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Abstract: The precipitation systems that pass over mountains develop rapidly due to the forcible
ascent caused by the topography, and spatial rainfall distribution differences occur due to the local
development of the system because of the topography. In order to reduce the damage caused by
orographic rainfall, it is essential to provide rainfall field data with high spatial rainfall accuracy.
In this study, the rainfall estimation relationship was calculated using drop size distribution data
obtained from 10 Parsivel disdrometers that were installed along the long axis of Mt. Halla (oriented
west–east; height: 1950 m; width: 78 km; length: 35 km) on Jeju Island, South Korea. An ensemble
rainfall estimation relationship was obtained using the HSA (harmony search algorithm). Through
the linear combination of the rainfall estimation relationships determined by the HSA, the weight
values of each relationship for each rainfall intensity were optimized. The relationships considering
KDP, such as R(KDP) and R(ZDR, KDP), had higher weight values at rain rates that were more than
10 mm h−1. Otherwise, the R(ZH) and R(ZH, ZDR) weights, not considering KDP, were predominant
at rain rates weaker than 5 mm h−1. The ensemble rainfall estimation method was more accurate
than the rainfall that was estimated through an independent relationship. To generate the rain field
that reflected the differences in the rainfall distribution according to terrain altitude and location, the
spatial correction value was calculated by comparing the rainfall obtained from the dual-polarization
radar and AWS observations. The distribution of Mt. Halla’s rainfall correction values showed
a sharp difference according to the changes in the topographical elevation. As a result, it was
possible to calculate the optimal rain field for the orographic rainfall through the ensemble of rainfall
relationships and the spatial rainfall correction process. Using the proposed methodology, it is
possible to create a rain field that reflects the regional developmental characteristics of precipitation.

Keywords: quantitative precipitation estimation; dual-polarization radar; disdrometer; orographic
precipitation; spatial bias correction; heuristic optimization algorithm

1. Introduction

High-impact weather, such as localized flash floods in mountainous terrain, can cause
damage to a small area within short amounts of time, ranging from several minutes to
tens of minutes. Rainfall information that is based on ground AWS (automatic weather
system) observations have limitations in providing accurate rainfall information due to the
gaps in ground observation sites and the time resolution of the observation data. To solve
the limitations of obtaining extreme weather information based on in situ observations, it
is necessary to observe a wider area of precipitation simultaneously. To calculate rainfall
distribution with a high temporal resolution of a few minutes over wider areas of 200 km
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or more, remote sensing data, such as weather radar and satellite data, are used for
quantitative prediction estimation (QPE).

Many technological and academic advances have been made, such as advancements
in observation equipment, improvements in relational expressions based on long-term
observation data, and rainfall optimization according to locational characteristics [1–4].
However, there are still uncertainties due to the conversion of the rainfall intensity deter-
mined from reflectivity and beam blocking due to the fact of terrain and buildings [5]. In
addition, due to the differences in the spatio-temporal resolution between the rainfall in the
upper layer observed through the radar and the rainfall obtained through in situ surface
observation data, the rainfall data based on radar observations contain errors in terms of
the spatio-temporal resolution [6,7].

To reduce the uncertainty of rainfall estimation and to improve the accuracy of rainfall
estimations based on dual-polarization radar observation data, research on how to improve
accuracy through a combination of dual-polarization parameter characteristics [8–12], how
to improve accuracy by considering beam blocking [13–15], and how to correct deviations
based on the distance and altitude of radar beams [16,17] has been conducted. Furthermore,
rainfall information that is suitable for determining rainfall characteristics and geographic
conditions is able to be calculated using the results from previous research.

However, the methods mentioned earlier are often adjusted to the climatic precipita-
tion characteristics or regional and seasonal characteristics based on long-term observa-
tional data and have limitations in that they cannot consider the complexity of precipitation.
As a result, differences in the precipitation development characteristics may appear for
each elevation, region, and precipitation cell within the precipitation system, and differ-
ences in the rainfall estimation accuracy for small spatial scales may occur. Therefore,
to generate representative precipitation data, (1) an approach using an estimated rela-
tional ensemble [11,18,19] and (2) the correction of spatial rainfall distribution errors [20]
were conducted.

Li et al. [18] obtained relationships through combining dual-polarization parameters (i.e.,
ZH, ZDR, and KDP) and a probabilistic approach with a Gaussian mixture model for several
estimation expressions. They proposed that the GMRE (Gaussian mixture rainfall-rate
estimator) is not restricted by the radar frequency range and is one of the solutions to
improving rainfall accuracy with rainfall types and regional rainfall characteristics. The
GMRE method has the advantage of reflecting the climatic characteristics of precipitation
as a statistical estimation method based on long-term observation data. However, it is
limited in that sufficient observation data must be secured.

You et al. [11] retrieved dual-polarization parameters (i.e., ZH, ZDR, KDP, and AH)
using surface disdrometer (Parsivel and POSS) observation data collected over a long
period of time in a coastal area, and the rainfall estimation relations were generated through
a combination of dual-polarization parameters. The accuracy of each rainfall estimation
relationship was examined using ground rain gauge observation data. In addition, the
rainfall estimation relationship was created through a linear combination of the generated
rainfall estimation relationships. The weight of the linear combination was calculated
through the error value (RMSE). It was found that by using a linear combination of rainfall
estimation relationships, the ensemble method had higher accuracy than the independent
rainfall estimation relationship results.

Kang et al. [20] performed spatial correction using the deviation value of rainfall col-
lected through radar-based rainfall and ground observations and proposed a probabilistic
solution to the uncertainty of radar rainfall through spatial correction. By calculating the
error for each site of radar rainfall and ground rainfall and modeling the correlation of
the rainfall error between the ground observation sites, a perturbation field reflecting the
spatial error of the two-dimensional rainfall was created and applied to the radar rainfall
fields. The spatial uncertainty of the radar rainfall was presented, and the spatial accuracy
of the rainfall was improved by applying the observation error of each observation site to
the radar rainfall field as a correction value.
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Using the methods described above improved the rainfall estimation accuracy. How-
ever, since orographic precipitation systems over mountainous terrain have different micro-
physical characteristics, the rainfall accuracy is dependent on the altitude and location of
the mountain.

