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Second harmonic Hall responses of insulators as a
probe of Berry curvature dipole
Mahmut Sait Okyay 1,6, Shunsuke A. Sato 2,3, Kun Woo Kim 4, Binghai Yan 5, Hosub Jin1 &

Noejung Park 1✉

Diverse nonlinear optical responses of metallic band states have been characterized in terms

of the Berry curvature dipole (BCD) or other multipole structures of Berry curvature. Here, we

find that the second harmonic optical responses of insulators to sub-bandgap light are also

delicately associated with the interband BCD. We performed real-time time-dependent

density functional theory calculations and theoretically analyzed the second harmonic gen-

eration susceptibility tensors. The two-band term of the second-order susceptibility is pre-

cisely proportional to the interband BCD, which is particularly significant for low-symmetric

systems with a small bandgap. We show that higher-order responses to nonperturbative

strong fields can be associated with higher poles of Berry curvature. We suggest that the

consequences of symmetry lowering can be detected by nonlinear optical responses through

adjustments of the dipole or other multipole structures of the Berry curvature texture.
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Many key discussions in recent studies of condensed
matter physics have often focused on the geometrical
structures of quantum mechanical wavefunctions of

electronic band states. Among the prime attributes underlying
such geometrical natures is the Berry curvature of the Bloch
state1. Earlier recognition of the significance of the Berry curva-
ture was provided by Thouless, Kohmoto, Nightingale, and Nijs
(TKNN). They proved that, even before Berry’s original for-
mulation of the geometrical phase, the transverse charge con-
ductivity of a two-dimensional (2D) band insulator is quantized
in terms of the zone-integrated Berry curvature2. In parallel with
the similar geometrical notions of the Landau level states in
integer quantum Hall effects3, the TKNN’s formulation for the
nonzero integer multiples of the Hall conductivity has laid the
foundation for the topological state of band electrons, in parti-
cular, for the solid state with broken time-reversal symmetry
(TRS)2,4. The topological notions have later extended even for the
time-reversal symmetric solid states in the context of the quan-
tum spin Hall states5–7 and the Weyl/Dirac semimetals, which is
reminiscent of the relativistic massless particle with distinct
helicities8,9.

For a time-reversal symmetric system, there is no charge Hall
current in the linear regime, and the zone integration of the Berry
curvature vanishes because of its odd nature in the momentum
space. Even under such a strong constraint of TRS, the effect of
the Berry curvature is still appreciable in the nonlinear regime,
and significant interests in recent years have focused on such
nonlinear optical responses10,11. As suggested by Sodemann and
Fu in 201512 and as measured by Ma et al. in 201910, an
inversion-broken metallic solid exhibits a nonzero charge Hall
effect in the second-order response, which can be associated with
the Berry curvature dipole (BCD)—the integration of the gradient
of Berry curvature. On the other hand, for insulators, to describe
a circular photogalvanic effect (CPGE) in response to a circularly
polarized photoexcitation11,13–17, the concept of the interband
BCD has been devised by the integration of the Berry curvature
difference of two band-edge states over the surface with a given
energy separation. It is noteworthy that the CPGE photo-
conductivity is quantized at nodes of Weyl semimetals in terms of
interband BCD18,19. The concept of the BCD has also been
extended to discussions for the magnetoresistance of Weyl
metals20 and the orbital Edelstein effect21.

The interband photogalvanic effects under TRS, such as shift or
injection currents, are available only when the light frequency is
larger than the bandgap13,14,16. On the other hand, the effect of
sub-bandgap driving lights is appreciable only in oscillating non-
linear responses, such as the second harmonics or even higher
harmonics signals. Note that the nonlinear Hall effect (NLHE) of
metals or semimetals has attracted significant interest in recent
days10–12. Here, we are motivated by the question of whether such
notions of the NLHE of metals, as formulated in terms of BCD, can
be extended to the second harmonic optical responses of insulators
with TRS. To examine the nonlinear Hall responses of insulators to
light fields with a sub-bandgap frequency, we performed the real-
time time-dependent density functional theory (rt-TDDFT) cal-
culations for h-BN and WTe2 monolayers with various spatial
symmetry groups, which are all symmetric over the time-reversal.
Our real-time calculations cover strong fields beyond the pertur-
bative regime, and we compare the simulation results with the
perturbation-based results for second harmonic generation (SHG)
and other susceptibility13,22. We show that the SHG susceptibility
can be decomposed into two-band and three-band terms. For small
bandgap and lower symmetry cases, the SHG signals are dominated
mainly by the former term, which is proportional to the band-edge
states’ interband BCD. In short, our results indicate that the cor-
relation between the Berry curvature derivatives and nonlinear

optical responses can be described within a unified picture, irre-
spective of metals or insulators. The transverse nonlinear optical
responses of insulators are dominated by the BCD, which is pre-
cisely analogous to the NLHE of metallic systems.

