
Research Article Vol. 30, No. 12 / 6 Jun 2022 / Optics Express 20927

Optimization-based method removing highlights
with flash/no-flash image

JONGWON CHOI,1 SANGDOO YUN,2 AND JIN YOUNG CHOI3,*

1Dept. of Advanced Imaging, GSAIM, Chung-Ang Univ., Seoul, Republic of Korea
2Clova AI Research, NAVER, Republic of Korea
3ASRI, Dept. of Electrical and Computer Engineering, Seoul National Univ., Seoul, Republic of Korea
*jychoi@snu.ac.kr

Abstract: This paper proposes an optimization-based method to remove highlights from specular
surfaces without any special device other than a flash, or any limited capturing environment
required by existing methods. Accordingly, we formulate an optimization problem to estimate
a highlight-free image from the difference image between a flash/no-flash image pair. This
optimization will automatically find and recover erroneous pixels (saturated pixels and remaining
highlights) in the difference image. The optimization is designed to recover erroneous pixels
using the intensities of their neighboring pixels while retaining the other correct pixels to preserve
the original image details. We evaluated the proposed method qualitatively and quantitatively
through experimentation using datasets of synthetic and real-world scenes. In the experiments,
the proposed method outperforms existing state-of-the-art methods.
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1. Introduction

The reflected light intensity can be categorized into specular and diffuse intensities. Specular
reflection causes highlights on the object’s surface, which prevents humans from recognizing the
photograph. Similarly, these highlights become obstacles for various computer vision algorithms
such as segmentation, feature matching, and recognition. Because highlights are unavoidable in
the real world, it is essential to remove them to improve the quality of practical photographs and
the performance of computer vision algorithms.

Existing methods to remove highlights can be divided into multiple-image-based and single-
image-based methods. Multiple image-based methods use multiple images captured by special
devices or in complex capture settings such as a moving light source and various viewpoints
[3,4]. The usage of special devices requires additional costs, and establishing the capture settings
can be difficult in practical applications.

Single image-based methods detect the highlights and recover their diffuse color using
only a single image [1,2]. Because single-image-based methods must separate two unknown
variables of specular and diffuse intensities from only one-pixel value, the algorithms do not
perform adequately in practice. Furthermore, single-image-based methods rely on a dichromatic
assumption that the observed intensity equals the sum of the specular intensity and diffuse
intensity. However, this assumption cannot be satisfied for saturated pixels that occur frequently
in practice. Consequently, methods based on the dichromatic assumption may cause distorted
colors, as represented by the blue boxes in Fig. 1(c and d). Furthermore, the colors with low
chroma—like black or white—are prone to distortion due to the lack of color information. For
example, when a pixel’s original color is white, this can be recognized as a specular intensity,
which suffers from color distortion, as represented by the red boxes in Fig. 1(c and d).

The method in this study uses a pair of flash and no-flash images. Because general cameras
embed flash light, we can easily acquire flash and no-flash image pairs by capturing the consecutive
frames where only the first image is irradiated by flash light. Due to its simple capturing condition,
the flash/no-flash image pair has been widely used for computer vision algorithms [5,6], including
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Fig. 1. Qualitative comparison of existing methods. Pixels in highlights can quickly
become saturated. While existing methods [1,2] may cause color distortions in saturated
pixels, the proposed method without dichromatic assumption solves problems.

image enhancement [7], shadow rejection [8], artifact removal [9,10], reflection removal [11],
and foreground segmentation [12]. Agrawal et al. [9] used a flash and no-flash pair to remove
reflections and highlights arising from the flash. However, this method cannot remove highlights
arising from various light sources in the no-flash image, as discussed in Section 2.3. This study
aims to remove highlights without the dichromatic assumption, even in saturated regions that
occur frequently in practice.

We propose an optimization-based method that yields a highlight-free image to achieve our
research purpose, as depicted in Fig. 2. This paper defines a highlight-free image as an image
only affected by light flashes while not containing highlights caused by the light flashes; the
highlight-free image differs from the diffuse image where all specular intensities are removed.
For an initial image to estimate the highlight-free image, we use a difference image obtained
by subtracting the no-flash image from the flash image. Highlights caused by complex natural
lights can be removed using the difference image. However, the difference image cannot be
highlight-free because the light flashes also yield highlights from specular objects and the colors
are distorted on the pixels with saturated intensities.
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Correct
PIxels Fault Map

Original
Difference Image

GT

Result Image

GT
Distortion

Spotlight by flash

Fig. 2. Proposed highlight removal scheme. The proposed method removes the highlights
with a pair of flash/no-flash images. Our method recovers distorted colors using a proposed
optimization process.

In this paper, faulty pixels in the difference image refer to those that differ from the corresponding
pixels in the differences between the difference image and the highlight-free image. We estimate
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the highlight-free image from the difference image by formulating an optimization problem to
recover faulty pixels from the difference image with three considerations. First, there is no exact
clue to the locations of faulty pixels; we handled this issue by defining the binary fault map as an
optimization variable to indicate the locations of the faulty pixels. Second, we restored the colors
on the faulty pixels without the dichromatic model by establishing a cost term using the correct
colors obtained from the neighbors of faulty pixels. Third, we maintained the correct colors for
all pixels other than the faulty pixels by formulating an optimization constraint that enforces the
correct pixels to maintain their original intensities given in the difference image.