QPE studies [21–23] in mountainous regions are continuously being conducted. Most
of the QPE studies on orographic rainfall focus on correcting rainfall errors by correcting
the dual-polarization parameters according to mountain altitude. The amount of QPE
research considering regional microphysical characteristics is insufficient. Therefore, in
this study, the rainfall estimation relationship was calculated using multi-disdrometer
observation data collected from 10 sites in a mountainous region. The optimal estimation
relationship was obtained using an ensemble approach through a linear combination of
the relationships with the HSA (harmony search algorithm). The optimal rainfall fields
of the mountainous area were created through the spatial correction of the rainfall fields
obtained via the rainfall estimation relationships for each site. The contents of this paper
are organized as follows: In Section 2, the data and methods used for our analysis are
presented. In Section 3, we present the results of the ensemble of rainfall relations and the
spatial correction for the orographic rainfall. In Section 4, the summary and conclusions of
this study are presented.

2. Observational Data and Methodology
2.1. Intensive Field Observation Campaign
2.1.1. Disdrometer Observation Network on Jeju Island

To calculate the rainfall estimation relationship to generate the rainfall fields to
determine the orographic rainfall, 10 Parsivel disdrometer instruments were installed
along the long axis of Mt. Halla (Figure 1) during the rainy season every summer from
2012 to 2014 (Table 1). To consider the differences in raindrop development according to
the altitude differences and the location of the mountainous terrain (windward/leeward),
which are mainly influenced by the westerlies, the location of the Parsivel disdrometer
observation site was set along the slopes of Mt. Halla and spanned from the southwest
coastal area to the northeast coastal region of Jeju Island (Table 2). The maximum range
of the dual-polarization radar observation was 240 km, and the data, obtained every
5 min operated by KMA (Korea Meteorological Administration) on the west (GSN) and east
(SSP) coasts of Jeju Island, were used to apply the rainfall estimation relationship that was
calculated using Parsivel disdrometer data and to generate two-dimensional rainfall fields.
The spatial and the azimuthal resolutions of the dual-polarization radars were 250 m and
1.0◦, respectively. The volume scans included 9 elevation angles (i.e., 0.2◦, 0.5◦, 1.0◦, 1.6◦,
2.4◦, 3.5◦, 5.2◦, 7.6◦, and 15.0◦). Spatial correction and verification of the two-dimensional
rainfall fields were performed using rainfall amount information obtained through AWS
observations operated by KMA.

Information, such as rainfall intensity and the reflectivity of a set temporal resolution,
can be calculated using the information on the diameter and fall speed of precipitation
particles obtained during the Parsivel disdrometer observations. In this study, observation
data set with a 1 min time resolution was used to consider the changes in precipitation
characteristics over time. Particle diameters, ranging from 0.2 to 25 mm, and fall velocities,
ranging from 0.2 to 20 m s−1 (Table 3), can be observed by the Parsivel disdrometer [24].
There were 32 observation channels for both the particle diameter and fall speed; therefore,
1024 channels (32 × 32) were observed to determine the number of particles during the
set time resolution, and the concentration value for each channel was calculated by con-
sidering the number of particles observed for each channel and the observation area and
temporal resolution of the laser beam (Table 3). Among the 32 channels for the diameter
information and fall speed information, the first and second channels were not included in
the observable range of the Parsivel disdrometer and were treated as noise.
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Figure 1. The location (red diamond) of the installed Parsivels. The two black open stars indicate the
GSN (western) and SSP (eastern) radar sites. The black dots indicate the AWS sites installed by KMA.
The thin gray contour lines show the topography (contour interval: 200 m).

Table 1. Parsivel- and rain gauge-based orographic rainfall observation periods during the summer
rainfall season.

Observation Year Observation Period

2012 27 June–13 July
2013 18 June–14 July
2014 19 June–14 July

Table 2. Location and altitude information from the Parsivel and rain gauge observation sites on
Jeju Island.

Site Latitude (◦, N) Longitude (◦, E) Altitude (m)

S1 33.3000 126.2056 37
S2 33.1394 126.2717 140
S3 33.3450 126.3214 324
S4 33.3469 126.3883 551
S5 33.4250 126.4036 330
S6 33.3919 126.4939 975
S7 33.4253 126.5303 571
S8 33.4303 126.5978 590
S9 33.4594 126.7033 332

S10 33.5172 126.8869 57

Table 3. The specification information from the Parsivel disdrometer.

Parsivel Disdrometer Technical Data

Wavelength of the optical sensor 780 nm
Measuring area 180 × 30 mm (54 cm2)

Measuring range Particle size 0.2–25 mm (32 channels)
Particle velocity 0.2–20 m s−1 (32 channels)

Precipitation intensity 0.001–1200 mm h−1

Measurement interval 10 s to 60 min
Dimensions (H ×W × D) 670 × 600 × 114 mm

2.1.2. Calculating the Number Concentration

Parsivel disdrometers provide information on the diameter and falling speed of the
precipitation particles. Using disdrometer observation data, the concentration value for
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each drop diameter was calculated for the set temporal resolution (in this study, it was
set to 1 min). Before calculating the concentration, the following process was carried out
for QC (quality control) purposes [25,26] on nonweather observation data such as fallen
leaves and insects: (i) the first and second diameter channels with low signal intensities
were excluded [24,27,28]; (ii) data for the times when the rain rate value calculated from
the Parsivel observation data were less than 0.1 mm h−1 were excluded; (iii) data with
a diameter of 8 mm or more, which are difficult to judge as liquid rainfall particles, were
excluded; (iv) using the relationship (Equation (1)) [25,29] of the terminal velocity and the
diameter of the raindrops obtained in the laboratory while also considering the environment
in which raindrops are not affected by external factors, such as wind, when falling, only
the values that were included in the effective fall velocity range for each raindrop diameter
were used.

In this study, the constant in Equation (2) was set as 0.6, as suggested by Freidrich et al. [26].

V(D) = 9.65− 10.3 exp(−0.6D) (1)

|Vmeasured −VIdeal| < CVIdeal (2)

where D is the diameter of the raindrop, and Vmeasured and Videal are the measured fall
velocity and terminal velocity for each diameter channel, respectively.

