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Over the decades, a rapid upsurge in electricity demand has been observed due to overpopulation and technological growth. The
optimum production of energy is mandatory to preserve it and improve the energy infrastructure using the power load forecasting
(PLF) method. However, the complex energy systems’ transition towards more robust and intelligent system will ensure its
momentous role in the industrial and economical world. The extraction of deep knowledge from complex energy data patterns
requires an efficient and computationally intelligent deep learning-based method to examine the future electricity demand. Stand
by this, we propose an intelligent deep learning-based PLF method where at first the data collected from the house through meters
are fed into the pre-assessment step. Next, the sequence of refined data is passed into a modified convolutional long short-term
memory (ConvLSTM) network that captures the spatiotemporal correlations from the sequence and generates the feature maps.
The generated feature map is forward propagated into a deep gated recurrent unit (GRU) network for learning, which provides the
final PLF. We experimentally proved that the proposed method revealed promising results using mean square error (MSE) and
root mean square error (RMSE) and outperformed state of the art using the competitive power load dataset.(Github Code).

(Github code: https://github.com/FathUMinUllah3797/ConvLSTM-Deep_GRU).

1. Introduction

Over the decade, the global energy consumption by the
large-scale machinery in factories, buildings, and transport
has remarkably increased due to population growth and
economic development [1, 2]. This phenomenon rapidly
shifted the energy resource demands towards clean power
generation and its system improvement through intelligent
methods for its efficiency [3]. These days, different renewable
energy resources such as solar, wind, etc., are becoming the
most optimal and significant resources aiming towards
green technology; therefore, an extra layer of PLF will
further assist the smart grid operation and its smooth
maintenance [4]. Still, there exist some challenges for energy
scientists to precisely establish an accurate and smart

cooperative platform between the smart grids and the
consumer side. A large amount of power energy is consumed
and wasted due to improper infrastructure. Therefore,
forecasting this power energy is an essential and imperative
step towards optimal usage to overcome its dissipation. This
will also enhance its future demand through smart grid and
renewable energy production [5]. Researchers and data
scientists are developing efficient ways to handle energy
wastage and improve its optimal usage through different
machine learning and time-series modeling techniques.
However, a large amount of work has been done so far, with
accurate results or with some uncertainties yielding erro-
neous forecasting that raised the need of establishing a
highly precise, generalized ability, and robust energy fore-
casting model. According to [6], the scenario of generating
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FIGURE 1: Statistics of power energy generation [6] as of 2016 and 2030. Also, different sources of power energy consumption are stepped.

the power energy from 2016 is 40%, 30%, 22%, 5%, and 3%
for coal, nuclear, liquefied natural gas (LNG), renewables,
and other resources, respectively. This statistic is illustrated
in Figure 1, which shows the percentage of power energy
generation and the consumption of resources.

Energy consumption via machinery in factories, build-
ings, and transport has remarkably increased over the last
decades in the world due to population growth and the
development in the economy. The prediction of this energy
consumption is essential to reserve it for optimal use to
overcome its dissipation and enhance its future demand,
which is especially the current need of several countries.
Researchers and scientists are developing efficient ways to
handle energy wastage and improve its optimal usage in
industries and residential areas. However, a large amount of
work has been done so far, with accurate results or with
some uncertainties. A challenge was raised to establish a
highly precise, generalized ability, and robust energy pre-
diction model. Mainly three kinds of building energy
consumption models are used such as data-driven models,
physical models, and hybrid models [7, 8]. Among these
models, the most provocative is the data-driven model that
became a popular method owning lower time in con-
sumption with good performance. Several data-driven ap-
proaches are appropriate to cluster the buildings (residential
[9] and nonresidential buildings [10]) with different time-
scales such as short term [11] or long term [12]. A majority of
prediction methods have been proposed over the past years
in building ECP. Therefore, it is important to predict the
future energy consumption and manage the energy usage
accordingly. This method is a step towards efficient energy
consumption. Also, it is an emerging field where the future
world is widely based on energy and its utilization in in-
dustries, companies, government organizations, etc.

The utmost goal of the proposed method is the reduction
of energy consumption and to ensure its efficient usage that
is a prominent factor influencing the economy growth in the
country. However, there exist numerous challenges in power
load forecasting in buildings such as accuracy, efficient data
processing, model evaluation, errors calculation, etc.