The formulated optimization problem becomes non-convex because it includes the multiplica-
tion of a discrete variable (binary fault map) and a continuous variable (highlight-free image).
We handled the non-convexity by applying an alternating optimization process by separating the
variables via an auxiliary variable. We validated the performance of the proposed method using
synthetic datasets and a real-scene dataset. We demonstrated the proposed method’s generality by
generating numerous synthetic images with various shapes, textures, and colors of illuminating
lights. We verified the practical applicability of the proposed method using the results from the
real-scene dataset.

2. Related works

2.1. Single-image-based highlight removal

Tan and Ikeuchi [1] proposed an algorithm to remove specularity by estimating the reflection
basis functions from an input image. Shen and Cai [13] considered a smoothing constraint of the
color transition along boundaries to obtain a specular-free image from a single image. Yang et
al. [2] removed highlights using edge-preserving low-pass filters, assuming diffuse colors are
similar to their neighbors. Tan et al. [14] separated highlights by considering the consistency
of diffuse-textured characteristics among neighboring pixels. Kim et al. [15] estimated the
region and values of highlights according to prior knowledge about dark channel values on the
highlights. Suo et al. [16] proposed a normalized dichromatic model to estimate a specular-free
image by separating identical diffuse colors. Mallick et al. [17] removed specularity by eroding
the specular component iteratively with a partial differential equation. The recent studies using
the deep learning algorithms have focused on the single-image-based highlight removals. Fu et al.
[18] trained a multi-task deep network to detect and remove the specular highlight simultaneously.
In [19], an efficient algorithm was proposed to remove the specular highlight using a pixel
clustering mechanism.

2.2. Multiple-image-based highlight removal

Nayar et al. [3] used multiple images captured through a polarized lens by changing its polarization
angle. Umeyama and Godin [20] also used multiple images with different polarization angles
with polarized lenses, and they separated diffuse components using an independent component
analysis method. Sato and Ikeuchi [4] separated specularity by analyzing the different pixel
intensities obtained from multiple images captured with a moving light source. Lin and Shum
[21] also captured multiple images with a moving light source and used linear basis functions to
estimate the specular light components. Lee and Bajcsy [22] presented a specularity removal
algorithm using multiple images taken from different viewpoints. Lin et al. [23] used multiple
images of different viewpoints and filled highlights with diffuse values speculated from other
images. Feng et al. [24] utilized a light-field camera to acquire the multiple images for the
specular highlight removal. Due to the use of additional knowledge garnered from multiple views,
the multiple-image-based methods outperform single-image-based methods. However, existing
multiple-image-based methods are limited in practice because they require special devices and
specific capture settings.
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2.3. Flash/no-flash image-pair-based algorithms

Computer vision research has used various methods based on sets of multiple images such as
micro-lenses [25], polarized lenses [3], multiple camera viewpoints [4,21,26], and controlled light
sources [22,23,27]. This study concentrates on flash/no-flash image pairs, which can be taken
without special devices or changing light source positions or camera viewpoints. Due to its simple
capturing conditions, the flash/no-flash image pair has been widely used for computer vision
algorithms, including image enhancement, shadow rejection, reflection removal, foreground
segmentation [5–12]. Recently, the flash/no-flash image pairs are used for the albedo recovery
[28,29]. In [30], the special deep-red light was used to obtain the light enhancement from the
dark environments. Agrawal et al. [9] suggested a way of removing highlights (or reflections and
other artifacts) induced from light flashes added to a no-flash image without highlights. Because
the gradients of the two images differ the highlighted area, they used the difference to remove
the highlight. However, if there were a highlight in the no-flash image, the gradients of the two
images in the highlighted area would not change, so the highlight in the no-flash image could
not be removed. Therefore, this method cannot eliminate highlights from no-flash images—
purpose of our research. This study proposes an optimization approach to remove highlights
from no-flash images using the characteristics of difference images between flash and no-flash
images. Although Lei and Chen [31] proposed a algorithm to remove the reflection by using the
flash-only image, the algorithm assumed that the target objects are ambient to be separated from
the reflected layers. Thus, the reflection upon the target objects could not be removed, which
differs from our approach.

3. Proposed method

3.1. Problem statement

When we suppose that there are neither saturated pixels nor highlights caused by light flashes,
the highlight-free image F is equivalent to the difference image D. Thus, F = D = Io

f − Io
nf is

satisfied, where Io
f and Io

nf are the flash image and the no-flash image, respectively. However,
the pixel intensities can become saturated due to the limited intensity ranges in practice, and
additional highlights can arise from specular objects reflecting the light flash. The highlights
caused by light flashes are referred to as flash highlights hereafter. Given the saturated pixels and
the flash highlights, we can express the image pair as:⎧⎪⎪⎨⎪⎪⎩

Io
f = F +G − IL

Io
nf = G − IL′ ,

(1)

where G is a natural image from all the lights other than a light flash and IL and IL′

are lost-intensity
maps arising from the saturated pixels and flash highlights. Then, by subtracting Io

nf from Io
f , the

difference map D can be obtained as

D = Io
f − Io

nf = F − (IL − IL′

). (2)

Because the highlight-free image F and the lost intensity maps (IL and IL′

) are unknown,
the problem becomes a blind signal separation problem in which F can be determined from D.
We solved this problem by formulating an optimization problem and developing an alternating
optimization process for handling the formulation’s non-convexity.

