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ABSTRACT

Purpose: Triple-negative breast cancer (TNBC) does not have defined therapeutic targets 
and is currently treated with chemotherapy only. Kinase dysregulation triggers cancer cell 
proliferation and metastasis and is a crucial therapeutic target for cancer. In this study, 
targeted kinome sequencing of TNBC tumors was performed to assess the association 
between kinome gene alterations and disease outcomes in TNBC.
Methods: A kinome gene panel consisting of 612 genes was used for the targeted sequencing 
of 166 TNBC samples and matched normal tissues. Analyses of the significantly mutated 
genes were performed. Genomic differences between Asian and non-Asian patients with 
TNBC were evaluated using two Asian TNBC datasets (from Seoul National University 
Hospital [SNUH] and Fudan University Shanghai Cancer Center [FUSCC]) and three non-
Asian TNBC datasets (The Cancer Genome Atlas [TCGA], METABRIC, and Gustave Roussy). 
The prognostic value of kinome gene mutations was evaluated using tumor mutational 
burden (TMB) and oncogenic pathway analyses. Mutational profiles from the TCGA were 
used for validation.
Results: The significantly mutated genes included TP53 (60% of patients), PIK3CA (21%), 
BRCA2 (8%), and ATM (8%). Compared with data from non-Asian public databases, the 
mutation rates of PIK3CA p.H1047R/Q were significantly higher in the SNUH cohort (p 
= 0.003, 0.048, and 0.032, respectively). This was verified using the FUSCC dataset (p = 
0.003, 0.078, and 0.05, respectively). The TMB-high group showed a trend toward longer 
progression-free survival in our cohort and the TCGA TNBC cohort (p = 0.041 and 0.195, 
respectively). Kinome gene alterations in the Wnt pathway in patients with TNBC were 
associated with poor survival in both datasets (p = 0.002 and 0.003, respectively).
Conclusion: Comprehensive analyses of kinome gene alterations in TNBC revealed genomic 
alterations that offer therapeutic targets and should help identify high-risk patients more 
precisely in future studies.
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INTRODUCTION

Triple-negative breast cancer (TNBC) is a breast cancer subtype characterized by a lack of 
estrogen and progesterone receptors and the absence of human epidermal growth factor 
receptor 2 (HER2) gene overexpression. TNBC accounts for 15%–20% of all breast cancers and 
is characterized by its aggressiveness, earlier age of onset, and poor clinical outcomes compared 
to other subtypes [1,2]. Many clinical trials investigating therapeutic targets in TNBC have 
shown disappointing results, so chemotherapy remains the only standard treatment option [3]. 
Only recently have immunotherapies achieved a modest increase in the pathological complete 
response rate when added to neoadjuvant chemotherapy for the treatment of early TNBC [4,5]. 
However, immunotherapies for TNBC still lack predictive biomarkers.

Kinome refers to a single superfamily of 518 protein kinases encoded in the human genome, 
constituting approximately 1.7% of all human genes [6]. Kinases play critical regulatory roles in 
cell growth, differentiation, migration, and survival. Dysregulation of kinase activity is a major 
mechanism underlying cancer progression and is an attractive therapeutic target [7]. Currently, 
approximately one-third of all protein targets being studied in the context of cancer treatment 
are kinase-based [8]. The development of HER2-targeted therapies has significantly improved 
the survival of patients with HER2-overexpressing breast cancer. Recently, a phosphoinositide 
3-kinase (PI3K) inhibitor was also shown to be effective in PIK3CA-mutated hormone receptor-
positive advanced breast cancer [9]. However, no targeted therapy using kinase inhibitors has 
been successful in patients with TNBC. Thus, there is an urgent need to identify kinase targets 
and predictors of kinase inhibitor sensitivity in these patients.

In this study, a comprehensive somatic genetic profiling of patients with TNBC was 
conducted using a target kinome sequencing panel. The genetic profile of the TNBC cohort 
was compared to that of The Cancer Genome Atlas (TCGA) TNBC cohort, and the prognostic 
value of kinome gene alterations was analyzed to identify potential therapeutic targets.

