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ABSTRACT Video corpus moment retrieval aims to localize temporal moments corresponding to textual
query in a large video corpus. Previous moment retrieval systems are largely grouped into two categories:
(1) anchor-based method which presets a set of video segment proposals (via sliding window) and predicts
proposal that best matches with the query, and (2) anchor-free method which directly predicts frame-level
start-end time of the moment related to the query (via regression). Both methods have their own inherent
weaknesses: (1) anchor-based method is vulnerable to heuristic rules of generating video proposals, which
causes restrictive moment prediction in variant length; and (2) anchor-free method, as is based on frame-
level interplay, suffers from insufficient understanding of contextual semantics from long and sequential
video. To overcome the aforementioned challenges, our proposed Cascaded Moment Proposal Network
incorporates the following two main properties: (1) Hierarchical Semantic Reasoning which provides
video understanding from anchor-free level to anchor-based level via building hierarchical video graph,
and (2) Cascaded Moment Proposal Generation which precisely performs moment retrieval via devising
cascaded multi-modal feature interaction among anchor-free and anchor-based video semantics. Extensive
experiments show state-of-the-art performance on three moment retrieval benchmarks (TVR, ActivityNet,
DiDeMo), while qualitative analysis shows improved interpretability. The code will be made publicly
available.

INDEX TERMS Video corpus moment retrieval, cascaded moment proposal, multi-modal interaction,
vision-language system.

I. INTRODUCTION
Comprehending visual context together with natural language
has been a desiderata in the vision-language research soci-
eties. Numerous respectful works have made great strides in
bridging computer vision and natural language processing
including video/image captioning [30], [34], video moment
retrieval [1], [8], video/image question answering [12],
[25]. Especially, recent success of video streaming services
(YouTube) has drowned interest in video search technologies
at fine-grained level. Accordingly, Video Corpus Moment
Retrieval (VCMR) [13] is a task to localize a moment in large
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video corpus, which includes two sub-tasks: (1) identifying
relevant video in multiple videos and (2) searching for a
specific moment in the identified video. To be concrete, the
training of VCMR is given a single video-query pair and
boundary label, so that system is trained to find the moment
related to the query in the video. In the inference, system is
given video corpus and query, where it is required to find
moment in the video corpus-level. In this respect, VCMR
perform a general format of single video moment retrieval.

In methodological aspect of moment retrieval, methods
are typically grouped into two categories: (1) anchor-based
method and (2) anchor-free method [16], [22], [36], [40]. The
anchor-based method [16], [22] follows intuitive solution that
first presets a set of video candidate proposals (via sliding
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FIGURE 1. Examples of anchor-based and anchor-free moment retrieval
system (best viewed in zoom).

window), and then performs classification for the propos-
als. Figure 1(a) depicts the concept of candidate proposal
generation using sliding windows of different lengths, where
the best proposal is selected that has the highest similarity
to the given query. This anchor-based method is capable of
understanding contextual semantics from long and sequential
video frames, but it suffers from structural boundary limi-
tation that the candidate proposals should be predefined in
some heuristic manner. On the other hand, the anchor-free
method [36], [40], has no burdens of generating predefined
temporal boundaries, as it directly predicts the start-end time
of moment pertinent to query. Figure 1(b) shows an example
of anchor-free method [36], where it regresses the start and
end time from the joint video-query embedding using multi-
layer perceptron (MLP). The regression can be free to the
preset boundary problem, but theMLP is easily overfitted and
hard to understand heterogeneous vision-language semantics,
so that the performance is still far from satisfactory.

As shown in figure 1(c), recent anchor-free method [40]
devises two dimensional moment score map, where one
dimension indicates start frame of a moment and the other
indicates end frame of amoment. To build this scoremap, sys-
tems predict frame-level start time probability and end time
probability, after then multiply the two probabilities to calcu-
late joint start-end probability in the format of 2D moment
score map. Therefore each element in the map contains
frame-level moment score corresponding to its start and end
frames. Although this 2Dmoment score map can leverage the
aforementioned preset boundary problem, still they confront
the inherent problem of anchor-free method, which is insuf-
ficient understanding of contextual semantics across the long
and sequential frames. This is because existing anchor-free
systems have utilized only frame-level video-query similar-
ities, so that they were not aided from context-level under-
standing with different lengths in video. Especially, in a
scene (drama, movie) based on multi-character interaction,
this contextual semantic understanding can be more crucial,
combined with auxiliary modalities such as subtitles and
sounds.