2.1.3. Retrieving the Dual-Polarization Parameters with T-Matrix

To calculate the rainfall estimation relationship by considering the dual-polarization
parameters (i.e., ZH, ZDR, and KDP), the dual-polarization parameters were retrieved using
the concentration data at each site. It is possible to calculate dual-polarization parameters,
such as ZH, ZDR, KDP, and ρHVs, by applying the raindrop distribution data with a 1 min
time resolution to the T-matrix scattering simulation derived by Mishchenko et al. [30].

This study calculated the reflectivity parameters using the T-matrix scattering sim-
ulation program written by Leinonen [31]. To estimate the dual-polarization parameters
using the T-matrix scattering simulation, conditions, such as the shape, slope, and tem-
perature, of the rainfall particles must be given. The raindrop oblateness relationship
(Equations (3)–(5)) proposed by Thurai et al. [32] was used.

b
a
= 1.0 for Deq < 0.7 mm (3)

b
a
= 1.173− 0.5165Deq + 0.4698D2

eq − 0.1317D3
eq − 8.5× 10−3D4

eq for 0.7 ≤ Deq ≤ 1.5 mm (4)

b
a
= 1.065− 6.25× 10−2Deq − 3.99× 10−3D2

eq + 7.66× 10−4D3
eq − 4.095× 10−5D4

eq for 1.5 mm < Deq (5)

In the relational equation, a and b are the lengths of the horizontal and vertical axes of
the raindrops, and Deq is the diameter of the raindrops. The set temperature variable was
assumed to be 20 ◦C, and the result was calculated. It was applied by taking a Gaussian
distribution with an average canting angle of 0◦ for the raindrops and a canting angle width
of 20◦. In order to apply the rainfall estimation relationship to the S-band dual-polarization
radar operated by the KMA in Jeju, the frequency information of the S-band was used as
an input variable for the scattering simulation.

2.2. Operational Data
2.2.1. Dual-Polarization Radar and HSR

Weather radar is a remote sensing instrument that estimates the precipitation intensity
by calculating the reduced intensity of electromagnetic waves through the transmission
and reception of electromagnetic waves. Therefore, when the electromagnetic waves were
blocked by the mountain terrain and buildings between a radar antenna and a target,
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such as a precipitation cloud, the precipitation intensity decreased and caused the beam
blocking phenomenon to occur. Jeju Island has a mountainous terrain and a high altitude
of approximately 2 km ASL (above sea level), and it is a region where beam blacking by
topography occurs frequently. Using the elevation angle data that allow an elevation that
is higher than the topographical elevation to be observed, the beam blocking effect caused
by the topography can be reduced. Precipitation particles may be affected by evaporation,
breakup, shift effects, etc., resulting in a difference in the rainfall between the elevation of
a radar observation area and the ground rain gauge observation site. Therefore, to minimize
rainfall estimation errors according to the altitude, it is necessary to generate rainfall field
data using the precipitation observation data of the lowest altitude that is closest to the
ground altitude.

To minimize the beam blocking effect caused by Mt. Halla on Jeju Island, we applied
the HSR (hybrid scan reflectivity) technique proposed by Lee et al. [33] and Lyu et al. [34].
For each observation azimuth angle of the radar, a scan elevation angle that was higher
than the topographic elevation was obtained, and the reflectivity value for the calculated
elevation angle was used to calculate the rainfall. To determine the rainfall fields for the
orographic rainfall, the rain rate distribution data of the lowest altitude layer consisting of
the cylindrical coordinate system (i.e., altitude angle, azimuth angle, and distance) acquired
at each GSN and SSP site was converted into an orthogonal Cartesian coordinate system
(x, y). In the overlapping observation area of the two radars, a value with a higher rain rate
was used. Figure 2 shows the lowest elevation numbers for the GSN and SSP.
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2.2.2. Ensemble of Rain Rate Relationships with HSA

The rainfall estimation relationship based on the ground disdrometer data has an error
difference depending on the rainfall characteristics, and it is only possible to provide more
accurate ground rainfall information when the rainfall estimation equation is generated
through the optimal combination of dual-polarization parameters according to the micro-
physical characteristics of precipitation. Previously, many researchers have proposed the
rainfall estimation relationship according to the geography and type of rainfall [35–37]. How-
ever, the rainfall estimation relationships suggested by previous researchers are limited in
terms of their application in other regions and precipitation cases due to the differences in
precipitation cases and observation instruments selected for calculating the relationships.
In addition, unlike disdrometer observations in cities and flatlands, it is difficult to ob-
serve mountainous regions over a long period of time due to the geographical conditions.
Therefore, in this study, to calculate the optimal rainfall estimation relationship for a pre-
cipitation system with various characteristics and that extends over mountainous terrain,
the optimal rainfall estimation relationship was calculated through a linear combination of
rainfall estimation relationships by considering several dual-polarization parameters. The
optimization technique used to set the linear combination weight of the rainfall estimation
relationships was the HSA (harmony search algorithm) [38–40].

The optimization technique used in the analysis is a valuable method when there is
no correlation between the initial values used for optimization or when the solution of the
equation shows a nonlinear pattern according to the changes in the parameter values. It is
one of the metaheuristic optimization algorithms that is able to obtain the optimal solution
through iterative calculations that mimic natural phenomena combinations without using
an optimization method based on mathematical theory.

Linear weight values of randomly assigned rainfall estimation relationships are as-
signed, and the given weight value array is set as a number (in this study, 50 arrays were
created). The RMSE (root mean square error) value for the ground AWS rainfall and the
radar rainfall, to which several set weights were applied, were calculated. The RMSE (root
mean square error) value of the ground AWS rainfall and the radar rainfall, to which several
set weights were used, were calculated. The calculated RMSE value was the same as the
previously set number of arrays. A new RMSE value was obtained by removing the row
with the largest weight from the RMSE value array and by assigning a new random weight
value. The optimal weight was calculated by repeating a random weight value generation
and minimizing the RMSE. In this study, the number of repetitions was set to 20,000, and
the optimum weight value was obtained by averaging the repetitive values of 20 sets.