Results and discussion
Second-order optical responses of insulators and nonlinear
Hall effect of metals. Various optical responses of materials
have usually been discussed in terms of dipole-approximated
Hamiltonian23: Ĥðp̂; tÞ ¼ Ĥðp̂þ e

cAðtÞÞ � Ĥðp̂Þ þ e
mc p̂ � AðtÞ,

where the time-dependent vector potential AðtÞ ¼ �c
R
dtEðtÞ

describes the uniform electric field EðtÞof the applied light and p̂
represents the canonical momentum operator13. For adiabatically
evolving Bloch states, the momentum operator can be replaced
with the velocity operator p̂=m ¼ ∂ĤðkÞ=_∂k, where ĤðkÞ is the
corresponding k-resolved Hamiltonian. For insulators, the
second-order effect of the dipole term produces plentiful optical
responses, including injection current, shift current, SHG, optical
rectification, and electro-optic effect13,14. The shift current con-
tains a net direct current (DC) upon the absorption of a photon,
which presents substantial potential in terms of applications to
photovoltaic devices. The injection current has been discussed in
the framework of the CPGE, which is characterized by the gen-
eration of a constant DC rate on the absorption of a circularly
polarized photon (see Fig. 1a). To make a better comparative
analogy, the shift current DC response is sometimes called
interband linear photogalvanic effect (LPGE), as opposed to the
CPGE16,17.

The material symmetry determines the current direction for
both shift and injection currents. For the nonlinear responses of
metallic systems, the second-order effect has recently attracted
substantial attention from the perspective of the NLHE, which
has also been referred to as intraband LPGE16 (see Fig. 1b). This
NLHE of the time-reversal symmetric system is particularly
attractive when one considers the fact that the linear regime Hall
current occurs only in the system with broken TRS2,10,12,16. The
previous semiclassical study has neatly proved the association of
this metallic NLHE with the BCD on the Fermi surface12. Here,
we confirm that the SHG of a time-reversal invariant insulator is
also linked to its BCD. In literature, the CPGE has been
considered as a probe of band-resolved Berry curvature; the
LPGE and SHG have been associated with the shift vector, the
Berry connection differences between the occupied and unoccu-
pied bands17,24,25. Our results in the present work signify that
among this family of nonlinear responses, the SHG of insulators
is also governed by Berry curvature of the band-state
wavefunction.

We specify the notations for the intraband and interband Berry
curvatures to present consistent formulations of these nonlinear
optical responses. With the given energy band structure εnðkÞ and
the eigenstates jψnðkÞi of the static Hamiltonian ĤðkÞ for the
Bloch state with the momentum vector k, the band Berry
curvature of the band index n can be written as

ΩnðkÞ ¼ 2Im ∑
m≠n

vynmvxmn

ω2
mn

ð1Þ

where vαnm ¼ hψnðkÞj∂ĤðkÞ=_∂kαjψmðkÞi represent the velocity
matrix elements between bands n and m, and
ωmn ¼ ½εmðkÞ � εnðkÞ�=_. On the other hand, the velocity
matrices between the bands n and m have been referred to as
the interband Berry curvature15, which can be written as

ΩnmðkÞ ¼ 2Im
f nkð1� f mkÞvynmvxmn

ω2
mn

ð2Þ

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-01086-9

2 COMMUNICATIONS PHYSICS |           (2022) 5:303 | https://doi.org/10.1038/s42005-022-01086-9 | www.nature.com/commsphys

www.nature.com/commsphys


where f nk indicates the occupation factor. Note that the factor
f nkð1� f mkÞ makes the interband Berry curvature becomes
nonzero only between the pairs of occupied (n) and unoccupied
(m) states. This form of the Berry curvature has been introduced
to describe the CPGE of insulators11,15.

Second harmonic Hall effect of two-dimensional insulators.
We now take an example 2D insulator to study the nonlinear
optical response characteristics of insulators with TRS. We first
search the solution, as depicted in Fig. 1c, by investigating the
Fourier components of the transverse real-time current J?ðtÞ (in
the y-direction) in response to a given driving field
EðtÞ ¼ EðtÞx̂ ¼ E0Re½eiωt�x̂ oscillating in the x-direction with a
frequency smaller than the bandgap: _ω< εgap. Since the sub-
bandgap light does not activate the DC response, the only
available second-order response can be found in the SHG
spectra13,14. In later paragraphs, we discuss that these second-
order transverse optical responses can be formulated in an exact
analogy with the NLHE10–12. Without loss of generality, the
transverse electric polarization can be written as
PyðtÞ ¼ �χð2ÞE2

0Im½ei2ωt�, of which the corresponding current can

be obtained by JyðtÞ ¼ _PyðtÞ ¼ �2ωχð2ÞE2
0Re½ei2ωt�, where χð2Þ �

Im½χyxxð�2ω;ω;ωÞ� is the imaginary part of the SHG
susceptibility13. Hereafter, this frequency-doubled transverse
response of insulators is called the second harmonic Hall effect
(SHHE).

