30 44 31 44

TIME 265.3 msec 105.8 msec 106.2 msec 106.2 msec 124.4 msec 109.7 msec 124.4
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the testing phase. Twenty such iterations were carried out and
face recognition accuracy viz a viz number of features at which

this rate was registered were recorded. In the second experi-
ment, we focused on CUFSF [18] comprising 944 unified
sketches. Serial numbers of 300 unified images and their corre-

sponding original photo – viewed sketch pairs trained the
NLDA model. Rest 644 fusion sketches were employed in
the testing phase. As before, twenty iterations of this process

were conducted, and face recognition accuracy and the rele-
vant number of features where that recognition accuracy was
achieved, were recorded. Then these rates were sequentially
compared to similar results of individual techniques FCN

and Fast-RSLCR. These comparisons, their graphical repre-
sentations, and short discussions are presented in the next
sub-section. It may be noted that results of this experimenta-

tion are compared with the individual constituent techniques
only and they are not compared with other methods in state
of the art. It is an endeavor of this work to test and validate

that fusion of sketches from component methods can yield
images of superior quality than the original parts. Moreover,
in following sections D. and E. improvements achieved by
fusion techniques over the component methodologies are high-

lighted with the help of discussion text, tables, and graphs
about evaluation parameters like SSIM and face recognition
scores.

D. Results on CUFS dataset

Results for SSIM in Table 3 indicate that the fusion of
sketches performs at par the individual approaches on CUFS
[18] dataset.

It signifies the possibility that most images of CUFS did not
contain much diversity and therefore individual techniques
were already able to mimic optimum features of the sketch
artists from their sketches. Fig. 6 plots Cumulative Frequency

Distribution of different techniques for SSIM scores.
It is observed that most sketches by Fast-RSLCR [39] and

FCN [36] lie in values 0.65 and below. After this region, the

Fast-RSLCR graph/line of CDF drops sharply. On the con-
trary, a small area under the curve of Fusion techniques lies
in this region. A major chunk of their values spans a mid-

region of 0.5 to 0.7 SSIM score whereas less than 10% of
sketches by Fast-RSLCR [39] and FCN [36] could achieve this
score. The efficacy of fusion techniques is then highlighted by

results of face recognition given in Tables 4 and 5. These tables
highlight success rates of recognition as % age, the number of
features at which that score was attained is given as a number

in the next lower row and the third row in each set contains
computational time taken by each technique to register that
accuracy rate. Table 4 gives the original score of the FCN
[36] technique compared with the success rates achieved by

our proposed methodologies. Table 5 shows the results of
our proposed techniques compared to the existing algorithm
of Fast-RSLCR [45]. All of the fusion techniques achieved

similar rates of accuracy at 1/3rd of features against FCN
[36] and almost 2/3rd of features versus Fast-RSLCR [39]. This
factor translates into saving computational costs by the same

ratio (around one-third against FCN [36] and almost two-
third versus Fast-RSLCR [45]) regarding the search for a cor-
rect face match. Fig. 7 shows a combined plot of the success
rates for face recognition routine by existing and proposed

techniques on CUFS [45] dataset.

E. Results on CUFSF dataset

SSIM scores in Table 6 for CUFSF [48] dataset show that

proposed methods for fusion of sketches perform superior to
the individual approach FCN [36] and at par with Fast-
RSLCR [39].

Fig. 8 highlights the comparison and improved values of
SSIM scores for existing and proposed methodologies. Perfor-
mance jump by almost 5 points in SSIM values validates the
assumption that individual techniques do not fully capture

descriptive features of the viewed sketches when they involve
a diversity of race, age, and ethnicity which occur more in
the CUFSF dataset than the CUFS database.

This assertion is further validated by comparison of success
rates of face recognition routine by NLDA as given in Tables



Fig. 6 SSIM scores of Fast-RSLCR [39], FCN [36] and proposed techniques on CUFS [18] dataset.

Table 5 Success rates (%) for face recognition on CUFS [18] dataset at 2/3rd of features versus Fast-RSLCR.

EXISTING TECHNIQUE PROPOSED TECHNIQUES

Simple Union PCA Fusion Wavelet-Based Fusion

Fast-RSLCR [39] Max-Max Max-Min Mean-Mean Min-Max

SUCCESS RATE 98.43 % 98.01 % 98.27 98.01 % 98.01 98.01 98.01 %

FEATURES 124 97 83 94 90 94 90

TIME 287.8 msec 225.5 msec 205.5 msec 214.5 msec 217.9 msec 214.5 msec 207.1 msec

Fig. 7 NLDA Face recognition accuracies of Fast-RSLCR [39], FCN [36], and proposed techniques on CUFS [18] dataset.
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7, 8, and 9. Table 7 contains comparison scores of existing
method FCN [36] and our proposed techniques. All of the

fusion techniques achieved similar and improved rates of accu-
racy versus FCN [36]. Simple Union and PCA Fusion methods
gained the same accuracy as FCN [18] at almost 1/3rd features
and at 1/2 or lesser computational time.

Tables 8 and 9 respectively show a comparison of success
rates for the existing method Fast-RSLCR [39] and the pro-



Table 6 Mean values of SSIM (%) for CUFSF [18] dataset.