To overcome aforementioned challenges of existing meth-
ods, our proposed Cascaded Moment Proposal Network
(Cascaded MPN) incorporates following two main prop-
erties: (1) Hierarchical Semantic Reasoning (HSR) which

provides video contextual understanding from anchor-free
level to anchor-based level via building hierarchical video
graph, and (2) Cascaded Moment Proposal Generation
(Cascaded MPG) which precisely performs moment retrieval
via devising cascaded multi-modal feature interaction among
anchor-free and anchor-based video semantics. In overall
pipeline, the HSR provides anchor-based level and anchor-
free level semantics via building bipartite graph among video
and subtitles, and this multi-level (anchor-based, anchor-
free) semantics generates multi-level moment score maps
based on a similarity with given query. Finally, the Cas-
caded MPG associates the contextual meanings from each
level of moment score map in a recursive manner and pre-
dicts moment pertinent to the query. Cascaded MPN shows
effectiveness on three challenging benchmarks (i.e., TVR,
DiDeMo, and ActivityNet) and the code will be made pub-
licly available.

II. RELATED WORK
A. VIDEO MOMENT RETRIEVAL
Video moment retrieval (VMR) is a task of localizing a
moment pertinent to given natural language sentence. Gauged
from the remarkable advancements of natural language pro-
cessing [5], [23], VMR system has developed from localiz-
ing a temporal activity to a task that understands a natural
language query and retrieves the relevant moment [6], [33],
[35], [38]. Furthermore, improvements of video representa-
tion learning [3], [26] contribute to boosting performance
of retrieval system from video retrieval to moment retrieval.
The first attempts of retrieval [15], [24] were in temporal
activity localization, which aims to predict start-end time
of moment corresponding pre-defined actions. Henceforth,
a large number of advancements of natural language process-
ing bridges temporal activity localization to a language-based
moment retrieval. Gao et al. [8] first proposes video moment
retrieval, which localizes moments with a sentence describing
actions. Hendricks et al. [1] proposed VMRwith a simplified
format for clip-level video understanding. In the meantime,
Mithun et al. [21] proposed different type of retrieval sys-
tem that finds a video related to text in multiple videos,
which is called video retrieval. Recent efforts advance for-
ward to a general form of video moment retrieval. Lei and
Li et al. [13], [14] propose systems that perform moment
retrieval in a video corpus level, which incorporates video
retrieval and single videomoment retrieval. This video corpus
moment retrieval contains an insight that moment retrieval
systems should be operated on a general situation given mul-
tiple videos. Inspired by another step of generality, we strive
for enhanced interpretability in VCMR.

B. VIDEO PROPOSAL GENERATION
Video moment retrieval system estimates moments by pre-
dicting start-end time of the moments related to given
query. Current literature for predicting moments can be
largely grouped into two categories depending on the way
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FIGURE 2. Illustration of cascaded MPN which is composed of (1) Input Representation, (2) Anchor-based Semantic Reasoning,
(3) Anchor-free Semantic Reasoning and (4) Cascaded Moment Proposal Generation (best viewed in zoom).

of predicting the moments as like anchor-based methods
and anchor-free methods. Anchor-based methods facilitate
context-level video representation learning, which is suit-
able for learning sequential semantics in the video. Previous
works in anchor-based methods generate several proposals
with different sizes by sliding window and retrieve the most
pertinent one. Lin et al. [16] applied an algorithm consid-
ering exploration and exploitation based on reinforcement
learning to select top-K proposals. Ma et al. [19] proposes
surrogate proposal selection which reduces the redundant
proposals via selecting one surrogate from defined proposal
group. In the case of anchor-free methods, they are versatile
to predicting expected moments without temporal boundary
constraints. Yuan et al. [36] proposed Attention Based Loca-
tion Regression which regresses start-end points of moment
related to query via a series of multi-modal co-attentions.
Zhang et al. [40] designed two dimensional map with start
time and end time as axes, which covers diverse video
moments with different lengths. Xiao et al. [32] proposed
two-stage candidate proposal generating method, which pre-
pares the two-dimensional map as [40] and searches can-
didate moment proposals from the map. Wang et al. [31]
also proposed two-stage coarse-to-fine grained multi-modal
interaction between video and query. Although many novel
thoughts have been proposed as above, there are still room
for improvement in terms of converging both anchor-free and
anchor-based manners, where we made an effort to perform
moment retrieval in a fine-grained level in terms of integrat-
ing the beauty of these two methods.