3.2. Problem formulation

Our formulation normalizes the values in all images and intensity maps in the range of 0-1. In
(IL − IL′

) of Eq. (2), the elements corresponding to the correct pixels must be zero. Hence, it
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is desirable to estimate only the elements for faulty pixels and determine the location of faulty
pixels simultaneously during optimization. Accordingly, we introduce an additional optimization
matrix M masking faulty pixels, where M is a binary fault map in which elements are 1 for faulty
pixels and 0 for correct pixels. Then, (IL − IL′

) can be replaced by the element-wise multiplication
of M and a lost intensity matrix L. Equation (2) can be rewritten as

D = F − M ◦ L, (3)

where ◦ is element-wise multiplication. In our formulation, F ∈ Rw×h×3, M ∈ Rw×h×1, and
L ∈ Rw×h×3 become optimization variables. According to Eq. (3), the values of L can only
change the values of F for the faulty pixels; otherwise, the values of F are equivalent to the values
of D for the correct pixels.

For representing the pixel-wise color vector of the matrix variables, Fx,y and Lx,y are defined
as color vectors at the (x, y)-th element of F and L, respectively. Mx,y has a binary value (0 or 1)
at the (x, y)-th element of M. Fx,y at a correct pixel must be the same as Dx,y while Fx,y at a faulty
pixel should differ from Dx,y due to Lx,y. Hence, Mx,y depends on Fx,y, which can be expressed
by a function of Fx,y, as

M(F)x,y =

⎧⎪⎪⎨⎪⎪⎩
1 , if Fx,y ≠ Dx,y

0 , if Fx,y = Dx,y.
(4)

Furthermore, Lx,y =
(︁
Fx,y − Dx,y

)︁
at the faulty pixel (M(F)x,y = 1) and Lx,y = 0 at the correct

pixel (M(F)x,y = 0). Hence, Lx,y can also be expressed by a function of Fx,y, as

L(F)x,y =M(F)x,y
(︁
Fx,y − Dx,y

)︁
. (5)

By replacing M and L in Eq. (3) with Eqs. (4) and (5), Eq. (3) leads to

Fx,y = Dx,y +M(F)2x,y
(︁
Fx,y − Dx,y

)︁
. (6)

Because M(F)2 =M(F), Eq. (6) can be simplified as(︁
1 − M(F)x,y

)︁ (︁
Fx,y − Dx,y

)︁
= 0, (7)

which is an equality constraint in our formulation.
Our objective is to find F that satisfies the equality constraint of Eq. (7), but the solutions are

under-determined. We establish three optimization objectives to find a realistic solution. First,
we regularize the lost-intensity estimation by minimizing

∥︁∥︁L(F)x,y
∥︁∥︁2, where ∥·∥ is the l2 norm.

Through this regularization term, the over-fitting problem can be avoided and the original textures
on the faulty pixels can be conserved by suppressing the redundant estimates of L(F)x,y. Second,
for the smoothness of the estimated highlight-free image F, we minimize

∥︁∥︁∇Fx,y
∥︁∥︁2 where ∇ is

the gradient. This smoothness term removes the highlight by enforcing the intensity of a faulty
pixel to have a value regressed from its neighboring pixels. Third, for the spatial similarity of the
estimated fault map, we minimize

∥︁∥︁∇M(F)x,y
∥︁∥︁

1, where ∥·∥1 is the l1 norm. This term clusters
rather than disperses the locations of faulty pixels.

Based on the equality constraint in Eq. (7), the proposed optimization problem can be
formulated as

E(F) =
w,h∑︂

x,y=1

∥︁∥︁L(F)x,y
∥︁∥︁2
+ λ1

∥︁∥︁∇Fx,y
∥︁∥︁2
+ λ2

∥︁∥︁∇M(F)x,y
∥︁∥︁

1 (8)

s.t.
(︁
1 − M(F)x,y

)︁ (︁
Fx,y − Dx,y

)︁
= 0,

where λ1 and λ2 are the predefined regularization factors. We simplify the constrained problem
into an unconstrained problem by including the equality constraint in the cost function as a barrier
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term. Furthermore, by replacing
∥︁∥︁L(F)x,y

∥︁∥︁2 with Eq. (4), the final objective function becomes

E(F) =
w,h∑︂

x,y=1
M(F)x,y

∥︁∥︁Fx,y − Dx,y
∥︁∥︁2
+ λ1

∥︁∥︁∇Fx,y
∥︁∥︁2

+ λ2
∥︁∥︁∇M(F)x,y

∥︁∥︁
1 + λ3(1 − M(F)x,y)

∥︁∥︁Fx,y − Dx,y
∥︁∥︁2,

(9)

where λ3 is a weight factor for the barrier term.

3.3. Optimization

Because the final objective function includes the multiplication of M(F) and F, the problem
becomes non-convex, and it is impossible to derive the solution directly. We solved this problem
by applying an alternating optimization process that optimizes only one of M(F) and F by
fixing the other. However, because M(F) is dependent on F as in Eq. (4), the direct alternating
optimization converges to a premature state. We prevent this by introducing an auxiliary variable
Z that converges to F asymptotically. We add an auxiliary penalty term that represents the
equality of the original variable F and the auxiliary variable Z. The cost function with the
auxiliary variable Z can be reformulated as

E(F, Z) =
w,h∑︂

x,y=1
M(Z)x,y

∥︁∥︁Fx,y − Dx,y
∥︁∥︁2
+ λ1

∥︁∥︁∇Fx,y
∥︁∥︁2
+ λ2

∥︁∥︁∇M(Z)x,y
∥︁∥︁

1

+ λ3(1 − M(Z)x,y)
∥︁∥︁Fx,y − Dx,y

∥︁∥︁2
+

1
2θ

∥︁∥︁Fx,y − Zx,y
∥︁∥︁2 ,

(10)

where θ is the inverse of weight for the auxiliary penalty term. As the optimization iterates,
we reduce θ asymptotically to almost zero. Then, the weight of the additional penalty term
becomes infinity, so Z converges to F and Eq. (10) becomes equivalent to Eq. (9). We control
the convergence speed and optimization accuracy by tuning the initial value (θ0) of θ and the
decreasing rate (γ<1) of θ.