2.2.3. Spatial Optimization of Rainfall Estimation

Since the rainfall field converted through the radar rainfall estimating equation is
deterministic, to reduce the error caused by the spatial uncertainty, the error can be reduced
through an ensemble that adds the uncertainty contained in the radar data [19]. The spatial
ensemble of the radar rainfall field can be expressed by adding a spatial perturbation field
to the radar rainfall field [40] (Equation (6)).

Φt,i = Rt + δt,i (6)

where Φt,i denotes the probabilistic ensemble rainfall field; Rt denotes the radar rainfall field
for time t; δt,i represents the ith stochastic perturbation field based on the radar rainfall’s
temporal and spatial error for time t. The spatial characteristics of the radar rainfall
can be considered by examining the ensemble results to which perturbation is applied.
Yin et al. [41] mentioned that if the size of the spatial ensemble exceeds 10, the advantages
of the ensemble are limited. The perturbation (δt,i) representing the spatial error of the
radar data is generated as the sum of the Lyt,i variables related to the correlation of the
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ground observation site value at time t to the mean error of the ground rainfall average
observation error of the radar rainfall (Equation (7)).

δt,i = µt,k + Lyt,i (7)

where µt,k represents the average error from the rainfall start time to time t at the observation
site k and is calculated by considering the difference between the ground observation
rainfall value and the radar rainfall value (Equation (8)).

µt,k =
1

∑t
t=1 ωt,xk

ωt,xk εt,xk (8)

where xk represents the radar grid corresponding to the observation site k; εt,xk and ωt,xk
are the observation error and the weight of the observation error at the observation sites xk
and time t, respectively. In this study, the radar rainfall value was applied to the weight of
the observation error [42]. εt,xk can be expressed as Equation (9).

εt = 10 log10

(
Gt

Rt

)
(9)

where Gt and Rt represent the ground rainfall values and radar rainfall values for the time t,
and the unit of mm h−1 was converted to dBR. To calculate L in Equation (7), the covariance
for each observation site should be calculated by considering the spatial variability of the
radar rainfall (Equation (10)).

C = LLT (10)

where C represents the covariance matrix between observation sites; and L and LT represent
the upper and lower triangular matrixes decomposed through the Cholesky algorithm
(L represents a lower triangular matrix). The covariance matrix (C) for each observation
site can be calculated using Equation (11).

Ckl =
1

∑Q
t=1 ωt, xt

Q

∑
t=1

ωt,xk

(
εt,xk − µk

)(
εt,xl − µl

)
(11)

where Ckl is the covariance value between the k and l observation sites; Q is the time step.
Assuming that the rainfall distribution has a time correlation [43], Equation (7) can be
expressed as Equation (12).

δt,i = µt,k + vδ′t,i (12)

Equation (12) is a relational expression that is converted by applying the AR(2) filtering
model [44] to Equation (7) and is obtained through Equations (13)–(16).

δ′t,i = Lyt,i − a1δt−1,i − a2δt−2,i (13)

a1 = r1
r2 − 1
1− r2

1
(14)

a2 =
r2

1 − r2

1− r2
1

(15)

υ =

[
1− a2

(1− a2)(1− a1 + a2)(1 + a1 + a2)

]−0.5
(16)

where α1 and α2 are the AR(2) parameters estimated by the Yule–Walker equations; υ is
a scaling factor of AR(2) [42]. In Equation (13), δ′t,i is a perturbation field with autocorrelation
for two times t − 2 and t − 1.
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3. Results
3.1. Rainfall Estimation Relationships with Dual-Polarization Radar Parameters

Using the raindrop size distribution data collected at the 10 Parsivel observation sites,
the rainfall estimation relationship considering dual-polarization radar parameters (i.e., ZH,
ZDR, and KDP) was obtained through T-matrix scattering simulations. When calculating the
dual-polarization parameters, the frequency information of the GSN (2825 MHz) and SSP
(2755 MHz) dual-polarization radars was applied. Figure 3 is a scatterplot for the rain rate
calculated using the rainfall estimation relations obtained through the concentration distri-
bution data obtained at the S1 site and the rain rate calculated through the concentration
data. The accuracy comparison variables of the rainfall estimation relationship were RMSE
(root mean square error), NE (normalized error), and CORR (correlation coefficient).

RMSE =

[
1
N

N

∑
i=1

(Rest − Robs)
2

]1/2

(17)

NE =
1
N ∑N

i=1|Rest − Robs|
Robs

(18)

CORR =
∑N

i=1
(
Rest − Rest

)(
Robs − Robs

)[
∑N

i=1
(
Rest − Rest

)2
]1/2[

∑N
i=1
(
Robs − Robs

)2
]1/2 (19)

where Rest and Robs are the estimated rain rate from the rainfall estimation relationship and
the observed rain rate, respectively.
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Figure 3. Scatterplot of the rain rates directly calculated from the DSDs versus those calculated from
(a) R(ZH); (b) R(KDP); (c) R(ZH, ZDR); (d) R(ZH, KDP): (e) R(ZDR, KDP); (f) R(ZH, ZDR, and KDP) for
GSN S-band radar simulated from Parsivel measurements at S1.

Tables A1 and A2 show the rainfall estimation relationships at each site. The RMSE
(root mean square error) of the rainfall estimation relationship obtained at all sites, except
S09, had values that were smaller than 3 mm h−1 and CORR (correlation coefficient) values
larger than 0.89. The RMSE and CORR of the rainfall estimation relationship at S09 that
did not consider ZDR showed similar values to those of other sites. On the other hand,
when ZDR was considered, the maximum RMSE was approximately 6.1 mm h−1, and the
minimum CORR value was 0.8. Rainfall fields were generated by applying the rainfall
estimation relationships that were obtained via the in situ disdrometer observation data at
each site to actual GSN and SSP dual-polarization radar data. To minimize the error with
the ground rainfall value, the lowest altitude data that did not result in a beam block due to
the influence of the terrain were used (Figure 2). To avoid considering non-meteorological
echoes when generating rain rate field data, only grid data with ρHV values of 0.85 or
higher were used.

3.2. Optimization of Rainfall Estimate with the Ensemble Approach

Using the rainfall fields that were obtained, the optimal estimation relationship was
calculated using a linear combination of rainfall estimation relationships to improve the
accuracy of the rainfall estimation (Equation (20)).