METHODS

Patients and samples
A total of 166 TNBC tissues, each with matched normal breast tissue or peripheral blood 
samples, were collected at Seoul National University Hospital (SNUH). Fresh frozen tissues and 
peripheral blood samples were obtained prospectively at the time of surgery between 1995 and 
2010 and were retrieved from the SNUH Laboratory of Breast Cancer Biology Biorepository. 
Formalin-fixed paraffin-embedded (FFPE) tumor samples were collected from surgical 
specimens obtained between 2003 and 2013 and stored at the SNUH Tumor Bank. There were 
41 fresh frozen tumor samples and 129 FFPE tumor samples collected. Clinicopathological data 
were acquired from the prospectively maintained online database of SNUH Breast Care Center. 
This study was approved by the Institutional Review Board of SNUH (No. 1210-072-434), and 
the requirement for informed consent was waived by the committee.

Kinome sequencing
Genomic DNA was extracted from the samples, and 1 μg of the genomic DNA extract was 
fragmented via nebulization. The fragmented DNA was repaired by ligating an ‘A’ to their 3′ 
ends, then Illumina adapters were ligated to the fragments. Each sample was size-selected, 
where products 350–400 base pairs long were preferred. The size-selected products were 
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polymerase chain reaction-amplified, and the final products were validated using an Agilent 
Bioanalyzer (2100 Bioanalyzer Instrument; Agilent Technologies, Santa Clara, USA). Target 
enrichment was performed using an Agilent SureSelect Human Kinome panel, which targets 
a large set of kinases and kinase-related genes for enrichment (612 genes, including more than 
500 kinases). Paired-end libraries were sequenced using an Illumina HiSeq 2000 instrument.

Sequence data processing and discovery of somatic variants
The paired-end reads of the tumor and normal matched FASTA files obtained from 
sequencing were mapped to the human genome reference 19 using BWA-MEM [10]. 
The aligned reads were sorted using SAM tools [11]. After duplicate reads of the aligned 
BAM files were marked and removed using Picard, the base quality of reads in the BAM 
files was recalibrated using the Genome Analysis Tool Kit (version 4.1.0.0) [12]. The 
Mutect2 best practice pipeline for somatic variants was used to identify candidate somatic 
mutations. Sequencing artifacts were removed by filtering out exome variants labeled as 
“bad_haplotype,” “chimeric_original_alignment,” “base_quality,” “duplicate_evidence,” 
“fragment_length,” “low_avg_alt_quality,” “mapping_quality,” “multiallelic,” “n_ratio,” 
“read_orientation_artifact,” “read_position,” “str_contraction,” “strand_artifact,” or “strict_
strand_bias” in the variant call format files.

Only loss-of-function variants (missense, nonsense, splice site variants, in-frame, frame 
insertion, and deletions) in the target regions of the Agilent SureSelect Human Kinome 
panel were chosen. Normal population database-based filtering was used to remove 
germline variants. If the population allele frequency of the variants was more than 1% in any 
subpopulation among the 1000 Genomes Project, Exome Aggregation Consortium, Korean 
Variant Archive, Genome Aggregation Database, and Korean Genome Project data, the 
variants were excluded as germline mutations [13-17]. The Korean 1,000 depression exome 
data was also used as a normal population panel, and the variants were filtered [18]. All 
quality-passed variants were annotated with Sorting Intolerant from Tolerant, Polylphen2, 
and Combined Annotation Dependent Depletion algorithms using ANNOVAR software to 
evaluate the pathogenicity of each variant [19-22].

Validation cohorts
The TCGAmc3 data of patients with TNBC were classified by TNBCtype and used to compare 
Asian and non-Asian TNBC patients [23,24]. These results were validated using whole-exome 
sequencing (WES) data of Chinese TNBC patients from the Fudan University Shanghai 
Cancer Center (FUSCC), French TNBC patients from Gustave Roussy, and METABRIC data 
[25-27]. The same bioinformatics pipeline for SNUH was applied to the Gustave Roussy 
dataset. However, Mutect2 without matched normal sample pipelines was used to generate 
somatic variant candidates for the FUSCC TNBC cohort because of the unavailability of 
matched normal samples. The sample germline variant filtering step used in this study 
cohort was also applied to the FUSCC somatic variant data. Somatic mutations in patients 
with TNBC from the METABRIC database were downloaded from cBioPortal [28]. These data 
also intersected with the same regions of the kinome panel.