Real-time profiles of the charge oscillations of the insulating
materials were obtained through the rt-TDDFT calculations.
The Kohn–Sham (KS) wavefunctions for the Bloch states
jψnkðr; tÞi evolves by the time-dependent density functional

Hamiltonian, as follows:

i_
∂

∂t
jψnkðr; tÞi ¼

"
1

2me

 
p̂þ e

c
AðtÞ

!2

þ V̂atom

þ V̂Hxc½ρðr; tÞ�
#
jψnkðr; tÞi

ð3Þ

The second and third terms on the right-hand side are the
atomic pseudopotential and the Hartree-exchange-correlation
potential, respectively. Further details for the computations of the
time series of the wavefunctions are described in the Method
section. The time profile of the cell-averaged current density can
be calculated from the velocity expectation of the time-evolving
KS wavefunctions jψnkðr; tÞi:

JðtÞ ¼ � e
Lm

∑
nk
f nkhψnkðr; tÞjπ̂jψnkðr; tÞi ð4Þ

where L is the average length of the 2D unit cell across the plane
perpendicular to the current flow direction. The velocity operator
in this nonlocal pseudopotential scheme is given by
π̂ ¼ p̂þ e

cAðtÞ þ im
_ ½V̂NL; r̂�, as elaborated in the previous

literature7, where V̂NL represents the nonlocal part of the
pseudopotential.

We traced the real-time dynamics of the transverse current
density (J⊥(t)) of pristine monolayer h-BN with D3h point group
symmetry (see Fig. 2a) and strained h-BN (B-N bond lengths are
elongated by 0.2 Å in the y-direction) with C2v symmetry (see
Fig. 2b). First, the pristine h-BN is driven by the x-polarized
electric field EðtÞ ¼ f ðtÞE0 cosðω0tÞx̂, which is perpendicular to
the mirror plane Mx. We set E0= 0.005 V Å−1 and
ħω0= 2.37 eV, which corresponds precisely to half the bandgap
(see the upper panel of Fig. 2c). Once the real-time profile of the
transverse current J⊥(t) is obtained within the [20 fs,60 fs] range
(the black arrowed line in the lower panel of Fig. 2c), we squared
the Fourier coefficients, |F[J⊥(t)]|2, up to the fourth harmonic
order of the applied frequency, as presented in Fig. 2d. The
transverse current, J⊥= Jy, exhibits a very sharp second harmonic
peak at 2ω0. In contrast, the other harmonic orders are negligible.
However, when the polarization of the applied field is in the same
plane as the mirror (when the E is polarized into the y-direction
of Fig. 2a, b), the transverse response current is negligible (see the
green lines in Fig. 2c, d). This polarization-dependent charge
oscillation is consistent with the cancellation of the transverse
harmonic responses owing to the oddness of the Berry curvature
over the mirror reflection26,27. Overall, the high harmonics
responses are considered manifestations of broken symmetry. For
example, given the TRS, inversion breaking is necessary for even-
order harmonics responses. Our present work establishes the
connection between the effect of symmetry breaking with the
underlying intrinsic band geometric properties, the Berry
curvature texture, which microscopically accounts for the
polarization-dependent SHGs.

We collected the SHG yield with respect to various sub-
bandgap light frequencies, as depicted in Fig. 2e, f. For a 2D
insulator, the imaginary part of the SHG susceptibility tensor χ(2)

in the sub-bandgap regime is given by ref. 13

χð2ÞðωÞ ¼ 2πie3

_2
R
k ∑
nmp

ðf nk�f mkÞvynm½vxmpv
x
pnþvxmpv

x
pn�

ω3
mnðωmpþωnpÞ ½δðωmn � 2ωÞ � δðωmn þ 2ωÞ�

¼ � 8πe3

_2
R
kIm ∑

nmp

f nkð1�f mkÞvynmvxmpv
x
pn

ω3
mnðωmpþωnpÞ δð2ω� ωmnÞ for 2_ω> εgap > _ω

ð5Þ
where εgap is the bandgap energy of the insulator and

R
k ¼

R
d2k
4π2

stands for the 2D Brillouin zone integration. The sum of each
(m,n) and (n,m) pairs in the first line of Eq. (5) results in twice the