RENS = C1R(ZH) + C2R(KDP) + C3R(ZH, ZDR) + C4R(ZH, KDP) + C5R(ZDR, KDP) + C6R(ZH, ZDR, KDP) (20)

To calculate the coefficients of the relational expressions using the linear combination,
coefficient optimization using HSA was performed, an error value (RMSE) compared the
radar rainfall fields that the ensemble rainfall estimation relationship was applied to, and
the ground AWS rain rate value was selected as a reference variable for optimization.

The raindrop size distribution characteristics affecting the parameters of the rainfall
relationships change with the intensity of the rain rate [45–47]. Therefore, when optimizing
the rainfall intensity using the HSA, the optimization was performed by dividing six rain rate
categories (R1: 0.1 ≤ R < 1.0 mm h−1; R2: 1.0 ≤ R < 5.0 mm h−1; R3: 5.0 ≤ R < 10.0 mm h−1;
R4: 10.0 ≤ R < 20.0 mm h−1; R5: 20.0 ≤ R < 30.0 mm h−1; R6: 30.0 mm h−1 ≤ R). The HSA
is a method that can be used to determine the optimal coefficient by repeating the process
of applying an arbitrary value to the relational expression. The RMSE reduction results
according to the number of rainfall estimation relationship repetitions determined using
actual radar data are shown in Figure 4. When the number of repetitions was more than
250, the decrease in the RMSE decreased sharply, and when the number of repetitions was
more than 600, the RMSE value converged to approximately 17 mm h−1. As a result, the
initial RMSE value of approximately 60 mm h−1 decreased significantly to less than 20 mm h−1.
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Figure 4. The convergence process of the RMSE with the number of repetitions using the harmony
search algorithm. The gray and red lines indicate the HSA process results and the averaged RMSE
results, respectively.

Figure 5 shows the rainfall estimation weight value for each rain rate intensity category
using HSA. In the R1 and R2 intervals (0.1 ≤ R < 5 mm h−1), the weights of the R(ZH) and
R(ZH, ZDR), not considering KDP, were significantly higher than the weights of the R(KDP)
and R(ZDR, KDP) relationships (Figure 5a,b). On the other hand, at rain rate intensities
higher than 10 mm h−1, the weighting factor values of R(KDP) and R(ZDR, KDP) accounted
for an increased maximum weight of 0.8 or more (Figure 5e,f). Therefore, the final rain rate
fields were calculated by adjusting the weight values of the rainfall estimation relationships
according to the rainfall intensity.
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The RENS values obtained through the ensemble of rainfall estimation relationships
and the RMSE, NE, and CORR results of each rainfall estimation relationship during the
spring, summer, and fall season from 7 September 2018 to 30 November 2020 are shown in
Figure 6. Overall, the error (i.e., RMSE and NE) values for the ensemble rainfall estimation
relationships were lower than those of the independent rainfall estimation relationships,
and the correlation with the ground observations was high. The relational expressions with
high accuracy at all of the observation sites appeared in the following order: RENS, R(ZH,
KDP), R(ZH), R(ZH, ZDR), R(ZH, ZDR, and KDP), R(ZDR, KDP), and R(KDP). The correlation
with the AWS observations appeared in the reverse order to the error accuracy.
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Figure 6. (a) RMSE, (b) NE, and (c) CORR of the ensemble results and QPE relationships at the
10 Parsivel sites.

To compare the rain rate intensity to the movement of the rainfall system, a time series
analysis of the rain rate intensity was conducted on the precipitation cases on Jeju Island
on 13 June 2020 (Figure 7). The selected precipitation case was a precipitation case in which
the maximum daily cumulative rainfall in the Jeju area was 100 mm.

The rainfall estimation relationships, including the KDP, showed an overall tendency
for estimation, and the result was overestimated with a large width of up to 20 mm h−1,
even at weak rainfall intensities of less than 5 mm h−1. For example, at 0640 LST, which
was the time at which an extreme rain rate intensity was observed in a precipitation
cell, the rainfall intensity that was estimated using the independent rainfall estimation
relationship at S1 showed a maximum difference of approximately 80 mm h−1 compared
to the actual observed rain rate intensity (Figure 7a,c). However, as a result of the ensemble,
the difference observed in the rain rate could be reduced to less than about 10 mm h−1. In
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particular, at S4–S10, the ensemble rain rate value recorded similar values when compared
to the actual value, and the change in the increasing and decreasing rain rate intensity
within a short period of time was estimated with a high level of accuracy (Figure 7d–j).
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Figure 7. The time series of the rain rate calculated by the ensemble method (black, solid line), QPE
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3.3. Spatial Correction of the Rainfall Fields

The left and right graphs in Figure 8 show the covariance matrix and decomposed
triangular matrix for each AWS observation site for the error of the radar rain rate calculated
using the rainfall estimation relationship obtained at S1 and the rain rate obtained from
ground AWS observations. The larger the covariance, the higher the positive correlation
between the two types of data compared, and the higher the error correlation with the
observed values.
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The perturbation value of the rainfall fields to which the relationship of S6, which
was the site with the highest altitude among the observation sites, was applied, recorded a
low value of approximately 0.5 dBR in the mountainous peak areas but a negative pertur-
bation value in the low-altitude areas close to the coastal line. Therefore, this result was
underestimated compared to the actual observed value (Figure 9f). The spatial distribution
characteristics for perturbation showed similar results according to the difference in the
raindrop size distribution characteristics.

The perturbation distributions of S5 and S9, which were located on the leeward moun-
tain slope, showed positive values at the mountainous peaks, and negative perturbation
values were observed, resulting in underestimation at altitudes below 50 m ASL. The
rainfall fields obtained at the sites located in the middle of the mountain slopes (i.e., S2,
S4, S5, S7, S8, and S9), showed different perturbation values based on altitude rather than
based on their relative position (windward/leeward) on the mountain.

Figure 9 shows the spatial perturbation distribution of the rainfall fields obtained
through the ensemble of rainfall estimation relationships for each Parsivel observation site.
The rainfall fields generated through the rainfall estimation relations obtained in coastal
areas (i.e., S1 and S10) recorded high values of more than 2 dBR of perturbation in the
mountainous regions (Figure 9a,j).