III. METHOD
Cascaded MPN takes video and textual query as inputs and
produces a moment score map that includes scores in terms
of how similar each moment is to the query. The figure 2

presents overall pipeline of Cascaded MPN, where we define
anchor-based and anchor-free semantic features from Hierar-
chical Semantic Reasoning and explain how they are asso-
ciated to predict best-matched moment in Cascaded MPG.
In training, the system is given a single video-query pair and
trained to find the moment in the paired video. In inference,
it is required to find moment in a video corpus.

A. HIERARCHICAL SEMANTIC REASONING
1) INPUT REPRESENTATION
VCMR systems are given video, subtitles and single sentence
query as V = {vi}

Nv
i=1, S = {si}

Ns
i=1 and Q, where Nv and Ns is

the number of frames and subtitles in a single video. To reason
hierarchical semantics in anchor-based and anchor-free level,
we first define (1) anchor-free semantic features and construct
(2) anchor-based semantic features founded on the anchor-
free semantics.

2) ANCHOR-FREE SEMANTIC REASONING
As shown in Anchor-free Semantic Reasoning in figure 2,
video frames that share the same subtitle have common
contextual meaning from that subtitle. To give this common
meaning on video frames, we build a bipartite graph between
the shared frames and subtitle. To this, we reorganize the
video frames to be aligned with single subtitle si as V si =

{vj}
M
si
v

j=1 , where M
si
v is the number of frames including a sub-

title si and also define words in that subtitle si as W si =

{wj}
M
si
w

j=1 , where M
si
w is the number of words in the subtitle si.

The query Q is defined as d-dimensional sentence features
Eq ∈ Rd . The final video and subtitle features are embedded
into d-dimensional space as follows:

Esiv = LN(φv(V si )+ PE(V si )) ∈ RM
si
v ×d , (1)

Esiw = LN(φw(W si )+ PE(W si )) ∈ RM
si
w×d , (2)
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where φv and φw is d-dimensional embedder. LN is layer
normalization [2] and PE is the positional encoding [27].
The frame embedding Esiv and word embedding Esiw contain
common semantic of subtitle si and in order to hold this
semantic in each video feature, we formally construct video-
subtitle graph Gsi = (Hsi , E si ) by regarding Esiw and Esiv as
nodes group Hsi in Equation 3. For the edges E si of video-
subtitle graph, we design bipartite graph between the words
and frames.

Hsi = [Esiv || E
si
w] ∈ RM si×d , (3)

whereM si = M si
v +M

si
w is number of nodes in node groupHsi

and [·||·] denotes concatenation along with frame and word
axis. To help understanding, in the section of Anchor-free
Semantic Reasoning in figure 2, we depict diagram of bipar-
tite graph showing connectivity between nodes in the graph.
To associate these frames embedding with the words embed-
ding, we conduct multi-head graph attention [29]. In each
head, we use attention coefficient αkmn to give association
between any linked two nodes m and n within node group
Hsi , and k in αkmn means k-th head like below:

αkmn =
exp(LeakyReLU(w>k [W

kHsi
m||W kHsi

n ])∑
l∈Nm

exp(LeakyReLU(w>k [W
kHsi

m||W kHsi
l ]))

,

(4)

wk ∈ R2d is weight vector and W k
∈ Rd×d are shared

embedding. Hsi
m ∈ Rd is m-th node feature in Hsi and

Hsi
n ,Hsi

l follow the same meaning. Nm is the set of all nodes
linked to node m in the bipartite graph. All nodes are updated
with this attention coefficients αkmn and we define video-
subtitle features Zsi by averaging of this updated nodes fea-
tures. Here, we use video-subtitle, because frames and words
in one subtitle get the shared semantic by attention.We define
final anchor-free level semantic features by adding thisZsi to
originalHsi :

Zsi
m =

1
K

K∑
k

∑
n∈Nm

αkmnW
kHsi

n , (5)

Vsi = (Zsi +Hsi )[: M si
v ] ∈ RM

si
v ×d , (6)

where K is the number of attention heads. Here, we only used
video features in (Zsi + Hsi ) as Vsi , supposing that subtitle
semantics are involved in frames by video-subtitle features
Zsi , where [: i] is slicing operation along node-axis.