Therefore, it is important to develop a method that can
achieve a fast performance to forecast and assess power
energy infrastructure with a reasonable accuracy and least
error. The tactics used for PLF heavily depend on the
available data gained from the meters that are the foci of
various problems. The mainstream methods that are mostly
based on lack of preprocessing of power load data and fail in
noisy condition when the data are noisy and have outliers or
effects of user’s behavior. This problem is handled via the
refinement layer. Similarly, they provide a coarse way to
collect the features for PLF, practicing low-level methods
that widely skip the most discriminative features of the
power data sequence. They are based on traditional feature
extraction such as clustering, ensemble learning, or hand-
feature engineering techniques which fail in terms of
amassing the most advanced knowledge and deep charac-
teristic from the data. In addition, the practiced approaches
use a single RNN layer and passed via single hidden state that
ignore the capturing of (hierarchical/think) temporal
structure of the sequence. Furthermore, existing PLF
techniques hands on complex architecture resulting into a
large number of parameters and become computational. We
handle these problems by proposing a deep learning-assisted
short-term PLF method, which investigate the ConvLSTM
layers giving its latter to GRU. Applying such procedure, the
proposed method achieved the accurate and fast calculation
results.

The key contributions of the proposed method are
highlighted as follows:

(1) Existing PLF strategies practice traditional filters to
overcome noisiness in data which remove the noisy
disordering only. To tackle this problem, an acqui-
sition and refinement layer is employed that refines
the data through past value substitution, normali-
zation, and organizing the data into a rolling window
sequence.

(2) Employed works apply conventional learning and
hand-feature engineering strategies making the load
forecasting stiffer and tedious. However, for the first
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time, we propose a novel ConvLSTM network for
PLF that extracts the most discriminative spatio-
temporal features from the power load sequence and
generate a block of feature map.

(3) We employ a deep GRU for sequence learning that
obtains the spatiotemporal features (feature map)
from the ConvLSTM network. The deep GRU net-
work is more suitable for learning the sequence
patterns and provides effective PLF demonstrated
through visual and tabular results.

(4) We experimentally prove that the proposed method
shows outstanding results and outperforms state of
the art through recording the least value of MSE and
RMSE on the most challenging dataset. The dem-
onstration of the proposed method’s results depicts
the method suitability for efficient management of
energy infrastructure and ensuring saving of vast
amount of energy wastage.

The rest of the article is organized as follows: Section 2
covers the literature review while the proposed PLF method
and experimental analysis are discussed in Section 3 and
Section 4, respectively. Finally, Section 5 describes the
comparative analysis while Section 6 concludes the article.

2. Literature Review

Several techniques have been developed with the aim to
efficiently forecast the energy consumption for buildings,
industries, institutes, or residential areas. These methods are
broadly based on conventional and deep learning-based
techniques. The details are covered in the following sections.

2.1. Conventional Learning-Based PLF Methods. PLF
methods remained popular for their promising results to
forecast the power load consumption in residential buildings
[13, 14], subways [15], industries [16], and households
[17, 18]. Majority of the methods are based on traditional
approaches. For instance, Guo et al. [19] composed a ma-
chine learning-based model to forecast the building thermal
energy using extreme learning machine (ELM), multiple
linear regression, and support vector machine. They ana-
lyzed the performance of each model for the heating system.
Next, Peng et al. [20] used a framework that worked with
multiprocessing learning based on certain defined rules to
control cooling. They applied a method to adapt user sce-
narios with no prior knowledge. Similarly, Ngo [21] pro-
posed an ensemble machine learning-based method to
estimate the inside building cooling loads and analytically
proven the ensemble learning as best performance. Hygh
et al. [22] employed the Monte Carlo framework to develop
multivariate linear regression model for 27 buildings that are
relevant to early design, as the energy performance is sen-
sitive to the size and building geometry. Another researcher,
Wang and Ding [23], proposed an occupant-based PLF
model for equipment by applying the polynomial and
Markov Chain Monte method to investigate the time-
varying occupancy rate. Considering time accumulation,

they calculated the consumption of equipment in the office.
Furthermore, Zhong et al. [24] defined a vector field based
on support vector regression for PLF in building. They
transformed the model nonlinearity into linearity using
these vectors. Another research in [25] performed daily and
hourly analysis with the use of quadratic regression such as
simple and multiple linear regression. They proved that the
time interval is the relevant factor that defines the model
quality. Furthermore, the researchers also proposed clus-
tering-based energy consumption to categorize electricity
usage into different levels. Hence, a majority of these
methods failed and remained limited to obtain accurate
forecasting and least error.