Fig. 1 The second-order optical effects of materials. a The circular
photogalvanic effect (CPGE): applied circularly polarized light of energy ħω
and field strength E0 (yellow lines) excites electron and hole carriers
(yellow and blue balls in the inset). It induces a non-oscillating direct
current (JCPGEð0Þ ) (thick brown arrow) in inversion-asymmetric materials.
b The nonlinear Hall effect (NLHE) of metals: applied linear polarized (in
the x-direction) light of frequency ω induces 2ω alternating current (JNLHE?ð2ωÞ)
together with a direct current (JNLHE?ð0Þ ) in the transverse direction (the y-
direction). c The second harmonic Hall effect (SHHE) of insulators: applied
linear polarized (in the x-direction) light of frequency ω excites electron-
hole pairs, generating 2ω alternating current (JNLHE?ð2ωÞ) in the transverse
direction (the y-direction).
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imaginary part of the summand in the second line. For a side
remark, this form is valid only for time-reversal symmetric
systems, and time-reversal breaking brings many other competing
terms besides the form written in Eq. (5)28,29. Here, we compare
this second harmonic susceptibility, which is based on the
second-order perturbation theory, with the Fourier transform of
the ab initio real-time current profile. Figure 2e, f demonstrates a
good coincidence between the total SHG susceptibility spectra
|ωχ(2)| and the SHG yield obtained from the rt-TDDFT
calculations in the examples of the h-BN structures. Note that,
in the ab initio rt-TDDFT calculations, the real-time profiles are
directly integrated over time, and thus we do not have to consider
whether the field is strong or weak. For the results shown in
Fig. 2e, f, which seemingly belong to the perturbative regime, both
methods confirm that the transverse response becomes significant
when the light frequency exceeds one-half the bandgap. This can
be attributed to the two-photon excitation nature in the nonlinear

regime. As seen from Fig. 2e, f, the SHG intensities computed
with the TDDFT calculation are accurately reproduced only by
the imaginary part of χð2Þ. This indicates that the imaginary part
dominates the SHG response in the resonant condition as it relies
on the resonant nonlinear processes, in which the contribution of
the real part remains marginal.

Interband BCD and second harmonic Hall effect. The intra-
band BCD has been widely cited as a key descriptor for the NLHE
of metallic Fermi surfaces12,16,30. Analogously, the interband
BCD has recently been defined for CPGE of insulating bands that
are separated by the photon energy of the incident light11,15.
Here, we propose that the SHHE (the second harmonic Hall
response of insulators to the sub-bandgap driving field) can be
described by the interband BCD in exact analogy with the NLHE
of metals formulated by intraband BCD. The interband BCD can
be defined by the pair of the band-edge states (one occupied and
one unoccupied) as follows:

DvcðωÞ ¼
Z

k

∂Ωvc

∂k
Θð2ω� ωcvÞ ð6Þ

where v and c indicate a valence band and a conduction band
state, respectively. Θ represents the Heaviside step function15. Ωvc
is defined in Eq. (2). When the band-edge states are well sepa-
rated from others, only the valence band maxima (VBM) and
conduction band minima (CBM) can be selected, constituting the
two-band approximation11,15.

Throughout the NLHE, CPGE, and SHHE, all the effects of the
material’s symmetry can be discussed in terms of the correspond-
ing BCD. For example, when the system has reflection symmetry
with respect to the Mx mirror plane, the derivatives of both the
intraband and interband Berry curvature must keep the relations
∂Ω
∂ky

j
ð�kx ;kyÞ

¼ �∂Ω
∂ky

j
ðkx ;kyÞ

and ∂Ω
∂kx

jð�kx ;kyÞ
¼ ∂Ω

∂kx
jðkx ;kyÞ because the

Berry curvature is an odd function under Mx mirror reflection,
Ωð�kx; kyÞ ¼ �Ωðkx; kyÞ. This indicates that the momentum
derivative of the Berry curvature possesses the pseudo-vector
nature, the perpendicular component is even, and the in-plane
component is odd with respect to the mirror reflection. As a
result, the interband BCD, given in Eq. (6), must be perpendicular
to the mirror plane Mx. Because of this pseudo-vector nature, the
presence of additional mirror planes makes the BCD
vanish10–12,31. The step function dictates that the x-component
of Dvc(ω) also vanishes when the light frequency is below 0.5εgap.

Now, we decompose the SHG susceptibility tensor given in
Eq. (5) into two parts: χð2Þ ¼ χð2Þ2�band þ χð2Þ3�band, where χð2Þ2�band

counts the terms only when p=m or p= n, and χð2Þ3�band stands
for all the other terms. The two terms can be explicitly written as

χð2Þ2�bandðωÞ ¼
8πe3

_2

Z
k
Im ∑

nm

f nkð1� f mkÞvynmvxmn

ω4
mn

Δvxmnδð2ω� ωmnÞ ð7Þ

χð2Þ3�bandðωÞ ¼ � 8πe3

_2

Z
k
Im ∑

nmp
p≠n≠m

f nkð1� f mkÞvynmvxmpv
x
pn

ω3
mnðωmp þ ωnpÞ

δð2ω� ωmnÞ ð8Þ

where Δvxmn ¼ vxmm � vxnn are the velocity expectation differences
between the bands m and n at the Bloch point k. Using the
definition of the interband Berry curvature and the identity
Δvxmn ¼ dωm

dkx
� dωn

dkx
¼ dωmn

dkx
, one can reduce χð2Þ2�band to the summa-

tion of interband BCD for all pairs of occupied (n) and

Fig. 2 The second harmonic Hall current spectra in h-BN. a and b are the
top views of the three-fold D3h symmetric pristine and the two-fold C2v