3) ANCHOR-BASED SEMANTIC REASONING
In the anchor-based semantic reasoning, we first collect all
the anchor-free level features V = {Vsi}

Ns
i=1 ∈ RNv×d and

uniformly divide V into N segments. From this segments,
we build N anchor-based semantics CN ∈ RN×d . In one
segment, we perform multi-head self-attention to V using
Transformer [28] and treat average of the segment along
frame-axis like below:

V[i× N : (i+ 1)N ] = Head(V[i× N : (i+ 1)N ]), (7)

FIGURE 3. Illustration of moment score map.

CNi =
1
N

(i+1)N∑
j=i×N

V j, (8)

where Head denotes multi head self-attention of the Trans-
former. The following Cascaded MPG operate with this
anchor-free semantic features V ∈ RNv×d and anchor-based
semantic features CN ∈ RN×d .

B. CASCADED MOMENT PROPOSAL GENERATION
Cascaded Moment Proposal Generation (Cascaded MPG)
is introduced to perform moment prediction considering
different-level (anchor-free, anchor-base) multi-modal inter-
action, where it takes inputs as these two semantics, and
produces a two-dimensional map containing query-moment
similarity score in figure 3(a), where one dimension repre-
sents start time of moment and the other dimension represents
end time. Casaceded MPG assumes a score map for frame-
wise moment retrieval as the same score maps in previous
works [13], [14], but also performs contextual reasoning asso-
ciated with anchor-based semantics. To this, Cascaded MPG
includes two main processes: (1) Conditional Moment Score
Map generation and (2) Sparsity Pooling, which contribute
to multi-modal feature interaction between anchor-based and
anchor-free semantics.

1) CONDITIONAL MOMENT SCORE MAP
Conditional Moment Score Map (CMSM) produces two-
dimensional moment score map via containing query-
moment similarity score in figure 3(a). To build CMSM,
we define conditional moment score map generator fcond by
multiplying start time probability of moment P(tst |v,q) ∈
RL×1 and conditional end time probability of moment
P(ted |Ist ; v,q) ∈ RL×L . Given d-dimensional video feature
v = [v1, . . . , vL] ∈ RL×d with the number of frames L and
sentence feature q ∈ Rd , the start time probability P(tst |v,q)
calculates the probability along the frame axis using video-
query similarities as:

P(tst |v,q) = Softm ax(Conv1Dst (vq)) ∈ RL×1, (9)

where the Conv1Dst and Conv1Ded below denote 1D convolution
layer embedding into start-end probabilities and tst , ted are
frame level start-end time. For the conditional end time proba-
bility, we first define conditional probabilityP(ted |ist ; v?,q?),
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FIGURE 4. Illustration of sparsity pooling process.

that one of the start-frame indices ist ∈ {0, 1, . . . ,L − 1}
is given as conditional prior. The v?,q? includes start time
information from [v||(ist/L)] ∈ RL×(d+1) and [q||(ist/L)] ∈
Rd+1, so that they are utilized for generating conditional end
time probability as follows:

v? = [v||(ist/L)]axis=1Wv ∈ RL×d (10)

q? = [q||(ist/L)]axis=0Wq ∈ Rd (11)

P(ted |ist ; v?,q?) = Softmax(Conv1Ded (v
?q?))> ∈ R1×L ,

(12)

where Wv, Wq ∈ R(d+1)×d are weight matrix and the oper-
ation [·||·]axis=n is concatenation along the axis n. We stack
all the P(ted |ist ; v,q) along the column axis like Equation 13
and build conditional end time probability P(ted |Ist ; v,q) ∈
RL×L . Finally, fcond (v,q) ∈ RL×L builds CMSM by multi-
plying start time and conditional end time probability, where
� is column wise and · is element wise multiplication:

P(ted |Ist ; v,q)

= {P(ted |0; v?,q?); · · · ;P(ted |(L − 1); v?,q?)} (13)

fcond (v,q)

= Um · (P(tst |v,q)� P(ted |Ist ; v,q)) ∈ RL×L , (14)

where, we give upper triangular mask Um ∈ RL×L com-
posed of 1 to remove the score in moments, where end-time
comes before start-time. Therefore, the anchor-free scoremap
fcond (V,Eq) and anchor-level score map fcond (CN ,Eq) in
figure 2 are defined by regarding video feature v as anchor-
free features V and anchor-based features CN .