Recurrent somatic mutations were selected from the COSMIC (v88) coding mutation 
database and were defined as somatic mutations that occur in breast cancer more than 100 
times compared to the normal population (Supplementary Table 1). These recurrent somatic 
mutations were generated using the original tumor-normal matched pipeline and Mutect2 
without normal sample pipelines in the TCGA and SNUH datasets to assess the confidence 

166

Targeted Kinome Sequencing of Triple-Negative Breast Cancer

https://doi.org/10.4048/jbc.2022.25.e15https://ejbc.kr



of Mutect2 without normal sample pipelines. Both datasets showed high agreement (Cohen’s 
kappa value 0.91 in TCGA and 0.96 in the SNUH dataset) for recurrent somatic mutations in 
breast cancer (Supplementary Figure 1A and B).

Analyses of significantly mutated genes
Significantly mutated genes were identified using two algorithms, MutSigCV and 
OncodriveCLUST [29,30]. MutSigCV identifies significantly mutated genes in cancer 
genomes using a model with mutational covariates. It identifies significantly mutated cancer 
genes by considering the sample-specific mutation frequencies, gene-specific mutation rates, 
expression levels, and replication times. In MutSigCV, a gene is considered a statistically 
significant mutated gene if its p-value is < 0.05 using GenePattern [31]. OncodriveCLUST 
was used to identify genes with a significant mutation bias within the protein sequence. If 
the Q-value obtained from OncodriveCLUST using maftools was < 0.05, it was considered 
statistically significant [32].

Tumor mutational burden
The tumor mutational burden (TMB) was calculated as the ratio of the number of somatic 
mutations to the total coding region within the kinome panel target region. UCSC RefSeq 
genes were used as the source of gene-coding region information. All coding sequences 
comprised multiple 3-mer sequences that began with the start codon (ATG) and ended with 
stop codons (TAA, TAG, or TGA) with unique mRNA (NM) IDs. The total number of coding 
regions in the target region was 1,528,857 bases. The mutation counts of each sample were 
divided by the total coding region, multiplied by megabases, and rounded up to the nearest 
integer for downstream analysis. The TMB-low and TMB-high groups were divided according 
to the median TMB of each cohort.

Oncogenic cell pathway analyses
Exploratory analyses of oncogenic cell pathways were performed for mutations in each 
kinome gene previously reported as gain-of-function or loss-of-function mutations [33]. The 
following ten canonical signaling pathways with frequent genetic alterations were analyzed: 
cell cycle, Hippo, myc, Notch, oxidative stress response/nuclear factor erythroid 2-related 
factor 2, PI3K, receptor tyrosine kinase/RAS/mitogen-activated protein kinase, transforming 
growth factor-beta, p53, and β-catenin (encoded by CTNNB1)/Wnt signaling. Detailed gene 
lists are provided in Supplementary Table 2.

Statistical analyses
Variant- and gene-wise comparisons were performed using Fisher’s exact test to compare 
mutation frequencies between the Asian and non-Asian TNBC cohorts. Progression-free 
survival was defined as the time from the date of diagnosis to the date of local recurrence, 
distant metastasis, diagnosis of a new primary tumor, death from any cause, or the last 
outpatient follow-up. Survival curves were drawn using the Kaplan–Meier method, and the 
log-rank test was used to assess survival differences. Cox proportional hazards regression 
models were used for multivariate survival analyses, adjusted for age at diagnosis and tumor 
stage. All statistical tests were performed using R software (R Foundation for Statistical 
Computing, Vienna, Austria) [32].
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RESULTS

Patient characteristics
The baseline characteristics of the TNBC SNUH cohort are shown in Table 1. The median 
patient age was 50 years (range, 28–83 years), and most patients had stage I or II disease 
(88%). All patients were Asian, compared to only 10 (5.9%) Asian patients included in the 
TCGA cohort. The median follow-up duration was 73.9 months (range, 3–257 months) in the 
SNUH cohort.