2.2. Deep Learning-Based PLF Methods. Deep learning is
gaining overwhelming growth in solving different computer
vision tasks such as video analytics [26] or time-series
problem [27, 28]. It deeply inspires the field of energy
consumption and getting involved due to model robustness
and performance. For instance, Muralitharan et al. [29]
proposed an optimization approach based on a neural
network to analyze the energy demand through PLF. They
used neural network-based genetic algorithm and particle
swarm optimization methodologies. A research carried out
in [30] proposed a hybrid forecasting model based on
evolutionary deep learning which combined the genetic
algorithm with LSTM and optimized it with the objective
function. Inspired by LSTM performance, a method pre-
sented in [31] applied deep recurrent neural network
(DRNN) with LSTM for PLF and photovoltaic power in a
microgrid. They proved that the DRNN with LSTM per-
forms better than multilayer perceptron and optimized the
load dispatch using the particle swarm algorithm. Next,
Rahman et al. [32] developed two DRNNs to forecast the
electricity and applied them over medium to long horizon.
They further used these models to compute the missing data
scheme. Several researchers proposed hybrid approaches of
combining convolutional neural network (CNN) with LSTM
autoencoder to forecast future energy in residential building.
Similarly, Shi et al. [33] used pooling-based DRNN that
batches the group comprise customer’s profiles where they
addressed the problem of overfitting by increasing the data
volume and its diversity. An approach presented in [34]
combined the stacked autoencoders with ELM as a hybrid
connection. They used ELM as a predictor and used auto-
correlation analysis to determine the ELM variables.

3. Proposed Power Load Forecasting Method

The energy consumption from small buildings infrastructure
to global level has greater consequences. Worldwide de-
velopment and rise in technology increased energy con-
sumption. Its management by the users is greatly impacted,
bringing drastic variations in economies and different sec-
tors. In this view, the industries and smart grids have energy
deficits due to wastage of large amount of energy, improper
infrastructure, inefficient supply system, and the con-
sumption building are not synchronized to efficiently



manage it. So far, the researchers apply several techniques to
manage and synchronize the energy usage through its future
forecasting. However, their improper spatial and temporal
structure has made it more difficult to build the most robust
forecasting model. The existing state of the arts have pre-
sented several sets of procedure but failed due to misleading
features tools, metering procedure, etc. Based on these as-
sumptions, we propose a proficient deep learning-assisted
intelligent PLF method that provides a useful way to
overcome the energy dissipation. The proposed method
reduces the error rates with a high margin and obtains the
most promising results. The visuals of each steps performed
in the proposed method are presented in Figure 2, while the
details are covered in the following sections.

3.1. Power Data Acquisition. This section delivers a detailed
explanation of data gathering from its sources such as meter
and installed sensors, and the data preprocessing is explained.
To collect the data, wires across the building floors are ar-
ticulated into a single edge with the main board and the meter
with few sensors is installed to read and measure the energy
consumed over the building setup where the data are nor-
mally collected with minute resolutions. Usually, the data
collected through sensors and meter are greatly affected by the
climate condition, occupant’s behavior, redundancy, wire
break or short circuit that brings abnormalities, outlier, and
noise in the variable values. Tackling this issue is necessary for
accurate forecasting; therefore, we refine the data prior to
actual processing. For cleansing the data, we apply several
smoothing filters such as LOESS or LOWESS that are used by
numerous researchers [35, 36] for reasonable results. We
remove the noise and considered the previous values on that
position and remove data redundancy. In addition, we found
the data attributes with different scale that are handled by
applying the normalization.

3.2. Sequence Modeling via Long Short-Term Memory.
Long-term dependencies with distant characteristics are not
sufficiently captured through RNN because of the vanishing
gradient effect. Therefore, the gating mechanisms are in-
troduced where the classical activation is replaced. To model
the sequential data, a type of recurrent neural networks
(RNNs) such as LSTM has been proven to be the most stable
and powerful network which understands and deals the
long-range information [37]. LSTM has the capability of
learning the long-term sequence information. The most
interesting fact about the LSTM is their memory cells C, that
significantly act as accumulator for the state information.
These cells are accessed, controlled, and written through
numerous self-parameterized gates. The cells are accumu-
lated by keeping the input gates active I, with the arrival of a
new information as an input. The controlled information
flow inside the cell allows the network to memorize long-
term dependencies. Similarly, if the forget gate F, is active,
the status of past cell C,_; will be forgotten. Next, the latest
information that will be controlled by the final gate F, is
managed by an output gate O,. The most significant and vital
role of the memory cells and gates for the information flow is
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such that the gradient will be trapped into the cell which is
known to be constant error [38], is prevented from van-
ishing, and acts as a critical problem for vanilla RNN model
[38]. The fully connected LSTM is considered to be LSTM
multivariate version where the input, output, and forget
gates are briefly given in Figure 3(a). The sigmoid activation
determines what kind of information needs to be updated, as
certain information might be ignored. The mechanism
followed in an LSTM is defined by equations (1) to (6).