The perturbation distribution characteristics determined according to mountain alti-
tude in Figure 9 are also shown in the comparison results of the rain rate values obtained
from the rainfall fields using the ensemble rainfall estimation relationship and the ground
AWS rain rate (Figure 10). The rainfall estimation relationships obtained in coastal areas
had a very high error value (RMSE), higher than 7 mm h−1 in mountainous regions, and
had low error values of 3 mm h−1 in coastal regions (Figure 10a,j).

The rainfall estimation relationship obtained at site S6 showed a relatively small value
of approximately 7 mm h−1 at a high altitude close to the mountain’s peak. On the contrary,
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the RMSE value in the coastal areas and on the areas of the mountain slope increased by
approximately 3 mm h−1 compared to the rainfall estimation relationship results that were
obtained on the mountain slope and in the coastal areas. The final rainfall fields were
obtained by averaging the spatially corrected rainfall fields at sites S1–S10 at the same grid
point, and the comparison result with the observed rain rate on the ground is shown in
Figure 11. By correcting the underestimated and overestimated errors according to the
altitudes of the different areas on the mountain, the RMSE value for the area closest to the
mountain peak decreased from 8 to approximately 6 mm h−1, and the RMSE value in the
coastal regions was kept as low as 3 mm h−1.
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4. Summary and Conclusions

The orographic rainfall was estimated using the DSD data obtained from in situ
Parsivel observations. Polarization radar parameters, such as ZH, ZDR, and KDP, were
retrieved by DSD data obtained from the Parsivel observation data using T-matrix scattering
simulation, and the rainfall estimation relationship was calculated. In addition, GSN and
SSP dual-polarization radar data were used to verify the accuracy of the rainfall estimation
relationships, and the lowest elevation angle observation data above the terrain elevation
were used to minimize the beam blocking effect caused by the terrain.

The ensemble rainfall relationship was obtained via the linear combination of the
rainfall relationships through the harmony search algorithm, and the error rate of the
rainfall estimation relationship could be sufficiently reduced, even with 600 repetitions.

The rainfall relationship that included the KDP showed high accuracy for substantial
rainfall events of over 20 mm h−1. At weak rain rate intensities of less than 5 mm h−1,
the error was higher than that of the rainfall relationships that included the ZH and ZDR
parameters. Therefore, the proportions of R(ZH) and R(ZH, ZDR) were applied in rain rates
lower than 5 mm h−1, and the proportions of R(KDP) and R(ZDR, KDP) were high at rain rates
that were higher than 30 mm h−1 when determining the ensemble rainfall relationship.

Spatial correction was applied to the rainfall fields to improve the accuracy of the
rainfall fields over complex orographic rainfall. The spatial error characteristics with the
altitude of the observation were applied to calculate the rainfall relationship. The rainfall
generated through the relationship of obtained areas with a relatively high altitude had
a relatively low error rate in sloped mountain slope areas, and it was underestimated in
low-altitude areas and close to the sea. On the other hand, the rainfall generated from the
coastal area showed overestimation in sloped mountain areas. In all of the coastal areas, the
perturbation value was used as a correction factor for rainfall fields with a low recorded
value that was between approximately −1 and 1 dBR. The spatial error difference had a more
significant effect on the altitude than the windward/leeward side in the mountainous areas.

By optimizing rainfall estimation using HSA and the spatial rainfall error correction
technique, it was possible to reduce the error rate according to the rainfall intensity of the
rainfall relationship and the spatial errors caused by orographic development. Applying
the rainfall field generation method proposed in this study to coastal and urban areas
with complex topographical characteristics could help to improve the rainfall estimation
accuracy for localized torrential rainfall.
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Appendix A

Table A1. The rainfall estimation relationships, RMSE, NE, and CORR considering the frequency of
the GSN radar at each site.

S1 Equation RMSE NE CORR

R(ZH) R = 0.0389ZH
0.65761 1.947 0.000041 0.945

R(KDP) R = 47.2049KDP
0.72784 1.068 0.000031 0.981
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Table A1. Cont.