symmetric uniaxial strained h-BN monolayers, respectively. The blue
dashed lines represent the mirror planes: Mx is perpendicular to the x-axis;
M120° and M240° are obtained by rotating the Mx plane clockwise 120° and
240° around the z-axis, respectively. The upper plane of c is the real-time
profile of the continuous light field applied to the pristine h-BN. The solid
brown and dotted green oscillating lines in the lower plane are the
transverse current density responses obtained by the real-time time-
dependent density functional theory (TDDFT) calculations with the
polarization of the applied field in the x-axis and y-axis, respectively. d The
Fourier transformation of the current densities given in c for the time
interval of 20 fs≤ t≤ 60 fs (the black horizontal arrowed line). The
horizontal dashed line depicts the second harmonic generation (SHG) yield.
e The SHG yields obtained from TDDFT (brown squares) and the
theoretical SHG susceptibility spectra (black lines) for the pristine h-BN
(with D3h symmetry) with respect to various driving frequencies. f The
same plots as e for a strained h-BN (with C2v symmetry). The light
frequency in the horizontal axis is normalized with the bandgap of each
structure (4.75 eV for D3h and 3.61 eV for C2v).
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unoccupied (m) bands as

χð2Þ2�bandðωÞ ¼
πe3

_2ω2
∑nmðDnm � x̂Þ ð9Þ

This expression establishes the relation between the SHG
signals and the interband BCD. The detailed derivation of Eq. (9)
is given in Supplementary Note 1. The denominator in Eq. (7)
indicates that the dominant contribution to Eq. (9) comes from
the band-edge pair. In particular, when the band edge states are
well separated from the other bands, the two-band term can be
effectively approximated as

χð2Þ2�bandðωÞ �
πe3

_2ω2
ðDvc � x̂Þ ð10Þ

where Dvc represents the interband BCD of the band-edge pair.
Since Dvc is perpendicular to the mirror plane, χð2Þ2�band also
preserves the same symmetry constraints and vanishes in the
presence of multiple reflection symmetries. On the other hand,
χð2Þ3�band cannot be reduced to such a pseudo-vector form, and it is
even under the mirror reflection by an even number of vx

integrations. Thus, χð2Þ3�band is not required to vanish by additional
mirror planes in three-fold symmetric point groups.

The calculated results of χð2Þ2�band, χ
ð2Þ
3�band, and Dvc=ω

2 with
various driving frequencies for the h-BN monolayers are
presented in Fig. 3. To alter the symmetry of the h-BN, from
that of three-fold (D3h) to two-fold (C2v), one of the bonds is
elongated as depicted in Fig. 3a, b or a static electric field is
applied along the y-direction as presented in Fig. 3c, d. The
former is a simple geometric change, while the symmetry
breaking for the latter is achieved by the inclusion of the bias
field. To take the symmetry lowering effect into account, one
needs to obtain the dipole of the field-induced Berry curvature,
ΩE

vc, which can be calculated using the Berry connection
polarizability (BCP) tensor32. The BCP has been introduced in
the studies for the second-order anomalous Hall effect of
ferromagnets33,34, and the third-order NLHE of time-reversal
invariant materials35,36. The induced interband Berry curvature

under a static electric bias Ebŷ can be obtained by

ΩE
vcðkÞ ¼ Eb

∂Gyy
vc

∂kx
� ∂Gxy

vc

∂ky

" #
ð11Þ

where Gab
vc ðkÞ ¼ �2eRefvavcvbcv=ω3

cvg. The corresponding BCD,

DE
vcðωÞ ¼

R
k
∂ΩE

vc
∂k Θð2ω� ωcvÞ, is displayed in Fig. 3d for various

bias fields. Note that the two-band term of the SHG susceptibility
tensor, χð2Þ2�band, is well matched with Dvc=ω

2 and DE
vc=ω

2, as
depicted in Fig. 3b, d, which supports our derivation in Eq. (10).
This coincidence also suggests that the BCD is dominantly
contributed by the band-edge pairs, and the contribution from
other bands, away from the band edges, are negligible.

The two-band contribution, χð2Þ2�band, inherits the same
symmetry constraint of BCD. The three-fold D3h point group
possesses three vertical mirror planes, as depicted in Fig. 2a,
which makes the BCD, and hence the χð2Þ2�band, vanish as presented
in the leftmost panels of Fig. 3b, d. However, the three-band term,
χð2Þ3�band, is not constrained by symmetry. Thus the SHG response
produced in the noncentrosymmetric insulator with more than
one mirror plane is solely attributable to χð2Þ3�band. This response
has recently been explained in terms of skew scattering through
the Berry curvature triple, a higher-order moment of the Berry
curvature37.