iy =0, (Wi x, +W;xh,_, +b,), (1)
fi=0,(Wysx, +Wxh_ +b), (2)
0,=0,(W,*x,+Wyxh_; +b,), (3)
C,=0. (W, xx,+W_xh_, +b,), (4)
¢, =firc +i xCp, (5)
h, =0, x0.(c,), (6)

where i,, f,, and o, are the input, forget, and output gate,
respectively, while ¢, and h, are the cell state and hidden
state, respectively. Similarly, C, is the vector value con-
structed for tanh at f represented by o, while o, is sigmoid
function. x is the elementwise multiplication. W ¢, W, and
W,, are weight matrices representing forget, input, and

output cell, respectively.

3.3. ConvLSTM Network. Input data that have to be col-
lected in a longer time horizon can be reduced and filtered
based on the convolution operations incorporated in LSTM
networks or LSTM cell directly. Such approaches intend in
the improvement of prediction accuracy of long-term se-
quence based on additional input data processing through
projecting the data into lower dimensional space. Ap-
proaches to incorporate the convolution operations in
LSTM are present in [39]. In the previous cases, the network
is capable to model locally distributed relations and extract
the corresponding features. LSTM, on the other hand, is
useful to learn the temporal dependencies, so that the
composition of the networks in the stacked form shows the
best prediction results. Using convolutional LSTM, features
can capture long-term horizon which makes them able of
incorporating a larger amount of past information in the
prediction. Fully connected LSTM is powerful in handling
the temporal correlation and face redundancy in the spatial
data. Tackling such an issue needs an extension of an entirely
connected LSTM that has a convolutional’ structure with
both input and state-to-state transition. To form an
encoding forecasting mechanism, multiple ConvLSTM
layers are stacked together which not only build the model
for precipitation forecasting but also build the model for
spatiotemporal sequencing forecasting procedure. In fully
connected LSTM, the inputs are unfolded into 1D vectors
before actual processing to handle the spatiotemporal data;
as result of this, the important information is lost. This
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FIGURE 2: Overview of the proposed framework. Step 1: Data acquisition from sensors and the smart meters that contain the user behavior
for data management and response to energy usage. Also, its refinement is performed to stabilize and remove the user behavior. Step 2:
Detailed feature extraction from the energy data through ConvLSTM. Step 3: The prediction of future energy consumption based on the

input data resolution.

problem can be overcome such that all the inputs into
ConvLSTM are likely to be 3D tensors where the last di-
mensions are spatial row and column. ConvLSTM defines
next state of some cells into a grid through inputs and
previous states around its neighbor sides. This strategy can
be achieved through convolution operation from the input-
to-state and also state-to-state transitions. Furthermore, the
deep mechanism along with the key equations of the process
is given in equations (7) to (11).

iy = 0(Wyxx, + Wy ) + W0C,_, + b)), (7)

fo=o(Wepxx + Wyp s Ty + WepoC, +by),  (8)

C, =F,0C,_; +i,0 tanh(W, x X, + W, .« Z,_, + be),

(9)
0,=0(Wy, xx, + Wy, « Z,_, + W,0C, +b,), (10)
H, = 0,0 tanh(C,). (11)

Similar to simple LSTM, the ConvLSTM can also be
adopted which is the building block for the complex type
of structure. The structure presented in Figure 3(c) solves
the forecasting problem of our spatiotemporal sequence.
The structure of this building block consists of an
encoding and a forecasting network. To form such a
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FIGURE 3: Internal structure of each sequential network. (a) LSTM has three main gates such as input, output, and forget. (b) GRU has two
gates including reset and update. (c) Internal mechanism of ConvLSTM.

network, multiple ConvLSTM layers are stacked together,
where the states in forecasting network are concatenated
and fed into a 1 x 1 convolutional layer to generate final
forecasting. This strategy is performed, as the input has
the same dimensionality to target the prediction. This
structure is considered with a similar viewpoint as in [37].
The encoding LSTM compresses the given sequence into
state of hidden tensor where the forecasting LSTM un-
folds the hidden state that gives the final prediction. The
structure of this network is similar to LSTM as a future
prediction model [40], but the input and output
elements in our model are 3D tensors where the spatial
information is preserved. As multiple ConvLSTM layers
are stacked together, they give a strong representation and
empower to give a fine prediction for a complex sequence
such as PLF.