Prior to the alternating optimization process, M is roughly initialized, and the initial F is
optimized using the initial M. Then, Z is optimized by fixing the initial F, and the next F is
optimized after fixing Z. The alternating process is repeated until a termination condition is
satisfied.

3.3.1. Initialization

A rough fault map Mo is initialized by integrating two rough binary maps: an initial saturated
pixel map Mo,1 and an initial flash highlight map Mo,2. Mo,1 is the pixels where the intensities
are saturated in the given flash image, and Mo,2 designates the pixels located at the flash highlight.
Mo,1 and Mo,2 are binary maps that do not have to be accurate because the fault map is also
optimized as an unknown variable. Mo is integrated by an OR-operation between Mo,1 and Mo,2.

Mo,1 is found by detecting the fully saturated pixels as

Mo,1
x,y =

⎧⎪⎪⎨⎪⎪⎩
1 , if maxk=r,g,b Io

f (x, y, k) = 1

0 , otherwise.
(11)

Mo,2 is roughly obtained via heuristics on the flash highlights, derived from an observation
that the intensity values around a highlight form an umbrella shape while those in a highlight-free
area form a relatively flat shape. As a metric to classify the shape of intensity values in a patch,
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we introduce regularized brightness denoted by B(x,y) for the patch centered at (x, y). If V(x,y) is
the brightness at (x, y), B(x,y) is defined by

B(x,y) =
1

(2s + 1)2

i,j=s∑︂
i,j=−s

V(x+i,y+j)

V(x,y)
, (12)

where s is the size of the patch and V(x,y) is obtained by averaging the RGB values at (x, y). A
highlight patch has a maximum intensity around its center, so most normalized intensity values
are less than one due to the umbrella shape. Furthermore, a highlight-free patch has similar
values over the entire patch, so most normalized intensity values are almost one. Hence, B(x,y) of
a highlight-free patch is greater than that of a highlight patch. The flash highlights only appear in
the flash image, while the no-flash image has no highlight at the same position. Therefore, if
B(x,y) in the no-flash image is greater than in the flash image, the pixel (x, y) in the flash image is
determined as the highlighted pixel. We prevent an erroneous decision in an upbrella-shaped
area other than highlights by adding a condition that the brightness at (x, y) should be greater
than a predefined threshold. Thus, the value of Mo,2

x,y is set to 1 when the following two conditions
are satisfied:

Bnf
(x,y) − Bf

(x,y)>ϵ1, Vf
(x,y)>ϵ2, 0 ≤ ϵ1 ≤ 1, 0 ≤ ϵ2 ≤ 1 (13)

where (·)nf and (·)f are the metrics from the no-flash image and the flash image, respectively, and
ϵ1, and ϵ2 are predefined parameters.

With the initial fault map Mo
x,y, the initial F can be obtained by minimizing the simplified

objective function

E(Fo) =

w,h∑︂
x,y=1

Mo
x,y
∥︁∥︁Fo

x,y − Dx,y
∥︁∥︁2
+ λ1

∥︁∥︁∇Fo
x,y
∥︁∥︁2
+ λ3{1 − Mo

x,y}
∥︁∥︁Fo

x,y − Dx,y
∥︁∥︁2, (14)

where Fo is the initial F. Because Eq. (14) is a quadratic form in terms of Fo
x,y, we can easily find

Fo
x,y by solving the least squares problem.

3.3.2. Z optimization process

When we optimize Z, F is fixed. The first iteration uses the initial Fo. The fixed F is denoted by
F∗; then, the objective function is given by

EF=F∗ (Z) =
w,h∑︂

x,y=1
M(Z)x,y

∥︁∥︁F∗
x,y − Dx,y

∥︁∥︁2
+ λ2

∥︁∥︁∇M(Z)x,y
∥︁∥︁

1

+ λ3{1 − M(Z)x,y}
∥︁∥︁F∗

x,y − Dx,y
∥︁∥︁2
+

1
2θ

∥︁∥︁F∗
x,y − Zx,y

∥︁∥︁2 .

(15)

Because M(Z) is a discrete function, the optimal Z is hard to find with conventional gradient-
based methods. We solve the problem by applying a hypothesis testing approach. First, we
suppose two solution hypotheses: Zx,y = Dx,y and Zx,y ≠ Dx,y. For every pixel, we evaluate the
cost values with respect to the two hypotheses. Then, the solution can be determined by the
hypothesis with a lower cost value.

If we set the hypothesis Zx,y = Dx,y, M(Z)x,y equals 0 from Eq. (4). For this case, the cost
value of each pixel can be evaluated by

E(Z=D)
x,y = λ2

∥︁∥︁∇M(D)x,y
∥︁∥︁

1 +

(︃
λ3 +

1
2θ

)︃ ∥︁∥︁F∗
x,y − Dx,y

∥︁∥︁2, (16)

where the element of ∇M(D)x,y is −1, 0, or 1.
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However, if we set a hypothesis that Zx,y = F∗
x,y ≠ Dx,y, M(Z)x,y becomes 1 from Eq. (4). Then

the cost value equals
E(Z≠D)

x,y = λ2
∥︁∥︁∇M(F∗)x,y

∥︁∥︁
1 +

∥︁∥︁F∗
x,y − Dx,y

∥︁∥︁2, (17)

where the element ∇M(F∗)x,y is −1, 0, or 1. By comparing the cost values E(Z=D)
x,y and E(Z≠D)

x,y in
Eqs. (16) and (17), the optimal Zx,y and M(Z)x,y can be determined by

{Zx,y, M(Z)x,y} =

⎧⎪⎪⎨⎪⎪⎩
{Dx,y, 0} , if E(Z=D)

x,y ≤ E(Z≠D)
x,y

{F∗
x,y, 1} , otherwise.