To explicitly demonstrate the effect of symmetry, we applied a
uniaxial strain (Fig. 3a, b), lifting the two mirror planes of the D3h

point group. By straining the structure into the C2v point group,
the contribution from the two-band term, χð2Þ2�band, is gradually

increased, dominating over the three-band term,χð2Þ3�band. The
most significant contribution to the summation in Eq. (7) and
Eq. (8) comes from the smallest denominator, which scales as ω4

cv

and ω3
cvfor χð2Þ2�bandand χð2Þ3�band, respectively. As the bandgap

decreases, the contribution from the χð2Þ2�band becomes more
significant, as summarized in Fig. 3b. For comparison, we tested a
different method of symmetry adjustment: application of a
uniform static in-plane electric bias (Fig. 3c, d). The effect of the
static electric field is moderate compared with the geometric
strain, and the bandgap variation is very marginal. In this case,

Fig. 3 The two-band and three-band contributions to the second harmonic generation (SHG) susceptibility compared with the interband Berry
curvature dipole (BCD). a The monolayer h-BN, in which the B-N bond lengths are extended by Δd in the y-direction. The single (double) lines represent
the long (short) bonds of the strained h-BN. b The comparison of 2-band and 3-band transition terms of SHG susceptibility spectra with the interband BCD
for gradually increasing Δd values. c The un-strained h-BN, whose symmetry is adjusted by the static electric field bias of strength Eb in the y-direction (the
thick red arrow). d The same as b with varying Eb values.
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the contribution χð2Þ2�band and DE
vc=ω

2 turned on in proportion to

the field strength, while those of χð2Þ3�band are negligibly affected.
This indicates that symmetry lowering mainly affects the BCD in
these cases of insulators. It is noteworthy that the effect of
symmetry lowering is also effective on the BCD of metallic bands,
which has recently been discussed in the context of NLHE38.

Instead of intentionally adjusting the symmetry by applying
strain or external field, here we examine the effect of symmetry
lowering and bandgap change by comparing two distinct
polymorphs of existing materials: the 2H phase (D3h) and the
1Td phase (Cs) of WTe2 monolayers (see Fig. 4a, b). The leading
component in the summation in Eqs. (7) and (8) come from the
band-edge pairs (the VBM and CBM). When the bandgap is
small, and the band-edge states are well separated from other
bands, the contribution of χð2Þ2�band becomes dominant. Note that,
in the extreme two-band limit, the response is wholly governed by
the BCD term, that is χð2Þ2�band

11. The 1Td phase of WTe2 has a
substantially smaller bandgap compared with the 2H phase, and
the corresponding optical responses are two orders of magnitude
larger than those of the 2H phase, as presented in Fig. 4c, d. The
rapid sign change and cusp in Fig. 4d are due to the spin structure
of the band edge states. The 1Td phase of WTe2 is a quantum spin
Hall insulator, and the indirect band inversion at the band edge
causes the Berry curvature of opposite spin states to have opposite
signs. The peaks are attributable to the joint density of states
between the band pairs of each spin state. Because of the spin-
orbit coupled band splitting, the peaks contributed by the spin-up
states locate at distinct energy points than those of spin-down
states, resulting in the rapidly oscillatory feature shown in Fig. 4d.

As presented in Fig. 4d, the total SHG response,χð2Þ, is almost
identical to the two-band approximated BCD term, Dvc=ω

2, with
a negligible contribution from the three-band term χð2Þ3�band. This
evidences that the SHG signals of the narrow-gap insulators with
the single mirror plane mainly originate from the interband BCD
of the band-edge states. In this limit of two-band approximation,
the SHHE current response can be summarized as10–12

J?ðtÞ ¼ � 2πe3

_2ω
ẑ ´EðDvc � EÞ ð12Þ

As confirmed by the rt-TDDFT calculation, presented in
Fig. 2c, d, the SHHE response current is maximized when the

light is polarized along the BCD direction. All the results, shown
in Figs. 3 and 4, suggest that the ratio between the contribution
from the χð2Þ2�band and the χð2Þ3�band can be adjusted by controlling
the material symmetry, which implies that the spectroscopy based
on the transverse SHG signal can be utilized to detect the Berry
curvature distribution together with the material orientation.
More rigorous discussions of the effect of mirror and inversion
symmetry on the band structure and Berry curvature distribution
are given in Supplementary Note 3, based on the parametrized
two-band model Hamiltonian, specified in Supplementary
Note 2.

The SHHE under strong fields: the effect of Berry curvature
multipoles. We now examine the features of Hall responses
under strong driving fields. In line with the nonlinear Hall
response of the metallic system, in which the higher-order
response current is associated with the intraband Berry curvature
multipoles39, here we examine whether the SHHE of the insu-
lator, induced by a strong field, reflects the effect of multipoles of
interband Berry curvature. In practice, the strong fields beyond
the perturbative regime often cause diverse non-adiabatic effects,
and the narratives based on band intrinsic quantity tend to be
irrelevant. However, when the two-band approximation is
robustly validated, and when the time scale of the driving oscil-
lator is much faster than that of carrier relaxation dynamics,
2π=ω � τ, the intrinsic band natures are adiabatically preserved
even under the strong field. As the mirror plane is perpendicular
to the x-axis in the coordinate specified in Fig. 2b, the band-edge
BCD, Dvc, is directed to the x-axis. The second harmonic Hall
current in the y-direction induced by the field E ¼ E0Re½eiωt �x̂
can be obtained from Eq. (12) as