3.4. Deep GRU Network. GRU is an improved form of RNN
which uses the time-series data sample for forecasting
purposes. Traditional neural networks are characterized via
the interconnection established between the input towards
the hidden layer and then towards the input layer where a
direct node in every layer is connected [41]. Consequently,

RNN memorizes the previously passed information that is
applied to compute and find the current output. Several
improvements are made in LSTM that solve the common
errors and the shortcomings in the long-term sequential
application of RNN. For instance, LSTM holds three gates
such as input, output, and forget. Here, the forget gate is
used to control the information and its rate of forgotten,
while the output gate is applied to control the status of
current unit condition that is strained out. The GRU
overcomes the deficiencies present in RNN which is unable
to handle the long-term dependencies in an effective
manner; however, GRU on the other hand, makes the
structure simpler and brings efficiency by preserving the
effectiveness of LSTM [42]. The GRU network is well vi-
sualized in Figure 3(b). The GRU contains two gate
functions, namely update and reset. The update gate
function is to control the state information of the previous
moment that is brought to current state (rate of updating
state information). The greater the value of the update
function, the more information will be brought in the
previous moment. Similarly, the reset gate controls to avoid
the information obtained from the previous moment (rate
of forgetting information). The minute value of the reset
gate indicates more information will be forgotten.
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Subsequently, the unit state and output are combined into a
single state H where the input is X,, the state previously
passed by the hidden layer is H,_;, and similarly the in-
formation from the previous node is included via X, and
H,_;. The GRU gets the output from the hidden state with
the control gate while the information is passed into the
next hidden layer. Two gates with states are obtained that
are based on information Z, and R,, which are given in the
following equations.

b = f(wp [xe by ] + bp)’ (12)

a = f(wq [x0 ey ] + bq)’ (13)

where W, and W, are weights of neurons, f shows the
sigmoid function controlling the values between 1 and 0,
which are used to obtain the gating signal. After getting the
signal, first, the reset gate is used and then the data are
obtained from the reset function that is combined with tanh
activation function that give ~ H,.

4. Experimental Results

This section discusses the experiments performed over the
competitive energy dataset such as the household power
dataset [43]. We comprehensively inspect the energy con-
sumption and discuss the details of the dataset in the
subsequent sections. Similarly, we visualize the results of
energy consumption and its forecasting. The comparison of
forecasting results on the existing dataset with state of the art
is also covered which prove the effectiveness of the proposed
method.

4.1. Implementation Settings. We verify and analyze the
results of the proposed method using different kinds of
experiments to check and evaluate the method’s perfor-
mance. The proposed method is implemented in Python
(Version 3.5) with Keras (Deep Learning Framework)
supported by the TensorFlow at the backend and ADAM-
prop optimizer is used. Next, as we are dealing with re-
gression problem, we apply four basic evaluation metrics
such as MSE, RMSE, mean absolute error (MAE), and mean
absolute percentage error (MAPE). These metrics are
abundantly used for performance evaluation in regression
problems throughout the energy forecasting-related litera-
ture. MSE is the basic error metric used in the PLF, re-
newable energy generation forecasting, weather prediction,
humidity, etc. The formulation of each metric is described
below:

Suppose y;” indicates the variable values for n number
of predictions for energy consumption and y; indicates
the observed values, so equations (14) to (16) show the
MSE, RMSE, and MAE formulation where the RMSE is
the square root of MSE values. Similarly, to measure the
performance of forecasting that compute the correctness
of the proposed method, MAPE is used, which gives the
absolute error in percentage and compute the mean of the
error and is given in equation 17.

n

1 -
MSE=- 3 (yi-y )" (14)

RMSE = VMSE = % Y iy ), (15)
1 & -
MAE = n Zb’i — i |’ (16)
MAPE = 100% Zly" b/l (17)
n i I Yi |

4.2. Dataset. Standard and publicly available dataset is used
to verify and evaluate the proposed method. The dataset is
publicly available at [43] and its further details are covered in
the following sections.

4.2.1. House Power Dataset. We evaluate and analyze the
proposed ConvLSTM-GRU network using several kinds of
experiments to gauge its performance on the household
power dataset [43] that is available on the UCI official (deep
learning) repository. This dataset is collected between 2006
and 2010—4 years of data. It contains 2075259 instances,
where 25979 instances contain missing values making 1.25%
of total data. Usually, the use of missing values creates
problems in incorrect forecasting of energy consumption.
Researchers use various techniques to overcome this
problem. To tackle this problem, we pass the data from the
refinement step that is previously explained in the proposed
method. Next, this dataset is covered with 1 minute’s time
horizons of electric power consumption over the building
located in France. In this dataset, the global active power
indicates the total power consumed by submetering 1, 2, and
3 over single minutes provided in watt-hours. Testing the
proposed method, we use different time steps that explain
the PLF for each time horizon. The variables used in this
dataset are given in Table 1 with their detailed remarks.
Furthermore, we provide the quantitative details of the
household power dataset in Table 2, where 11.12 is the
maximum value for active power given in kilowatts and
0.076 is the minimum value. If we analyze the attribute
values, the maximum energy is consumed over submetering
1 such as 88.000 that is dissipated over the daily usage
devices such as microwave oven, dishwasher, etc.