Methods Existing Work Proposed Work

Fast-RSLCR [39] FCN [36] Simple Union PCA Fusion Wavelet

Max-Max Max-Min Mean-Mean Min-Max

With respect to Sketches 44.56 36.22 41.97 42.60 39.55 39.31 42.02 39.71

With respect to Photos 56.45 55.53 60.29 59.69 50.56 55.49 59.51 53.37

Fig. 8 SSIM scores of Fast-RSLCR [39], FCN [36] and proposed techniques on CUFSF [45] dataset.

Table 7 Mean values of success rates (%) for face recognition on CUFSF [18] dataset.

EXISTING TECHNIQUE PROPOSED TECHNIQUES

Simple Union PCA Fusion FUSION IN WAVELET DOMAIN

FCN [36] Max-Max Max-Min Mean-Mean Min-Max

SUCCESS RATE 69.43 % 70.18 % 70.14 % 69.48 % 69.5 % 69.48 % 69.5 %

FEATURES 114 43 40 57 71 57 71

TIME 643.8 msec 327.5 msec 295.7 msec 371.8 msec 437.7 msec 371.8 msec 437.7 msec

Table 8 Mean values of success rates (%) for face recognition on CUFSF [18] dataset, comparison of proposed methods with 1st

reference value of existing method.

EXISTING TECHNIQUE PROPOSED TECHNIQUES

Simple Union PCA Fusion FUSION IN WAVELET DOMAIN

Fast-RSLCR [39] Max-Max Max-Min Mean-Mean Min-Max

SUCCESS RATE 73.16 % 73.70 % 73.50 % 73.12 % 73.02 72.38 % 73.02 %

FEATURES 216 67 57 148 136 97 136

TIME 1110.4 msec 432.6 msec 367.8 msec 734.1 msec 687.6 msec 659.8 msec 687.6 msec
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posed algorithms. In Table 8 it is depicted that competing val-
ues for both domains. It indicates the time-efficient perfor-

mance of our proposed techniques at par with the most
optimum value of Fast-RSLCR [39]. It is observed that more
importantly, Simple and PCA Fusion techniques achieved

slightly higher recognition rates at 67 and 57 features respec-



Table 9 Mean values of success rates (%) for face recognition on CUFSF [18] dataset, comparison of proposed methods with highest

reference value of existing method.

EXISTING TECHNIQUE PROPOSED TECHNIQUES

Simple Union PCA Fusion FUSION IN WAVELET DOMAIN

Fast-RSLCR [39] Max-Max Max-Min Mean-Mean Min-Max

SUCCESS RATE 73.41 % 76.11 % 79.03 % 73.39 % 74.09% 73.19 % 74.03 %

FEATURES 286 121 167 235 222 149 219

TIME 1402.7 msec 634.4 msec 846.6 msec 1195 msec 1121.2 msec 755.1 msec 1138 msec

Fig. 9 NLDA Face recognition accuracies of Fast-RSLCR [39], FCN [36] and proposed techniques on CUFSF [45] dataset.
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tively than Fast-RSLCR [39] which exhibited the same value at
286 features out of a total 299 dimensions in the first set. This

translated to three times improvement in computational costs.
Table 9 highlights the improved performance of our methods
against the highest score of Fast-RSLCR [39]. Here too, the

Simple Union technique registered a performance jump of
2.7% by employing only 121 features whereas the PCA Fusion
method showed an improvement of 5.62% by employing 50

features less than the highest score of Fast-RSLCR [39]. It also
established the fact that fusion techniques address inadequa-
cies of individual sketches and impart them robust features,
clarity and sharp contours which aid in the face recognition

process. With the help of face recognition routine by the
NLDA algorithm, we measured the performance of different
schemes of face sketch synthesis (see Fig. 9).

In comparison to individual techniques, we observe in
Tables 7 to 9 that on both datasets different versions of unified
sketches achieve similar values of scores at far fewer features

with better computational efficiency. It augments the proposed
idea that by fusion of two sketches that have certain merits as
well as inadequacies, we achieved a unified sketch containing

strong features.
5. Conclusion

It is proved that SSIM scores of FCN and Fast-RSLCR tech-

niques improve when their resulting sketches are unified by dif-
ferent merging techniques. Best achieved SSIM score was 60.29
which is 3.84 points better than Fast-RSLCR and 4.76 points

higher than FCN regarding the CUFSF dataset. Proposed
methodology at best achieved 68% improvement (30 vs 94)
over FCN and 33% improvement (83 vs 124) over Fast-
RSLCR concerning a lesser number of features for detection

regarding CUFS. For the CUFS dataset, Simple Union and
PCA fusion methods worked better. The proposed scheme
achieved similar detection rate at 73% lesser features (57 vs

216) and 5.62% higher detection rate at 41% less features
(167 vs 286) concerning Fast-RSLCR regarding CUFSF data-
set For CUFSF dataset Simple Union and PCA fusion meth-

ods showed enhanced results and Wavelet Mean-Mean
methodology showed competitive performance within Wavelet
Fusion domain. The chief characteristics of our proposed

methodologies by merging strong features of the candidate
sketches proved to be useful against the weak properties of
either sketch. Overall, the proposed setup achieved three times
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(367.8 msec vs 1110.4 msec) better computational performance
versus the individual methods.
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