JyðtÞ ¼ � 2πe3

_2ω
E2
0Re½ei2ωt�

Z
k

∂Ωvc

∂kx
Θð2ω� ωcvÞ ð13Þ

Within this adiabatic approximation, the fast intraband motion
of the carriers follows the acceleration rule k ! k þ e

_cAðtÞ with
AðtÞ ¼ � c

ω E0Im½eiωt �x̂, which causes the deformation of the
integration surface in Eq. (13). This change caused by the driven
state of the momentum can be counted by substituting the
integrand: ∂Ωvc

∂kx
! ∂Ωvc

∂kx
j
kþΔkx̂

with ΔkðtÞ ¼ � e
_ω E0Im½eiωt �. Now,

we expand the BCD with respect to Δk, and the sum for each
Kramers pair (k and −k) as:

∂Ωvc

∂kx

�����
kþΔkx̂

þ ∂Ωvc

∂kx

�����
�kþΔkx̂

¼ 2
∂Ωvc

∂kx
þ 2

1
2!
∂3Ωvc

∂k3x
ðΔkÞ2

þ 2
1
4!
∂5Ωvc

∂k5x
ðΔkÞ4 þ ¼ ;

ð14Þ

where all the odd-order terms vanish by the odd symmetry of Ωvc
with respect to the mirror plane. Since the second harmonic
oscillation in Eq. (13) is represented by Re½ei2ωt�, only the zero-
frequency terms of the BCD expansion must be collected from
those even-order terms of ðΔkÞ2, ðΔkÞ4, … of Eq. (14) for the
SHHE response. The second harmonic contribution to Eq. (13)
can then be written as

JyðtÞ ¼ �Re½ei2ωt�
(
2πe3

_2ω
E2
0D

ð2Þ
vc þ πe5

_4ω3
E4
0D

ð4Þ
vc þ 7πe7

192_6ω5
E6
0D

ð6Þ
vc þ ¼

)
�x̂

ð15Þ
where Dð2Þ

vc ¼ Dvc and DðnÞ
vc ðωÞ ¼

R
k
∂ðn�1ÞΩvc

∂kðn�1Þ Θð2ω� ωcvÞ are
interband BCD and interband Berry curvature nth pole of the
band-edge states, respectively. This expansion shows that the
direct correspondence between the SHG responses and BCD is

Fig. 4 The second harmonic Hall response of two polymorphs of
monolayer WTe2. a The schematic for the 2H phase of WTe2 with D3h

point group symmetry. b The schematic for the 1Td phase of WTe2 with a
two-fold symmetric Cs point group. c The contributing terms to second
harmonic generation susceptibility spectra (solid lines) and the interband
Berry curvature dipole (red diamonds) for the 2H phase of WTe2. d The
same for the 1Td phase.
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limited only to weak fields. The strong field can bring higher-
order contributions that can be formulated with the Berry
curvature multipoles. Not only this second-order Hall
responses, but the first-order susceptibility χð1Þ, also contains
similar second harmonic terms associated with Berry curvature
multipoles within a similar semiclassical approach (see
Supplementary Note 4). A few remarks are in order. Beyond
the two-band approximations, in practice, particularly for the
terms related to the χð2Þ3�band, the higher-order corrections are not
limited to the multipoles of interband Berry curvatures. In
recent studies, nonlinear optical responses are interpreted
geometrically with higher rank tensors on the manifolds of
Bloch cell periodic functions40. This part of our analysis is
introduced to guide only the intuitional picture for a
nonperturbative strong-field regime. One must consider addi-
tional perturbative contributions to the second harmonic Hall
responses40–42, besides those contributions proportional to
Berry curvature multipoles.

To study the effect of a strong field, we examined the Fourier
components of the real-time current (Fig. 5a). We particularly
focused on how this real-time SHG response deviates from the
second-order perturbation theory. For Fig. 5a, b, we performed
the same real-time TDDFT calculation with 100 times stronger
field strength than the fields in Fig. 2. While the weak field
produces only SHG (see Fig. 2d), the strong field clearly shows
up to 8th harmonic generation (8HG) (see Fig. 5b). Hereafter,
the nth harmonics are denoted by nHG. The trend of the high
harmonics generation (HHG) yields under various ranges of
strong fields are plotted in Fig. 5c. In this plot, with the fixed
light frequency of ℏω0= 0.52εgap, we varied the field strength in
the window of 0.001 V Å−1 ≤ E0 ≤ 1.000 V Å−1, and recorded
the HHG yields. The SHG response is not noticeable for the
weak fields below 0.001 V Å−1. Similarly, the 4HG, 6HG, and
8HG yield peaks become significant when the field strength
exceeds 0.04, 0.2, and 0.4 V Å−1, respectively. The logarithmic
plot in Fig. 5c shows that the SHG yield follows an apparent
quadratic increase (/ E2

0) with the strengths starting from 0.001
to 0.2 V Å−1. However, the slope drops for stronger fields,
which indicates that the system reaches the nonperturbative
limit.