(18)

Because the pixel-wise gradient of M(Z) should be newly estimated when M(Z) changes, the
Z optimization is iterated until M(Z) becomes fixed. We limit the number of iterations to 100 to
prevent the infinite loop caused by unexpected oscillation of the optimized M(Z). Because the Z
optimization process requires pixel-wise binary comparisons, its computational complexity is
O(N), where N is the number of pixels.

3.3.3. F optimization process

The other variable Z is fixed by Z∗ obtained in the previous iteration to find the optimal F. Thus,
the cost function for F is given by

EZ=Z∗ (F) =
w,h∑︂

x,y=1
M(Z∗)x,y

∥︁∥︁Fx,y − Dx,y
∥︁∥︁2
+ λ1

∥︁∥︁∇Fx,y
∥︁∥︁2

+ λ3{1 − M(Z∗)x,y}
∥︁∥︁Fx,y − Dx,y

∥︁∥︁2
+

1
2θ

∥︁∥︁Fx,y − Z∗
x,y
∥︁∥︁2 .

(19)

Because Eq. (19) is a quadratic form of F, the optimal F can be calculated using the least
squares solution with a pseudo-inverse. When the number of pixels is N, the computational
complexity of the F optimization process is O(N3), caused by the pseudo-inverse operation.

3.3.4. Termination condition

The two optimization processes are iterated until F and Z become almost equivalent. Thus, the
entire optimization terminates when the following condition is satisfied.

w,h∑︂
x,y=1

∥︁∥︁Fx,y − Zx,y
∥︁∥︁2
<ϵ , (20)

where the left term is the sum of the final penalty terms in Eq. (10) and ϵ is a predefined threshold
for the termination.

4. Experimental result

The proposed method was evaluated using two types of datasets: synthetic and real-world scenes.
The three synthetic datasets include various shapes, textures, and colored lights. The synthetic
dataset with various shapes comprises 10 different synthetic 3D models (arc, ball, box, capsule,
cone, spin, teapot, torus, torus2, and tube) with various types and positions of virtual lights. The
synthetic dataset with various textures has 10 synthetic 3D models (teapot) with different textures
on their specular surfaces. The synthetic dataset with various colored lights and comprises the
same 10 synthetic 3D models (teapot) illuminated by different colored lights. A virtual light
near a virtual camera was used as a flash to obtain all the synthetic datasets. The ground truth of
the highlight-free image was obtained by removing the specularity from the surface of the 3D
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models. The real-scene dataset comprises four image pairs (“objects”, “television”, “reflection”,
and “desk”) taken by a DSLR camera (Canon EOS 400D) with fixed camera settings for each
pair. An embedded flash was used for the flash image to demonstrate the proposed method’s
practical applicability.

The proposed method was compared with state-of-the-art methods based on the dichromatic
model (Tan and Ikeuchi [1] and Yang et al. [2]), the annoying effect removal method using the
flash/no-flash image pair (Agrawal et al. [9]), and the reflection removal using a pure flash image
(Lei and Chen [31]. All datasets and codes of the proposed method are uploaded online [32]. The
algorithm was executed using an unoptimized MATLAB code without any GPU resources. For
the computational environment of an Intel i5-4670 CPU and 8GB memory, the algorithm took
312 seconds to estimate the results of the “teapot” synthetic image where the size was 640 × 480
pixels. Lei and Chen [31] requires the GPU to run the deep learning model, so we additionally
utilized NVIDIA GTX 1080 Ti. Although Lei and Chen [31] can handle the synthetic datasets
of the relatively small resolution, it fails to process the real-world datasets comprising the high
resolution due to the out-of-memory issue.

4.1. Parameters

The parameter analysis experiments were performed using teapot of the synthetic dataset with
various shapes to determine the values of λ1 and λ2 in the cost function Eq. (9). First, we
measured the number of different pixels between the initial and final fault maps by varying the
ratio λ1/λ2, as depicted in Fig. 3(a). When λ2 is between 10−7 and 10−3, the numbers of different
pixels are similar even though the values of λ1 and λ2 are different with the preserved ratio of
λ1/λ2. If λ1/λ2 is less than 0.1, the proposed optimization changes a sufficient number of pixels
in the fault map. In the plausible range of ratios (λ1/λ2 ≤ 0.1), the largest ratio (λ1/λ2 = 0.1)
results in the best balancing between the two smoothness terms. Thus, we set λ1/λ2 to 0.1.
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(a) Analysis for the ratio of 𝜆1 and 𝜆2. (b) Analysis for the scales of 𝜆1 and 𝜆2.

Fig. 3. Analysis of weights. The weights of the smoothness terms were analyzed using
teapot by changing their ratios and scales.