4.3. Result Analysis and Discussion. This section describes
the detailed experimental evaluation of the proposed
method on the household power dataset [43].

We perform an ablation study where each model is
implemented and trained on the given dataset to inspect the
performance of the proposed method. These models include
GRU and its variants such as encoder-decoder GRU (ED-
GRU) and CNN-GRU. Each deep learning network is
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TaBLE 1: Household power dataset [43] with its attribute description.
Given Given . _—
attributes symbol Used units Description
1 Date D Days/months/years 1~30/1~12/2006~2010
2 Timing T Hours/minutes/ 1~24/1~60/1~60.
seconds
3 Active power AP Kilowatts Total power consumed in each minute
4 Reactive power RP - Total reactive power consumed in each minute
5 Voltage Vv Volts Total voltage in each minute
6 Intensity I Ampere Current consumed in each minute.

7 Submetering-1 S(1) Watts per hour
8 Submetering-2 S(2) -
9 Submetering-3 S(3) -

Energy consumed for dishwasher and microwave oven.
Energy consumed in living room over washing machines, drier, and refrigerator
Energy consumed for air conditioner and water heater

TABLE 2: Detailed description of the household power dataset [43] with its attributes and quantitative analysis.

Attribute D AP RP \4 I S1 S2 S3
Average / 1.089 0.124 240.844 4.618 1.117 1.289 6.453
Min 16.12.2006 0.076 0 223.200 0.200 0 0 0
Max 26.11.2010 11.12 1.390 254.150 48.400 88.000 80.000 31.000
Std. Dev / 0.055 0.113 3.239 4.435 6.139 5.794 8.436

compared with the proposed method for every time horizon
such as minute, hour, day, and week. The deep learning
networks are trained up to 100 epochs. Originally, the data in
the household power dataset are given in minutes’ resolu-
tion. For experiments, we convert the data into hour, day,
and weekly horizons. After conversion, the number of in-
stances become smaller which can be easily identified from
the patterns given in Figure 4 showing the representation of
the data.

4.3.1. Performance Evaluation of the GRU Network.
Conducting the experiments, the deep GRU is initially
evaluated to check its performance over the household
power dataset [43]. Basically, the GRU network tries to
solve the vanishing gradient problem which is originated
with the standard RNN. This network is also considered to
be a variation of LSTM because both have similarities and
sometimes produce equally excellent results. A simple GRU
network uses update and reset gates which are basically two
vectors that control the information which need to be
passed as an input. Its internal details are covered in the
previous section while its internal structure is given in
Figure 3(b).

For experiments, two GRU layers are stacked together
followed by the dense layer. The total obtained parameters
for this network are 382607. Furthermore, the values ob-
tained for MSE, RMSE, MAE, and MAPE for GRU on
minutes’ horizons are 0.3569, 0.5974, 0.4012, and 0.4083,
respectively. The other error values obtained for the
household power dataset on each time horizon such as
minute, hour, day, and weekly are provided in Table 3. The
forecasting obtained for energy consumption over minute
and hour time horizons using the GRU network is graph-
ically presented in Figure 5, while the daily and weekly based
results are given in Figure 6.

4.3.2. Performance Evaluation of the ED-GRU Network.
Subsequently, we also use the ED-GRU network to identify
its results and performance in the forecasting of energy
consumption over the buildings. Setting the internal
structure of ED-GRU, the encoder is set to stack several
layers of GRU in such a way that each unit accepts a single
input element sequence and collects the most important
information from it and forward propagate it. Internally, the
encoder vector is produced from the encoder which is
known to be final hidden state. This state encapsulates the
information of all the input elements to make an accurate
load forecasting of power energy. It acts to be the hidden
state of the model decoder part. Next, the decoder stacks
several units which predict the output y at time ¢. Each of the
decoder unit accepts the hidden state from the previous and
produce its own hidden state. The hidden state h; can be
calculated using the formula given in (18) while the output y,
at time t is calculated through the formula given in (19). The
layered GRU is followed by the time distributed layer. The
number of obtained parameters for ED-GRU is 154,051. The
values obtained on each time resolution for the household
power dataset are given in Table 3. Next, the forecasting for
the energy consumed considering minute and hour reso-
lution is visually presented in Figure 7 while the daily and
weekly based forecasting is given in Figure 8. The MSE
obtained for ED-GRU on the household power dataset
considering minute horizon is 0.3246 while RMSE, MAE,
and MAPE are 0.5697, 0.3635, and 0.3485, respectively.
Similarly, its performance is somehow improved on hour
resolution with the least MSE which is 0.3134. Similar to its
performance on the household power dataset, its perfor-
mance becomes better when daily resolution is considered,
where the value becomes 0.3054 while the RMSE, MAE, and
MAPE are 0.5526, 0.3519, and 0.3401, respectively. Hence,
this analysis clearly exhibits the good performance of ED-
GRU after CNN-GRU and the proposed method.
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FIGURE 4: Data representation of the publicly available household power dataset [43] with different horizons. (a) Minutely data. (b) Hourly
data. (c) Daily data. (d) Weekly data.