Somatic genetic alteration profiling
The median target region sequencing depth and median on-target rate of the preprocessed 
BAM files were 388.21x and 98.72%, respectively. Sequencing coverage and quality statistics 
are provided in the supplementary data. A total of 5,378 somatic single-nucleotide variants and 
54 insertions or deletions were identified in the kinome sequencing data of the SNUH TNBC 
cohort (n = 166). At least one genetic alteration was identified in 163 (98.2%) cases, with a 
median of five (range: 0–63) alterations detected per case. The most frequently altered genes 
were TP53 (60% of patients), followed by TTN (36%), PIK3CA (21%), OBSCN (15%), BRCA2 (8%), 
PRKDC (8%), and ATM (8%) (Figure 1). Among these genes, TP53, PIK3CA, BRCA2, and ATM 
were significantly mutated in the MutSigCV analysis (Supplementary Figure 2). PIK3CA was the 
only significant gene in the OncodriveCLUST analysis (q = 0.006). The differences in genomic 
features between the SNUH and TCGA non-Asian TNBC cohorts were also analyzed. The SNUH 
cohort had a significantly higher PIK3CA mutation rate than the TCGA cohort (21.7% vs. 11.2%; 
p = 0.01). Notably, the PIK3CA p.H1047R and p.H1047Q mutation rates were significantly higher 
in the SNUH cohort than in the TCGA cohort, according to Fisher’s exact test (13.3% vs. 3.3%; p 
= 0.003). To verify these results, the same analyses were performed on other Asian (FUSCC) and 
non-Asian (Gustave Roussy, METABRIC) TNBC datasets. The trends were consistent among all 
analyses (Supplementary Table 3 and Supplementary Figure 1C).
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Table 1. Baseline characteristics of the SNUH and TCGA TNBC cohorts
Variable SNUH TNBC (n = 166) TCGA TNBC (n = 169)
Age at diagnosis (yr)

Mean 49.4 55.13
Median (range) 50.0 (28–83) 54 (29–90)

Race, No. (%)
Asian 166 (100.0) 10 (5.9)
Black - 47 (27.8)
White - 106 (62.7)
NA - 6 (3.6)

Stage, No. (%)
1–2 147 (88.6) 140 (82.8)
3–4 19 (11.4) 25 (14.8)
NA - 4 (2.4)

Progression free interval, No. (%)
Event 34 (20.4) 28 (16.6)
Censored 132 (79.5) 141 (83.4)

Follow-up (days)
Mean 2,401 1,221
Median (range) 2,218 (92–7,707) 858 (0–7,777)

SNUH = Seoul National University Hospital; TNBC = triple-negative breast cancer; TCGA = The Cancer Genome 
Atlas; NA = not applicable.



TMB analysis
The TCGA TNBC dataset was analyzed to compare TMB values from the kinome target 
panel and whole-exome regions to determine whether the kinome TMB value could be used 
to accurately assess the whole-exome TMB. The TMB values calculated using these two 
methods were highly correlated (R = 0.91; Supplementary Figure 3). The median TMB was 
four mutations/Mb in both cohorts (Supplementary Figure 4). The SNUH and TCGA TNBC 
cohorts were then divided into two groups based on the median split of TMB values. In the 
TCGA cohort, the TMB-high group had a significantly better survival rate than the TMB-low 
group (p = 0.041; Figure 2). Similar results were found in the SNUH cohort, in which the 
TMB-high group showed a trend toward improved survival (p = 0.195). The median TMB was 
three mutations/Mb in the TCGA WES data, and a non-significant trend favoring improved 
survival in the TMB-high group was also demonstrated (p = 0.182, Supplementary Figure 5). 
The on-target rate and average depth on-target were both higher in the kinome sequencing 
dataset compared to the WES dataset resulting in lower median TMB in the TCGA WES data 
(Supplementary Figure 6).