Second, even though the number of changed pixels in the fault map was similar when
λ1/λ2 = 0.1, the performance varies depending on the values of λ1 and λ2. Thus, we determined
the appropriate values of λ1 and λ2 by performing optimization with various values of λ1 and
λ2 fixing the ratio λ1/λ2 at 0.1. When λ1 = 10−4 and λ2 = 10−3, the color distortion remains
even after the proposed optimization, as illustrated in the first image (red box) in Fig. 3(b).
Furthermore, when λ1 = 10−8 and λ2 = 10−7, the edges of the faulty pixels are blurred by the
smoothness terms, as depicted by the last image (blue box) in Fig. 3(b). Therefore, we recovered
the color of the faulty pixels while preserving the edges by selecting 10−6 and 10−5 as the values
of λ1 and λ2, respectively. λ3 should be much larger than the other weights because it is the
weight of the barrier term that should be enforced as zero. Thus, we set λ3 to 100.

The termination threshold ϵ was set to 0.01. The size of the normalized patch (s) in Eq. (12)
was 30, and the thresholds for the initial fault maps ϵ1 and ϵ2 were set to 0.02 and 0.5, respectively.
In our experiments, all the above parameters were fixed. Although the parameters were chosen
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through experiments using one of the synthetic scenes, the parameters produced consistent,
satisfactory performance for all synthetic and real-world scenes.

4.2. Qualitative evaluation

We evaluated the performance qualitatively by comparing the proposed algorithm with three state-
of-the-art algorithms: Yang et al. [2], Agrawal et al. [9], and Lei and Chen [31]. Representative
cases are illustrated using the final resultant map F together with the ground-truth images where
the specularity of the target object was removed for the ambient surface. For comparison, we
also provided the resultant maps by Yang et al. [2], Agrawal et al. [9], and Lei and Chen [31].

4.2.1. Synthetic dataset

Synthetic dataset with various shapes. Fig. 4(a and b) illustrates a qualitative comparison
between the results from the synthetic dataset with various shapes and the ground truth. In teapot
(Fig. 4(a)), the colors on the highlights were distorted by existing methods while being recovered
by the proposed method. Even with the complex shape of torus2 (Fig. 4(b)), the original colors
of the highlights were well-estimated, and the result was similar to the ground truth after using
the proposed optimization.

Synthetic dataset with various textures. We validated the proposed method with complex
surfaces by experimenting with 10 synthetic teapot images covered with different textures. As
depicted in Fig. 4(c and d), the proposed method outperforms existing methods on textured
surfaces. The proposed algorithm preserves the intensities and textures on the correct pixels.
Furthermore, by locating the first regularizing term in Eq. (8), the proposed algorithm can
reduce the blurriness of the textures on the faulty pixels. Although Lei and Chen [31] show the
impressive results for the textured objects, the reflection and highlights upon the objects’ surfaces
remained while they were removed using our proposed algorithm. We can discover the difference
because Lei and Chen [31] assumes the surfaces is non-specular.

Synthetic dataset with various colored lights. We demonstrated the method’s robustness
on the colors of illuminating lights by performing experiments on 10 synthetic teapot images
illuminated with lights of different colors. As depicted in Fig. 4(e and f), the proposed algorithm
can remove highlights caused by natural lights even with colored lights. Because all the effects
of natural lights are removed from the difference image, the proposed algorithm can ignore the
various colors of the illuminating lights.

4.2.2. Real scene dataset

The flash is much dimmer than the other natural lights. Because the proposed method determines
the highlight-free image based on the difference image, the brightness of the resultant image can
be much lower than that of the flash image. We solved this problem through post-processing by
increasing the brightness values (L in the Lab space) of every pixel in the resultant image to set
the average brightness of the resulting image equivalent to that of the flash image. We validated
the applicability of the proposed method by testing it with four real-scene pairs, as depicted in
Fig. 5: “objects”, “television”, “reflection”, and “desk”.

The objects pairs include various objects with complex light sources. Several highlights appear
on the objects, especially the surface of the fan and the ceramic lid of the cup. In the resultant
images from the methods based on the dichromatic model [2], the white color on the surface
of the fan is distorted green. Furthermore, the method using a flash/no-flash pair [9] blurs the
boundary of objects and cannot remove the highlights from the surface of the fan.

In contrast, the proposed algorithm removes all highlights successfully with the preserved
details on the non-highlighted regions. Moreover, television captures a television screen and a
whiteboard, which are both highly specular. Fluorescent lights are reflected directly onto the
specular surface of the television, which creates various highlights. This image pair is challenging,
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Yang et al. Ground truthOursImage pair
Flash

No-flash

Agrawal et al. Lei & Chen

(a) Teapot in the synthetic dataset with various shapes

Flash

No-flash

(b) Torus2 in the synthetic dataset with various shapes

Flash

No-flash

(c) Woody-texture in the synthetic dataset with various textures

Flash

No-flash

(d) Dent-texture in the synthetic dataset with various textures

Flash

No-flash

(e) Red-light in the synthetic dataset with colored lights

No-flash

Flash

(f) Emerald-light in the synthetic dataset with colored lights

Fig. 4. Qualitative results for synthetic datasets. The images in the fifth column are the
results of the proposed method, and those in the final column are the ground-truth images of
the highlight-free images.
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Fig. 5. Qualitative results for real-world scenes. The images in first and second columns
are the no-flash/flash image pairs for each dataset. The images in the remaining columns are
the results of Yang et al. [2], Agrawal et al. [9], and our method in order.

but the proposed method successfully removes the highlights caused by the fluorescent lights
from the television screen. In contrast, the compared algorithms fail to remove the highlights.