S1 Equation RMSE NE CORR

R(ZH, ZDR) R = 0.042ZH
0.7008ZDR

−4.5108 1.893 0.000039 0.976
R(ZH, KDP) R = 0.011ZH

0.7542KDP
−0.1536 1.858 0.000042 0.938

R(ZDR, KDP) R = 35.918ZDR
−1.0523KDP

0.6414 2.035 0.000045 0.976
R(ZH, ZDR, KDP) R = 0.005ZH

0.9129ZDR
−4.8768KDP

−0.2149 1.836 0.000038 0.977

S2 Equation RMSE NE CORR

R(ZH) R = 0.0357ZH
0.67169 1.707 0.000046 0.967

R(KDP) R = 50.8550KDP
0.74610 1.065 0.000035 0.986

R(ZH, ZDR) R = 0.040ZH
0.7015ZDR

−3.8854 2.388 0.000048 0.977
R(ZH, KDP) R = 0.008ZH

0.7879KDP
−0.1773 1.859 0.000049 0.961

R(ZDR, KDP) R = 31.234ZDR
−0.0326KDP

0.6281 2.560 0.000056 0.974
R(ZH, ZDR, KDP) R = 0.004ZH

0.9269ZDR
−4.2899KDP

−0.2275 2.299 0.000046 0.979

S3 Equation RMSE NE CORR

R(ZH) R = 0.0291ZH
0.68783 1.560 0.000072 0.964

R(KDP) R = 49.9538KDP
0.75820 0.887 0.000053 0.985

R(ZH, ZDR) R = 0.047ZH
0.6553ZDR

−3.2141 2.442 0.000084 0.966
R(ZH, KDP) R = 0.104ZH

0.5251KDP
0.0651 1.880 0.000082 0.968

R(ZDR, KDP) R = 31.641ZDR
−0.7763KDP

0.6341 2.424 0.000086 0.968
R(ZH, ZDR, KDP) R = 0.023ZH

0.7233ZDR
−3.3842KDP

−0.0685 2.439 0.000084 0.966

S4 Equation RMSE NE CORR

R(ZH) R = 0.0369ZH
0.66180 2.721 0.000033 0.919

R(KDP) R = 48.5628KDP
0.73833 1.462 0.000025 0.970

R(ZH, ZDR) R = 0.047ZH
0.6855ZDR

−4.6863 2.916 0.000031 0.945
R(ZH, KDP) R = 0.079ZH

0.5559KDP
0.0289 2.294 0.000033 0.929

R(ZDR, KDP) R = 37.293ZDR
−1.6821KDP

0.6426 2.961 0.000033 0.952
R(ZH, ZDR, KDP) R = 0.011ZH

0.8256ZDR
−5.0646KDP

−0.1396 2.900 0.000031 0.945

S5 Equation RMSE NE CORR

R(ZH) R = 0.0575ZH
0.64395 2.471 0.000059 0.945

R(KDP) R = 56.5972KDP
0.71370 1.379 0.000044 0.979

R(ZH, ZDR) R = 0.043ZH
0.7528ZDR

−7.4426 2.649 0.000050 0.959
R(ZH, KDP) R = 0.030ZH

0.6928KDP
−0.0582 2.165 0.000055 0.941

R(ZDR, KDP) R = 58.388ZDR
−3.7367KDP

0.6854 2.995 0.000060 0.968
R(ZH, ZDR, KDP) R = 0.008ZH

0.9155ZDR
−7.8030KDP

−0.1609 2.580 0.000049 0.961

S6 Equation RMSE NE CORR

R(ZH) R = 0.0404ZH
0.66853 1.918 0.000026 0.960

R(KDP) R = 52.4869KDP
0.72923 1.148 0.000019 0.984

R(ZH, ZDR) R = 0.043ZH
0.7192ZDR

−5.1591 2.203 0.000025 0.981
R(ZH, KDP) R = 0.017ZH

0.7312KDP
−0.1140 1.891 0.000026 0.957

R(ZDR, KDP) R = 36.494ZDR
−0.7470KDP

0.6334 2.507 0.000031 0.979
R(ZH, ZDR, KDP) R = 0.008ZH

0.8891ZDR
−5.5056KDP

−0.1682 2.122 0.000024 0.982

S7 Equation RMSE NE CORR

R(ZH) R = 0.0371ZH
0.67122 1.077 0.000064 0.956

R(KDP) R = 50.4189KDP
0.73234 0.872 0.000055 0.969

R(ZH, ZDR) R = 0.042ZH
0.7460ZDR

−8.1627 1.996 0.000060 0.894
R(ZH, KDP) R = 0.015ZH

0.7230KDP
−0.1251 1.206 0.000065 0.952

R(ZDR, KDP) R = 32.844ZDR
−2.8589KDP

0.5979 2.221 0.000077 0.904
R(ZH, ZDR, KDP) R = 0.007ZH

0.9252ZDR
−8.4534KDP

−0.1701 1.919 0.000057 0.903

S8 Equation RMSE NE CORR

R(ZH) R = 0.0504ZH
0.64806 2.485 0.000036 0.926

R(KDP) R = 52.0774KDP
0.70816 1.332 0.000029 0.972

R(ZH, ZDR) R = 0.042ZH
0.7653ZDR

−7.9757 2.200 0.000027 0.944
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Table A1. Cont.

S8 Equation RMSE NE CORR

R(ZH, KDP) R = 0.014ZH
0.7618KDP

−0.1394 2.452 0.000035 0.915
R(ZDR, KDP) R = 58.268ZDR

−4.0993KDP
0.6685 2.596 0.000036 0.946

R(ZH, ZDR, KDP) R = 0.007ZH
0.9357ZDR

−8.1194KDP
−0.1700 2.109 0.000026 0.949

S9 Equation RMSE NE CORR

R(ZH) R = 0.1181ZH
0.55311 2.539 0.000115 0.945

R(KDP) R = 50.3939KDP
0.64553 2.031 0.000111 0.968

R(ZH, ZDR) R = 0.052ZH
0.7473ZDR

−7.9144 5.608 0.000113 0.813
R(ZH, KDP) R = 0.009ZH

0.7997KDP
−0.2066 3.240 0.000110 0.933

R(ZDR, KDP) R = 34.728ZDR
−2.9961KDP

0.5528 6.163 0.000142 0.809
R(ZH, ZDR, KDP) R = 0.005ZH

0.9754ZDR
−8.0061KDP

−0.2175 5.269 0.000105 0.851

S10 Equation RMSE NE CORR

R(ZH) R = 0.0430ZH
0.63962 1.469 0.000047 0.955

R(KDP) R = 43.3704KDP
0.70726 0.876 0.000036 0.979

R(ZH, ZDR) R = 0.055ZH
0.6415ZDR

−3.5784 1.993 0.000043 0.953
R(ZH, KDP) R = 0.047ZH

0.5990KDP
−0.0292 1.408 0.000046 0.957

R(ZDR, KDP) R = 29.611ZDR
−0.7941KDP

0.6104 1.967 0.000047 0.961
R(ZH, ZDR, KDP) R = 0.017ZH

0.7560ZDR
−3.8443KDP

−0.1160 1.980 0.000043 0.953

Table A2. The rainfall estimation relationships considering the frequency of the SSP radar at each site.