As in Fig. 2e, we compare the theoretical perturbative SHG
susceptibility and the SHG yields obtained from the rt-TDDFT
calculations. In Fig. 5d, we carried out such a comparison with
E0= 0.5 V Å−1, an exemplary strong field. Unlike the weak field
regime example, as can be read from Eq. (15), the SHG yields
deviate from the prediction of the perturbation theory. The
three-fold symmetry removes the interband BCD (Dð2Þ

vc );
however, the multipoles (Dð4Þ

vc ;D
ð6Þ
vc ; ¼ ) survive over this

symmetry cancellation. Note that the effect of higher poles
becomes significant under the strong field. As seen in Fig. 5d,
the overall shape of the SHG yield spectrum is mostly consistent
with the Berry curvature 4th pole with a marginal difference
that can be ascribed to the three-band transition term, as
discussed above.

Conclusion
We investigated the second harmonic Hall responses of time-
reversal-symmetric insulators in the framework of the real-time
propagation of TDDFT and in terms of second-order suscept-
ibility tensor. We found that the SHG susceptibility tensor can be
divided into the two-band and the three-band contributions, with
the former being proportional to the interband BCD. For a highly
symmetric structure, the BCD vanishes due to the cancellation by
the mirror reflections, and thus the second harmonic response is
wholly governed by the three-band term. For a low symmetry

structure, particularly when the bandgap is small, the BCD term
dominates over the second harmonic Hall response of the insu-
lators. We showed that, for a two-band approximated insulator,
the higher-order effect of the strong field could be closely asso-
ciated with the multipoles of the interband Berry curvature. These
results of the insulator’s Hall response, in terms of interband
Berry curvature multipoles, establish a close analogy with the
recently recognized formulation of the NLHE in terms of intra-
band BCD and multipoles. We suggest that the correspondence
between the SHHE and interband BCD can be utilized as SHG-
based spectroscopy that can detect insulators’ Berry curvature
distribution.

Methods
Real-time time-dependent density functional theory calculations. The ground-
state electronic structure was obtained by a standard DFT calculation using the
Quantum Espresso package43. The preferred exchange and correlation functional
was the Perdew–Burke–Ernzerhof-type generalized gradient approximation
functional44. The scalar-relativistic norm-conserving pseudopotentials were
exploited to describe the atomic potentials45. The cutoff energy was set as 544 eV.
The primitive unit cells with a vacuum slab of 15 Å were used for the monolayers.
The Brillouin zone integration was carried out following a Monkhorst–Pack
scheme of 24 × 24 × 1 mesh for time-dependent calculations and 60 × 60 × 1 mesh
for static BCD calculations, excluding any symmetry operation. For the compu-
tations of the time propagations, we used the plane-wave package developed by our

Fig. 5 The second harmonic Hall response to strong fields and
contribution of the Berry curvature multipoles. a The real-time profile of
the transverse current density response of the pristine D3h h-BN. The field
strength (E0= 0.5 V Å−1) is 100 times larger than that of Fig. 2c. b The
Fourier transformation spectra of the current density given in a enveloped
with a Gaussian function centered at 30 fs with the full-width at half-
maximum (FWHM) of 20 fs. The x-axis is scaled with the applied field
frequency, ℏω0= 0.52εgap (where εgap= 4.75 eV) and the y-axis is log
scaled. Dashed lines and arrows depict the second harmonic generation
(SHG) and high harmonic generation (HHG) yields. HHG consists of fourth
(4HG), sixth (6HG), and eighth (8HG) harmonic generations. c The SHG
(brown squares), 4HG (blue circles), 6HG (green triangles), and 8HG
(yellow diamonds) yields for various field strengths. Both x and y-axes are
log scaled. Arrows show the field strengths used in Fig. 2c–f (0.005 V Å−1)
and panels a, b, d (0.5 V Å−1). The transparent brown, blue, green, and
yellow lines represent the perturbative power rules (En0) for SHG, 4HG,
6HG, and 8HG yield, respectively. d is the comparison of the theoretical
SHG susceptibility spectra (solid black line) and the SHG yields (brown
filled squares) of the transverse current as given in c for 0.5 V Å−1. The blue
dashed line is the Berry curvature 4th pole divided by ω3, the contribution
of high-order corrections to SHG response. The light frequency is scaled
with the bandgap.
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group46, employing the Crank-Nicolson time propagation scheme47. The time
interval for real-time evolution was set at 0.048 fs.

Data availability
All the obtained numerical data in the present work are available from the corresponding
author upon reasonable request.

Code availability
The computation codes used in the present work will be available from the
corresponding author upon reasonable request.
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