TaBLE 3: Performance results of the proposed method and its comparison with other competitive deep learning models on the household
power dataset for all time horizons such as minute, hour, daily, and week.

Minutely
Methods
MSE RMSE MAE MAPE
GRU 0.3569 0.5974 0.4012 0.4083
ED-GRU 0.3246 0.5697 0.3635 0.3485
CNN-GRU 0.3215 0.5670 0.3618 0.3064
Proposed method 0.3101 0.5568 0.3467 0.2902
Hourly
GRU 0.3251 0.5701 0.3814 0.3962
ED-GRU 0.3134 0.5598 0.3585 0.3415
CNN-GRU 0.2897 0.5382 0.3607 0.3042
Proposed method 0.2384 0.4882 0.3435 0.2897
Daily
GRU 0.3099 0.5566 0.3691 0.3586
ED-GRU 0.3054 0.5526 0.3519 0.3401
CNN-GRU 0.2821 0.5311 0.3524 0.3021
Proposed method 0.2315 0.4811 0.3419 0.2879
Weekly
GRU 0.3198 0.5655 0.3796 0.3697
ED-GRU 0.3157 0.5618 0.3627 0.3591
CNN-GRU 0.2981 0.5459 0.3619 0.3032
Proposed method 0.2497 0.4996 0.3517 0.2882
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FIGURE 5: Visual representation of GRU-based forecasting results
considering minute and hour horizons on the household power
dataset.

hs, = fF(W"™hs, ),

(18)
¥, = software (W’hs,).

4.3.3. Performance Evaluation of the CNN-GRU Network.
Recently, CNNs have shown the most promising results in
different fields such as computer vision, time-series analysis,
energy informatics, and energy monitoring system. To
evaluate and analyze its performance, we incorporate its
several layers for PLF problem. We combine it as hybrid
connection with deep GRU and add three convolutional
layers followed by the max pooling and flatten layer. The
features obtained from these layers are given to deep GRU
where two GRU layers are connected and followed by the
time distributed layer. Furthermore, the error values ob-
tained for each time horizon on the CNN-GRU network for
the household power dataset are given in Table 3. Moreover,
the forecasting of energy consumption on this network
considering minute and hour resolution is graphically il-
lustrated in Figure 9, while the daily and weekly based
consumption forecasting is given in Figure 10. The CNN-
GRU network has better performance than other deep
learning models for consumption forecasting in terms of
MAPE and MAE metrics.

Furthermore, CNN-GRU has better performance over
all the methods and become a runner up. CNN-GRU shows
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FIGURE 6: Visual representation of GRU-based forecasting results
considering daily and weekly horizons on the household power
dataset.

the same response as ED-GRU in terms of its performance
for resolution. For instance, CNN-GRU achieves an MSE of
0.3215 value considering the minute horizon; however, its
results become better in hour resolution where MSE ob-
tained is 0.2897. The value of RMSE, MAE, and MAPE
obtained for CNN-GRU considering minutes resolution is
0.5670, 0.3618, and 0.3964, respectively. After deep analysis,
we realize that CNN-GRU reflects its better results on the
household power dataset rather than in terms of considering
the minute resolution. In the final phase, we pose the results
obtained for the proposed ConvLSTM with the GRU net-
work. The values obtained by the proposed method on the
household power dataset for metrics of MSE, RMSE, MAE,
and MAPE for the minute horizon are 0.3101, 0.5568, 0.3467,
and 0.2902, respectively, and are given in Table 3. Next, the
visual representation of forecasting results considering
minute and hour resolution is given in Figure 11, while the
daily and weekly based resolution results are depicted in
Figure 12.