Survival analyses of kinome genes in oncogenic pathways
Survival analysis of kinome genes in oncogenic pathways was performed to determine 
whether specific genetic alterations in TNBC confer a survival advantage. Gene mutations 
were grouped according to curated oncogenic pathways, as previously described [33]. 
Among the ten oncogenic pathways, patients with TNBC in the SNUH and TCGA cohorts 
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Figure 1. Mutational landscape of the SNUH and TCGA TNBC cohorts. 
SNUH = Seoul National University Hospital; TCGA = The Cancer Genome Atlas; TNBC = triple-negative breast cancer.



with alterations in the β-catenin/Wnt signaling pathways had poor survival (Figure 3). This 
association remained after correcting for age and stage according to the Cox proportional 
hazards model (Supplementary Figure 7). The kinome genes included in the Wnt pathway 
were CTNNB1, APC, and GSK3β; less than 10% of the TNBC cohorts had alterations in these 
genes (Supplementary Figure 8).

DISCUSSION

This study aimed to identify prognostic factors for TNBC that may serve as potential 
therapeutic targets. Here, we analyzed target kinome sequencing data from 166 TNBC cases 
and the TCGA TNBC dataset. Kinome sequencing was used to this end, considering the 
important regulatory role of kinomes in cancer initiation and progression and their potential 
therapeutic role.

The SNUH TNBC cohort had a higher PIK3CA mutation rate than several non-Asian TNBC 
cohorts in this study. This difference was also observed when comparing the FUSCC Chinese 
TNBC cohort with publicly available data from non-Asian TNBC cohorts. This observation 
was consistent with a recent report by Xiao et al. [34] on another Chinese breast cancer 
cohort, indicating that Asian patients with TNBC have a higher PIK3CA mutation rate than 
non-Asian patients with TNBC. A distinct characteristic of our study was the high rate of 
PIK3CA p.H1047R and p.H1047Q mutations in Asian patients with TNBC, which has not been 
reported in previous TNBC studies. Recently, alpelisib, a PI3K inhibitor, was approved by the 
United States Food and Drug Administration to treat patients with PIK3CA-mutated, hormone 
receptor-positive advanced breast cancers. Although the role of PI3K inhibitors in TNBC with 
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Figure 2. Kaplan–Meier curves of the TMB-low and TMB-high groups in the SNUH (left) and TCGA (right) cohorts. 
TMB = tumor mutational burden; SNUH = Seoul National University Hospital; TCGA = The Cancer Genome Atlas.



PIK3CA mutations is unknown, many clinical trials are ongoing to unravel this association 
[35]. The relatively high rate of PIK3CA mutations in the Asian population suggests that PI3K 
inhibitors may play an essential role in treating Asian patients with TNBC.

The current gold standard for TMB measurements is the application of WES data. In this 
study, a kinome panel consisting of 612 genes was used for TMB evaluation. The TCGA 
cohort was used to compare TMB values between the subset of genes in the kinome panel 
and the original whole-exome region showing strong correlation. Although WES data are the 
gold standard for TMB measurements, they are not widely utilized in routine clinical practice 
because of their high cost, time consumption, and labor-intensive processing. Currently, 
precision oncology platforms are primarily based on targeted gene panels. Similar to this 
study, analyses of several commercialized gene panels have revealed strong correlations 
between WES- and panel-based TMB quantification using TCGA datasets [36,37]. 
Additionally, the relationship between recurrence and TMB value was clearer for kinome-
based TMB values which could be related to a significantly higher on-target rate and average 
depth on-target in the kinome sequencing dataset. The predictive value of panel-based TMB 
value for immunotherapy response is demonstrated in other studies also [38].

This study suggests that TNBC patients with high TMB have a better likelihood of survival 
compared to patients with low TMB. TMB-low and TMB-high were defined in relation to 
the median TMB value (four mutations per Mb). Although the commonly used definition of 
high TMB is ≥ 10 mutations/Mb, this is a predictive value for immune checkpoint inhibitors 
originating from the KEYNOTE-158 trial [39]. In this study, we investigated the prognostic 
value of TMB unrelated to immunotherapy. The number of mutations that define TMB-high 
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SNUH = Seoul National University Hospital; TCGA = The Cancer Genome Atlas.



varies across cancer types, and previous studies have demonstrated that 10 mutations/Mb 
cannot be a universal definition for a prognostic/predictive factor in all cancer types [40,41].