S1 Equation RMSE NE CORR

R(ZH) R = 0.0389ZH
0.65739 1.957 0.000041 0.944

R(KDP) R = 46.3053KDP
0.72766 1.070 0.000031 0.981

R(ZH, ZDR) R = 0.042ZH
0.7008ZDR

−4.5119 1.893 0.000039 0.976
R(ZH, KDP) R = 0.011ZH

0.7526KDP
−0.1522 1.863 0.000042 0.938

R(ZDR, KDP) R = 35.344ZDR
−1.0554KDP

0.6414 2.035 0.000045 0.976
R(ZH, ZDR, KDP) R = 0.005ZH

0.9115ZDR
−4.8764KDP

−0.2136 1.836 0.000038 0.977

S2 Equation RMSE NE CORR

R(ZH) R = 0.0357ZH
0.67142 1.711 0.000047 0.967

R(KDP) R = 49.8511KDP
0.74583 1.066 0.000035 0.986

R(ZH, ZDR) R = 0.040ZH
0.7014ZDR

−3.8879 2.388 0.000048 0.977
R(ZH, KDP) R = 0.008ZH

0.7886KDP
−0.1783 1.861 0.000049 0.961

R(ZDR, KDP) R = 30.906ZDR
−0.0570KDP

0.6289 2.559 0.000055 0.974
R(ZH, ZDR, KDP) R = 0.004ZH

0.9283ZDR
−4.2948KDP

−0.2290 2.299 0.000046 0.979

S3 Equation RMSE NE CORR

R(ZH) R = 0.0291ZH
0.68757 1.566 0.000072 0.964

R(KDP) R = 48.9830KDP
0.75822 0.888 0.000053 0.985

R(ZH, ZDR) R = 0.047ZH
0.6552ZDR

−3.2163 2.442 0.000084 0.966
R(ZH, KDP) R = 0.105ZH

0.5238KDP
0.0664 1.880 0.000082 0.968

R(ZDR, KDP) R = 31.152ZDR
−0.7808KDP

0.6341 2.424 0.000086 0.968
R(ZH, ZDR, KDP) R = 0.023ZH

0.7239ZDR
−3.3888KDP

−0.0692 2.438 0.000084 0.966

S4 Equation RMSE NE CORR

R(ZH) R = 0.0369ZH
0.66152 2.736 0.000033 0.918

R(KDP) R = 47.6293KDP
0.73827 1.465 0.000025 0.970

R(ZH, ZDR) R = 0.047ZH
0.6854ZDR

−4.6859 2.916 0.000031 0.945
R(ZH, KDP) R = 0.080ZH

0.5545KDP
0.0301 2.296 0.000033 0.929

R(ZDR, KDP) R = 36.783ZDR
−1.6926KDP

0.6429 2.960 0.000033 0.952
R(ZH, ZDR, KDP) R = 0.011ZH

0.0.8249ZDR
−5.0622KDP

−0.1391 2.901 0.000031 0.945

S5 Equation RMSE NE CORR

R(ZH) R = 0.0575ZH
0.64375 2.479 0.000059 0.945
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Table A2. Cont.

S5 Equation RMSE NE CORR

R(KDP) R = 55.5569KDP
0.71362 1.381 0.000044 0.979

R(ZH, ZDR) R = 0.043ZH
0.7527ZDR

−7.4415 2.649 0.000050 0.959
R(ZH, KDP) R = 0.030ZH

0.6923KDP
−0.0579 2.171 0.000055 0.941

R(ZDR, KDP) R = 57.343ZDR
−3.7328KDP

0.6854 2.995 0.000060 0.968
R(ZH, ZDR, KDP) R = 0.008ZH

0.9154ZDR
−7.8027KDP

−0.1609 2.580 0.000049 0.961

S6 Equation RMSE NE CORR

R(ZH) R = 0.0404ZH
0.66833 1.924 0.000026 0.960

R(KDP) R = 51.4925KDP
0.72911 1.150 0.000019 0.983

R(ZH, ZDR) R = 0.043ZH
0.7191ZDR

−5.1602 2.203 0.000025 0.981
R(ZH, KDP) R = 0.017ZH

0.7304KDP
−0.1133 1.894 0.000026 0.956

R(ZDR, KDP) R = 35.917ZDR
−0.7495KDP

0.6334 2.506 0.000031 0.979
R(ZH, ZDR, KDP) R = 0.008ZH

0.8885ZDR
−5.5065KDP

−0.1678 2.122 0.000024 0.982

S7 Equation RMSE NE CORR

R(ZH) R = 0.0371ZH
0.67104 1.078 0.000064 0.956

R(KDP) R = 49.4729KDP
0.73230 0.872 0.000055 0.969

R(ZH, ZDR) R = 0.042ZH
0.7459ZDR

−8.1628 1.997 0.000060 0.894
R(ZH, KDP) R = 0.015ZH

0.7234KDP
−0.1256 1.206 0.000065 0.952

R(ZDR, KDP) R = 32.427ZDR
−2.8688KDP

0.5982 2.221 0.000077 0.904
R(ZH, ZDR, KDP) R = 0.007ZH

0.9257ZDR
−8.4539KDP

−0.1707 1.920 0.000057 0.903

S8 Equation RMSE NE CORR

R(ZH) R = 0.0504ZH
0.64787 2.499 0.000036 0.925

R(KDP) R = 51.1323KDP
0.70813 1.335 0.000029 0.972

R(ZH, ZDR) R = 0.042ZH
0.7652ZDR

−7.9749 2.201 0.000027 0.944
R(ZH, KDP) R = 0.014ZH

0.7610KDP
−0.1388 2.466 0.000035 0.915

R(ZDR, KDP) R = 57.234ZDR
−4.0948KDP

0.6684 2.596 0.000036 0.946
R(ZH, ZDR, KDP) R = 0.007ZH

0.9353ZDR
−8.1196KDP

−0.1696 2.110 0.000026 0.949

S9 Equation RMSE NE CORR

R(ZH) R = 0.1183ZH
0.55280 2.545 0.000116 0.945

R(KDP) R = 49.5342KDP
0.64540 2.031 0.000111 0.968

R(ZH, ZDR) R = 0.052ZH
0.7471ZDR

−7.9075 5.609 0.000113 0.813
R(ZH, KDP) R = 0.009ZH

0.7990KDP
−0.2062 3.262 0.000111 0.932

R(ZDR, KDP) R = 34.201ZDR
−2.9886KDP

0.5526 6.163 0.000142 0.809
R(ZH, ZDR, KDP) R = 0.005ZH

0.9751ZDR
−8.0012KDP

−0.2173 5.271 0.000105 0.851

S10 Equation RMSE NE CORR

R(ZH) R = 0.0430ZH
0.63940 1.475 0.000047 0.955

R(KDP) R = 42.5642KDP
0.70709 0.877 0.000036 0.979

R(ZH, ZDR) R = 0.055ZH
0.6415ZDR

−3.5808 1.993 0.000043 0.953
R(ZH, KDP) R = 0.047ZH

0.5995KDP
−0.0298 1.408 0.000046 0.957

R(ZDR, KDP) R = 29.116ZDR
−0.7905KDP

0.6102 1.966 0.000047 0.961
R(ZH, ZDR, KDP) R = 0.017ZH

0.7572ZDR
−3.8506KDP

−0.1172 1.980 0.000043 0.953
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