5. Comparison with State of the Art

In this section, we analyze and compare the results of the
proposed method with existing competitive state of the art in
terms of performance considering the basic metric using the
household power dataset. For a fair comparison, we consider
and evaluate the minute horizon of the proposed method as
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power dataset.
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F1GuRre 11: Forecasting results obtained using the proposed method
for the household power dataset considering minute and hour time
horizons.

considered by other works. Similarly, we consider the same
metrics for comparison. A method presented in [47] pro-
posed a three-stage hybrid network of CNN with a multi-
layer BLSTM network to forecast the power load. They first
practiced LSTM and then BLSTM to assess their perfor-
mance by obtaining 0.3446 and 0.3295 MSE values, re-
spectively. However, their proposed method’s outcomes
obtained for MSE, RMSE, MAE, and MAPE on this method
are 0.3193, 0.5650, 0.3469, and 0.2910, respectively. Next,
Mocanu et al. [44] investigated two main models to estimate
the energy consumption in buildings such as the conditional
restricted Boltzmann machine and the factored conditional
restricted Boltzmann machine. They further considered the
support vector machine and RNN to investigate their
method. Their method used a single layer of factored
conditional restricted Boltzmann machine to fit the needs
for representing different useful parameters. They used
RMSE as an evaluation metric and obtained 0.6663 value for
it. They also computed correlation coefficient (R) and
p-value achieving 0.4552 and 0.0070, respectively. Fur-
thermore, Kim and Cho [45] proposed a deep learning-
based method to forecast the energy demand. For this
purpose, they used a state explainable autoencoder-based
model and obtained 0.3840 value for the RMSE metric. A
research presented in [46] used the hybrid approach of CNN
with LSTM and reported 0.3738, 0.6114, 0.3493, and 0.3484
values for MSE, RMSE, MAE, and MAPE, respectively. The
comparative results are summarized in Table 4.
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FIGURE 12: Forecasting results obtained through the proposed
method for the household power dataset over day and week time
horizons.

TaBLE 4: Detailed comparative analysis with competitive state of
the arts with the proposed method on the household power dataset.

Evaluation metrics

Techniques

MSE RMSE MAE MAPE
FCBRM [44] — 0.6663 — —
BPTT [45] 0.3840 0.6196 0.3953 —
CNN-LSTM [46] 0.3738 0.6114 0.3493 0.3484
CNN-M-BLSTM [47] 0.3193 0.5650 0.3469 0.2910
Proposed method 0.3101  0.5568  0.3467  0.2902

Primarily, the aforementioned methods apply the
traditional way of collecting the feature information from
the sequence, which are old machine learning practices
yielding lower correctness in prediction problem. Simi-
larly, in the case of deep learning usage by these methods,
their networks apply complex architectures where the
training consumes more time. Next, if overview, the PLF
methods are heading towards convolutional networks and
sequential learning mechanisms such as RNN, LSTM, or
BLSTM, which are the recent state-of-the-art learning
methods [48]. These methods highly rely on the input
model parameters and mostly hunt towards error re-
duction for the precise prediction. After thorough ex-
ploration, these methods have high error rates
considering the minute horizon and have complex ar-
chitecture. We improved our method by reducing the
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error to 0.3101 while the runner up method is our pre-
viously published work with an error rate of 0.3193. The
comparison of our method with other PLF methods is
visually presented in Figure 13.

6. Conclusions

Over the decades, the energy demand is growing
throughout the world due to an increase in technology,
industrial machinery, and population. This results in the
wastage of a large amount of energy due to a lack of ef-
ficient usage and its storage from the grid or renewable
energy resources. Therefore, energy generation companies
and smart grid authorities are investigating new ways to
tackle this issue. To this end, we proposed an intelligent
deep learning-based architecture for energy to boost the
PLF for the proper establishment of energy infrastructure.
To carry out, initially, the data collected through various
installed sensors and meters are fed into the acquisition
layer for refinement purposes. Next, the refined data are
passed into the ConvLSTM network to extract the deep
features and generate the final feature map. Further, the
feature map is passed into deep GRU to learn the series
which gives us final forecasting of the energy. In addition,
we proved that the proposed method outperforms the
existing state of the art using different error metrics that
are applied for regression model evaluation. The proposed
method is verified and tested on a publicly available
household power dataset.

In the future, we intend to enhance the method by the
involvement of the Internet of things (IoT) [49], that is the
deployment over resource-constrained devices, which will
reduce the complexity in terms of computational power and
resources as performed in [50]. This will help to reduce the
bandwidth and easethe transmission of information. Fur-
thermore, we aim to include the forecasting for years and
decade-wise consumption and generation of power energy
by considering various characteristics. The characteristic
involves weather condition, energy consumption over in-
dustries, public transport, and occupants’ behavior in re-
sponse to these disruptions. We will incorporate these kinds
of datasets to further confirm and verify their impact on load
forecasting.
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