The reflection pairs consist of several objects behind transparent glass reflecting an annoying
background. Although the objects have little specularity, existing algorithms create color distortion
when removing the specular component from the input image. In contrast to existing algorithms,
the proposed method preserves the objects’ original colors. The proposed optimization removes
the background reflected on the glass because it obtains a highlight-free image from the difference
image that ignores the effects of natural lights causing the background reflection on the glass.

The desk pairs include various objects such as a monitor and keyboard on a desk. With existing
algorithms, the colors of the keyboard and mouse are biased, there are highlights on the mouse,
and the bottom-right boundary of the monitor is still not removed. In contrast, the proposed
method successfully estimates the original color of the highlighted pixels while maintaining the
textures on the mouse.

The comparison using real-world scenes demonstrates that the proposed method can be easily
used in practice. Furthermore, the previous state-of-the-art algorithms suffer from practical
limitations, such as remaining highlights caused by the complex natural lights and the color
distortion on saturated or low-chromatic pixels. Especially, Lei and Chen [31] fail to handle the
high-resolution real-world scenes due to the lack of VRAM. This failure verifies the real-world
applicability of the proposed algorithm where we need only the CPU-based optimization.

4.3. Quantitative evaluation

We evaluated the quantitative performance of the proposed method using hue distance and lab
distance. The hue distance is the Euclidean distance between a result and a ground truth based
on a and b of the lab color space. The highlight-free image obtained by our method includes
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the lightness only from the light flash, but existing methods include the lightness from all lights.
Therefore, we compared the highlight removal performance without using the lightness channel
for a fair comparison. We used the lab distance to compensate for the metric without the lightness
channel. The lab distance represents the perceptual similarity between the results and the ground
truth.

4.3.1. Synthetic dataset

As represented by the hue distances in Table 1, the proposed method exhibited much less color
distortion than the other methods for all the synthetic datasets with various shapes. From the lab
distances, we validated that the results from the proposed algorithm were most similar to the
ground truth. Although the proposed algorithm shows the impressive performance for a part
of images containing textures surfaces (Table 2), Lei and Chen [31] shows the state-of-the-art
performance on average. However, as shown in the qualitative results, despite its high quantitative
performance, the highlights and reflections on the objects remain through Lei and Chen [31].
This issue happens because the complex textures can be blurred by the proposed algorithm
which results in the dramatic increment of the error even while highlights and reflections were
successfully removed. The limitations would be analyzed in Section 4.4. The proposed method
outperformed the other methods for the images illuminating lights of various colors (Table 3).
Interestingly, the distortion error of the proposed method was independent of the color of the
illuminating lights because its optimization removes the natural light by subtracting the no-flash
image from the flash image.

Table 1. Quantitative comparison with various shapes

arc ball box capsule cone spin teapot torus torus2 tube Avg.

H
ue

D
ist

an
ce

Tan [1] 8.70 98.82 299.45 262.32 487.00 230.40 231.38 256.76 14.07 619.85 250.87

Yang [2] 5.53 28.98 38.04 107.40 3.80 91.44 84.63 75.72 7.49 14.87 45.79

Agrawal [9] 26.88 25.70 30.80 92.54 2.89 81.11 56.15 50.29 36.75 11.33 41.44

Lei&Chen [31] 28.02 39.71 21.64 62.08 59.78 24.63 19.60 19.06 43.79 24.04 34.24

Ours 0.41 2.31 15.78 0.85 0.10 4.01 1.19 1.28 1.80 6.04 3.38

La
b

D
ist

an
ce

Tan [1] 26.52 179.50 237.40 177.29 457.95 320.45 426.42 374.43 83.09 173.59 245.66

Yang [2] 85.23 812.94 978.89 551.60 164.97 676.60 802.32 722.38 140.48 347.56 528.30

Agrawal [9] 125.73 909.51 1098.60 466.30 145.99 627.95 399.42 472.19 256.94 423.40 492.60

Lei&Chen [31] 84.07 134.58 117.40 113.24 169.17 144.84 83.61 75.69 205.57 94.60 122.28

Ours 3.10 7.76 31.44 0.52 0.22 14.85 0.93 1.10 7.20 10.12 7.72

Table 2. Quantitative comparison with various textures

Texture Woody Dent Dent2 Marble Checker Cellular Perlin Swirl Tiles Smoky Avg.

H
ue

D
ist

an
ce

Tan [1] 333.18 37.10 198.21 340.85 251.11 86.79 251.04 319.84 172.32 280.95 227.14

Yang [2] 63.55 63.09 173.70 6.64 146.63 6.21 3.96 33.22 262.50 71.97 83.15

Agrawal [9] 92.68 317.72 191.51 22.25 107.07 37.99 8.71 32.76 203.30 131.52 114.55

Lei&Chen [31] 16.37 31.22 35.78 1.46 35.17 11.65 6.73 23.71 30.83 27.55 22.05

Ours 1.58 6.87 130.78 96.04 451.20 15.80 0.61 20.44 44.09 2.02 76.94

La
b

D
ist

an
ce

Tan [1] 282.26 632.39 783.45 413.82 733.72 655.12 191.62 219.06 585.84 287.40 478.47

Yang [2] 555.22 581.67 814.66 361.20 738.15 539.45 261.01 525.89 687.87 395.09 546.02

Agrawal [9] 449.60 437.65 309.11 283.36 351.06 317.57 230.09 320.84 227.79 206.90 313.40

Lei&Chen [31] 71.30 77.63 92.56 5.24 92.56 97.68 68.41 80.69 58.72 52.54 68.78

Ours 13.91 6.11 26.66 177.02 1564.62 79.00 3.05 97.87 112.07 1.71 208.20
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Table 3. Quantitative comparison with various light colors

Color of Light Red Green Blue Yellow Purple Emerald Mixed1 Mixed2 Mixed3 Mixed4 Avg.