2) SPARSITY POOLING
Sparsity pooling is introduced to mitigate redundantly over-
lapping moments of frame-level moment score map. The
Figure 3(b) shows moment score map in a 3-dimensional
view, the high overlapping candidate moments in the map
keep similar scores in local region of video, which loses the
chance of retrieval in various areas and degrades retrieval per-
formance. To resolve this, our proposed sparsity pooling h(x)
makes the distribution of score map to be sporadic, which
allows the retrieval systems to explore diverse moments in
the positions and lengths. In detail, the sparsity pooling h(x)
takes input of moment score map x ∈ RL×L and outputs of
the same score map but that holds sparsity in the distribution.
To this, we first build sparsity mask a ∈ RL×L in Figure 4,

which includes the following processes: (1) calculating 2D
max pooling outputs xN from original scoremap x with kernel
size of N × N and stride of N , (2) generating 2D upsampled
map x̃ by nearest neighbor upsampling up to the original size
of x and (3) finally, preparing sparsity mask from element-
wise dividing x by x̃. The aforementioned processes can be
described as follows:

xN = MaxPool2D(x) ∈ R
L
N ×

L
N (15)

x̃ = Upsample(xN ) ∈ RL×L (16)

a = x./x̃ (17)

h(x) = a · x ∈ RL×L , (18)

where ./ and · are element wise dividing and multiplication.
In Equation 15 and 16, the x̃ contains a local maximum score
of original score map x. In this process, sparsity pooling h(x)
maintains themaximum score in theN×N window and builds
sparse distribution within the windows.

3) CASCADED MOMENT PROPOSAL GENERATION
This section introduces cascaded moment proposal gener-
ation (Cascaded MPG) algorithm in detail. Based on the
anchor-free semanticV ∈ RNv×R and anchor-based semantic
CN ∈ RN×d , Cascaded MPG produces 2D moment score
map for moment prediction, where the algorithm relies on the
conditional moment score map generator fcond and sparsity
pooling h(x) in a recursive manner. Figure 5 summarizes the
pipeline of Cascaded MPG. In the first stage, fcond (V,Eq)
builds anchor-free moment score map M. The sparsity pool-
ing h(x) bridges to the next stage by performing sparsity
masking on the score map. At the last stage, fcond (CN ,Eq)
builds a anchor-based moment score map NN , after then the
map is up-sampled to the original anchor-free score map
and added to the output of the sparsity pooling. The whole
pipeline of Cascaded MPG is described in Algorithm 1.

Algorithm 1 Cascaded MPG
1: Input: conditional moment score map generator fcond ,

sparsity pooling h, anchor-based semantics C, anchor-
free semantics V , query Eq.

2: Output: 2D moment score mapM Initialize anchor-free
score mapM0 = fcond (V,Eq)

3: for i← 1 to T do
4: Perform sparsity pooing:Mi−1← h(Mi−1)
5: Update the number of anchors: N = 2i

6: Get anchor-level score map: NN
= fcond (CN ,Eq)

7: Update score map: Mi = σ (Mi−1 + Upsample(NN ))
(σ is sigmoid.)