TMB is closely related to neoantigen burden and T-cell infiltration, and is a marker of tumor 
antigenicity [38]. A high TMB is associated with high response rates to immunotherapy and is 
recognized as a predictive factor for immune checkpoint inhibitor efficacy in various cancers 
[38]. However, the prognostic role of TMB in TNBC has not been established. Garrido-Castro 
et al. [42] reported that a high TMB is significantly associated with improved overall survival 
in patients with de novo metastatic TNBC. In the GeparNuevo trial, patients who underwent 
neoadjuvant chemotherapy for early TNBC tumors had a significantly higher TMB value when 
pathologic complete response was achieved [43]. In contrast, the survival rate did not differ 
according to TMB values among patients with early breast cancer in the USO01062 study 
[44]. In general, cancers with a high TMB also have a higher tumor-infiltrating lymphocyte 
(TIL) count, and because of the prognostic role of TIL in TNBC, we can also assume that TMB 
has a prognostic role in breast cancer. However, this warrants further investigation.

Survival analyses of cancer signaling pathways revealed that Wnt pathway alterations were 
related to poor prognosis in TNBC. The kinome genes altered in the Wnt pathway include 
CTNNB1, APC, and GSK3β. Inactivating mutations in APC and GSK3β and activating mutations 
in β-catenin lead to the mutational inactivation of the β-catenin destruction complex, the 
archetypal mode of Wnt pathway activation in cancer. Several reports have demonstrated that 
Wnt pathway activation is associated with extensive metastasis and poor prognosis for TNBC 
[45-47]. Geyer and colleagues [47] suggested that β-catenin/Wnt pathway activation is not 
related to CTNNB1 mutations, as no exon 3 CTNNB1 mutations were observed in 19 invasive 
breast carcinoma samples with β-catenin nuclear expression. Alternatively, the β-catenin/
Wnt pathway may be activated by other exons of the CTNNB1 gene or other genes in the Wnt 
pathway, which could be the underlying mechanism of the Wnt pathway alteration observed 
in this study. Further investigation is needed using RNA or immunohistochemistry expression 
data to determine whether Wnt pathway alterations correlate with Wnt pathway activation. The 
poor outcomes of TNBC patients with Wnt pathway alterations in this study suggest that the 
Wnt pathway might be a valuable therapeutic target for TNBC. However, despite identifying 
numerous Wnt pathway inhibitors, no drugs have been approved to target this pathway. A major 
challenge when targeting the Wnt pathway is avoiding toxicity in healthy tissues, considering its 
role in maintaining stem cells and the regeneration of tissues and organs [48].

Targeted sequencing is more practical for clinical applications than whole-exome and 
genome sequencing. Screening a limited but clinically important gene set reduces the 
turnaround time and provides high-depth sequencing. It also helps reduce costs and 
minimize the complexity of data interpretation and reporting. However, targeted panels may 
not be suitable for research purposes because of their narrow coverage since only a small part 
of the human genome is covered.

Here, we only focused on small mutations using targeted sequencing. A limitation 
of this study was the absence of any analysis of copy number alterations, the tumor 
microenvironment, and the presence of fusion genes. We could not consider TNBC subtype 
classifications based on gene expression data because of a lack of RNA expression data in 
the SNUH cohort. In addition, the definition of high TMB is still not optimized and varies 
widely by tumor type and the number or type of selected genes [49]. Lastly, the low number 
of patients with altered Wnt pathway in the two cohorts limit the clinical significance of our 
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results and additional studies are needed to determine the prognostic value of Wnt pathway 
alterations in patients with TNBC.

In conclusion, we characterized the somatic mutation landscape in patients with early TNBC 
using a targeted kinome sequencing approach. We found a higher PIK3CA mutation rate in 
Asian patients than in non-Asian patients with TNBC, especially mutations in PIK3CA p.H1047R 
and p.H1047Q. In this study, TNBC patients with high TMB showed a trend toward better 
clinical outcomes, whereas Wnt pathway alterations were related to a poor survival rate. These 
genomic traits are associated with disease recurrence and can be considered therapeutic 
targets. Furthermore, they may also help identify high-risk patients in future studies.
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