H
ue

D
ist

an
ce

Tan [1] 625.92 1215.53 64.10 131.79 191.65 382.77 303.36 39.62 154.74 426.32 353.58

Yang [2] 586.48 1133.46 18.83 249.51 158.98 328.99 254.33 80.17 291.22 802.32 390.43

Agrawal [9] 629.35 622.46 341.72 120.54 347.39 175.68 196.49 97.75 122.09 399.42 305.29

Lei&Chen [31] 66.77 47.08 26.08 14.96 43.17 26.90 27.25 15.98 13.56 15.78 29.75

Ours 2.01 1.91 1.95 2.10 1.98 1.80 2.01 1.96 1.76 1.58 1.91

La
b

D
ist

an
ce

Tan [1] 55.87 86.49 6.84 9.28 9.95 20.00 16.91 1.81 9.78 34.61 25.15

Yang [2] 34.85 50.13 0.96 21.52 8.69 12.99 10.21 5.10 25.02 82.69 25.22

Agrawal [9] 22.77 27.94 18.99 8.27 13.08 11.48 11.54 7.30 9.11 37.97 16.85

Lei&Chen [31] 93.35 80.98 79.74 54.20 84.29 59.62 68.32 60.92 51.67 64.16 69.72

Ours 0.38 0.26 0.46 0.39 0.46 0.38 0.44 0.43 0.24 0.37 0.38

4.3.2. Real-scene dataset

We validated the proposed method quantitatively in the real-scene dataset by creating ground-truth
images for the real-world scenes by removing all the highlights in the flash images. The removed
regions were filled in with the colors of the nearby pixels. Although the contours of the removed
highlight regions remained, the hue distance we used was barely affected by the contours because
the brightness values were ignored in the measure.

Table 4 presents the quantitative comparison in which the proposed method outperformed
existing algorithms on average. Because the a and b values of the lab space became diverse
for colors with low chroma, the hue distance on the white or black colors could be enlarged
regardless of the qualitative results. Thus, for the object scene, the hue distance of the proposed
method was worse than that of Yang et al. [2], regardless of the quality of the resulting images.
In contrast to the hue distance, the lab distance accurately represented the quantitative quality of
the result from the proposed algorithm.

Table 4. Quantitative comparison with real-world scenes

Scene object television reflection desk Avg.

H
ue

D
ist

. Yang [2] 80.32 60.73 1247.23 114.63 375.83

Agrawal [9] 347.18 34.84 230.42 343.77 239.05

Ours 180.75 32.58 25.61 97.52 84.11

La
b

D
ist

. Yang [2] 371.77 505.71 1738.82 444.15 765.11

Agrawal [9] 712.33 419.12 819.72 502.93 613.52

Ours 614.04 110.64 308.26 316.72 337.42

4.4. Limitations

Although the proposed algorithm can successfully remove highlights and reflections, it still has
limitations. First, when the colors of the neighboring correct pixels are not similar to the original
colors of the faulty pixels, our method exhibits reduced performance because the smoothness cost
term

∥︁∥︁∇Fx,y
∥︁∥︁2 assumes similarity among the neighboring pixels. Consequently, our method had

a relatively lower performance for the images with textures than for those with various shapes or
colored lights, as presented in Tables 1, 2, and 3. Furthermore, when the region of the faulty
pixels extends beyond the object boundary, the neighboring pixels are located near the other
objects, which makes the boundary blurry, as illustrated in the top-left region in Fig. 2. Second,
the flash and no-flash image pairs must be precisely aligned to be used for the proposed algorithm.
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For this precise alignment, the camera should be fixed by a tripod; thus, our method cannot be
applied to a scene containing moving objects. Finally, the difference image used in our method
has inherent limitations. Because the difference image is based on the effect of the light flash, the
resulting image can vary according to the location and the intensity of the light flash. Shadows
may appear by the light flash, and the objects far from the flash can be represented with darker
intensities in the difference image than in a natural light image.

5. Conclusion

In natural scenes, highlights on objects’ surfaces are inevitable, degrading the quality of
photographs and the performance of computer vision algorithms. We removed the highlights using
a proposed optimization-based method based on a flash/no-flash image pair. The contributions
of this study are summarized as follows. First, the efficiency increases when using only a pair
of flash/no-flash images taken without any special device nor any limited capturing setting,
otherwise necessary for existing methods. Second, our method does not require the dichromatic
assumption. Instead, we formulated an optimization problem to recover the original color even
from saturated or low-chromatic pixels, outperforming existing methods based on the dichromatic
model. Third, our optimization formulation is novel because the locations of faulty pixels and
the highlight-free image map are estimated by the alternating optimization process with our cost
function, outperforming existing methods. However, our approach also has limitations, such as
the blurriness of texture details and the need for camera alignment. Future studies that tackle
the limitations of our method can consider adaptive weights based on the color similarity of the
neighboring pixels to preserve textured details. Furthermore, the optical flow algorithm can be
used for pre-processing to align the mismatched pixels caused by incorrect camera alignment.
Finally, with the use of additional controllable light sources, our method can be extended to
obtain an image with user-designed colors and lightness after removing the unwanted colors and
lightness from uncontrollable natural light sources.
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