8: end
9: Update outputM =MT

4) TRAINING
The anchor-free semantics V ∈ RNv×d and anchor-based
semantics C ∈ RN×d are trained under two types of loss
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FIGURE 5. Cascaded moment proposal generation.

as follows: (1) video-level loss; and (2) moment-level loss.
In video-level loss, we use hinge loss in terms of cosine
similarity with query feature Eq ∈ Rd like below:

LV
v = max[0,1c − p(s(V+,Eq))+ p(s(V−,Eq))], (19)

LC
v = max[0,1c − p(s(C+,Eq))+ p(s(C−,Eq))], (20)

where + is positive from video-query pair and − is negative
from other videos in a batch. p(·) is 1Dmax-pooling and s(·, ·)
is cosine similarity. 1c = 0.1 is a margin and we select sur-
rogate cosine similarity by max-pooling among anchor-based
and anchor-free semantics. In moment-level loss, we use
cross-entrophy loss CE in terms of ground-truth start-end
time (gst , ged ) and predicted start-end time probabilities as:

Lm = CE(gst ,P(tst |V,Eq))
+CE(ged ,P(ted |tst = gst ;V,Eq)), (21)

Lv = LV
v + LC

v (22)

L = αLv + βLm, (23)

Total lossL is definedwithLv andLm using hyperparameters
α and β.

IV. EXPERIMENTS
A. DATASETS
We validate our prospoed Cascaded MPN on three recent
benchmarks (TVR, DiDeMo, ActivityNet Captions) as fol-
lows: (1) TV show Retrieval (TVR) dataset [13] is con-
structed under 6 TV shows across 3 genres: medical dramas,
sitcoms and crime dramas. TVR contains 109K queries from
21.8K videos with subtitles and each video is about multi
character interactions with 60-90 seconds in length. For the
fair comparison [13], [14], [37], We also split TVR into
80% train, 10% val, 5% test-private, 5% test-public. The
test-public is prepared for official leaderboard. (2) The Dis-
tinct Describable Moments (DiDeMo) dataset [1] covers over
10,000 unedited, personal videos in diverse scenarios with
pairs of trimmed video segments and referring expressions.
DiDeMo is split into about 80% train, 10% val, and 10% test,
where each video is pruned up to maximum of 30 seconds.

To relieve the complexity, all videos are uniformly divided
into 5-second segments, so that labels are of 21 possible
moments from a single video. (3) ActivityNet Captions [11]
contains 20k videos with 100k temporal descriptions. The
average length of the video is about 117 seconds, and the
queries are about 14.8 words. 10,009 videos are available for
training and 4,917 for validation (val_1). We evaluate models
on the val_1 split.

B. EXPERIMENTAL DETAILS
1) EVALUATION METRIC
For the evaluation of VCMR, prediction is correct if: (1) a
predicted video matches the ground-truth video; and (2) the
predicted moment has high overlap with the ground-truth
moment. Average recall at K (R@K) over all queries is used
as the evaluation metric, where temporal Intersection over
Union (tIoU) is used to measure the overlap between the
predicted moment and the ground-truth. We first predict top-
100 videos from video corpus by measuring p(s(V,Eq)) in
Equation 19 as and Cascade MPG localizes the best matched
moment among the videos.

2) TRAINING DETAILS
We used same video features with [14] using SlowFast [7]
pre-trained on Kinetics [10] and ResNet-101 [9] pre-trained
on ImageNet [4]. The text features are contextualized token
features from pre-trained on RoBERTa [17]. Our model is
trained on NVIDIA Quadro RTX 8000 (48GB of memory)
GPU. The dimensoin of hidden layer is d = 768 and the
number of attention heads in hierarchical semantic reasoning
is K = 8. We use AdamW optimizer [18] with a learning rate
of 3e−5 weight decay of 0.01 to train the model. The training
hyperparameters in Equation 23 are α = 8 and β = 0.01.

C. BENCHMARKING RESULTS
Table 1 and Table 2 summarize the experimental results
on TVR, DiDeMo and ActivityNet comparing best per-
formed methods, including CAL, XML, HERO, HAMMER,
ReLoCLNet. Table 1 presents experimental results from
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TABLE 1. Performance comparisons for VCMR on TVR (test-public), ActivityNet and DiDeMo. ?: reconstruction-based results, †: without pre-training.

TABLE 2. Performance comparisons for VCMR with large data pre-training (HowTo100M) on TVR (test-public) and two sub-tasks: Single video moment
retrieval (SVMR?) and video retrieval (VR?) on TVR (validation). ?: without pre-training.

TABLE 3. Ablation study on model variants of cascaded MPN on TVR
(validation). (SP: sparsity poolng, AFr: anchor-free semantic reasoning,
ABr: anchor-based semantic reasoning, CMSM: Conditional moment score
map).

scratch on TVR and ActivityNet. The Cascaded MPN con-
sistently outperforms the runner models without pre-training.
As the subtitles are unavailable in the ActivityNet and
DiDeMo, we utilize video features from video encoder
instead of anchor-free semantic features. To the further exper-
iment of DiDeMo, we complement the subtitles with the
auxiliary features using Audio Speech Recognition (ASR)
from [14], which makes anchor-free semantics available
and gives performance gain up to 3.31 in the measure of
tIoU=0.7,R@1 on DiDeMo. As reported in [14], the previous
results from DiDeMo and TVR are also conducted under pre-
training with large-scale dataset HowTo100M [20]. For the
fair comparison, we also presents the results from pre-training
of HowTo100M on DiDeMo and TVR from Table 1 and 2.
Besides, for the two sub-tasks of VCMR : SVMR and VR,
Table 2 presents the results on TVR, where the Cascaded
MPN also validate the effectiveness.

D. ABLATION STUDY
We perform ablation studies with several variants of Cas-
caded MPN. Table 3 summarizes ablative results of spar-
sity pooling (SP), anchor-free semantic reasoning (AFr),
anchor-based semantic reasoning (ABr) and conditional

TABLE 4. Ablation study on cascaded MPN layer.

moment score map (CMSM). The absence of anchor-
based semantic features gives large performance drop,
which implies the contextual understanding is crucial in
the video with multi character interactions. For the abla-
tion of AFr, we substitute video-subtitle semantics with
original video features embedded into d-dimensional space.
For the absence of CMSM, we utilize P(ted |v,q) in
stead of P(ted |Ist ; v,q) and define score map generator as
fcond (v,q) = Um(P(tst |v,q)P(ted |v,q)>). CMSM is also
worth that it saves about half of training time by early satura-
tion. The Table 4 presents experimental results according to
the variants of cascaded layer length. The cascaded layer n =
3 shows highest performance with kernel size N = 2, 4, 8
in sparsity pooling and more long layers give a slight dete-
rioration in performance. This is because in the early stage
of cascaded proposal generation, it is effective to remove
many redundant candidates, but after the layers longer than 5,
as there are not many redundant candidates, it may damage
the proposal scores in way of dropping performance.

E. QUALITATIVE RESULTS
Figure 6 represents moment prediction, conditional stat-
end probability, and Figure 7 represents moment score map
after sparsity pooling. In the Figure 6, the red curve is the
start-probability distribution and the blue curve is the end-
probability distribution. From these two distributions, final
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FIGURE 6. Moment prediction (up), Conditional start-end probability
(down).

FIGURE 7. Original score map (left), Sparsity pooling (right).

moment prediction is performed. Since end-probabilities
have the start-probabilities as conditional prior, they have
high values right behind the start time. In Figure 7, we can
see that the intensive score distribution in a specific moments
is alleviated into a sporadic distribution through sparsity
masking, which gives the chances of retrieval in various areas
and boosts performance in recall. From these, the conditional
moment score probability generation and sparsity pooling
have a positive effect on the retrieval.

F. LIMITATIONS
We think that Cascaded MPN used many attention weights
to represent the two different types of video representations:
(1) anchor-free semantic and (2) anchor-based semantic,
which took a lot of time to fully learn each features. In this
regard, further study would be possible to generate this two
hierarchical representations in a more efficient way (weight
sharing, model pruning) or another types of representation.
We believe that many valuable researches will be built under
motivation of overcoming these limitations.

V. CONCLUSION
We propose Cascaded MPN for video corpus moment
retrieval to overcome two main challenges: (1) anchor-
based method is vulnerable to heuristic rules of generating
video proposals, which incurs restrictive moment prediction

in length; and (2) anchor-free method systemically suffers
from insufficient understanding of long and sequential video
semantics. Therefore, our proposed cascaded MPN incor-
porates following two properties: (1) Hierarchical Semantic
Reasoning which gives video understanding from anchor-
free level to anchor-based level by building hierarchical video
graph, and (2) Cascaded Moment Proposal Generation which
precisely performs moment retrieval by devising cascaded
multi-modal interaction among anchor-free and anchor-based
level video semantics. Experimental results on three bench-
marks show effectiveness of our Cascaded MPN.
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